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OUTLINE
Randomized “sketches”
a. Warmup: PCA

b. Classical sketches

c. Structured sketches

2. Applications
Warmup: linear algebra
K-means clustering

a.
b.
c. lensor factorizations
d.

Gradient-free optimization
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1. Randomized “sketches”
a. Warmup: PCA

Reducing the dimensionality of data s
v v . Applications -

a
b.
\ c.  Tensor factorizations
/> psmall I }/ d.  Gradient-free optimization

. Warmup: linear algebra

p X

r; € RP, ¢=1,..., N is converted to y; € RPsmall . g =1,... N
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1. Randomized “sketches”
a. Warmup: PCA

Reducing the dimensionality of data s
. . . Applications

a. Warmup: linear algebra
b.  K-means clustering
\ c.  Tensor factorizations
/> psmall Y d.  Gradient-free optimization
p X

r; € RP, ¢=1,..., N is converted to y; € RPsmall = ¢ =17, ... N

this reduction is often linear, in which case can write as
N p N

Psmall )4 —  Psmall b

! X
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1. Randomized “sketches”
a. Warmup: PCA

a a a a e
Reducing the dimensionality of data s
N N ’ a. Ap\?\l/lacfr;f::s linear algebra
b.  K-means clustering
\ c.  Tensor factorizations
/> Psmall Y d.  Gradient-free optimization
X
r,; € RP, ¢=1,..., N is converted to y; € RPsmall . ¢ =1... N

this reduction is often linear, in which case can write as
N N

Psmall )4 — Psmall b

X

Why?
» Faster computation

> Especially if the complexity of subsequent processing is O(p*N)
> If psmann = 0.05p then speedup is 400 X .. or for storage reasons

» Denoising (remove irrelevant components) (especially to create one-pass methods)
» Fewer degrees-of-freedom reduces chance of overfitting models

» Visual interpretation (e_g_, Dsmall = {27 3}) «—— This is “multidimensional scaling”. Specialized techniques (tSNE, UMAP) are best
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1. Randomized “sketches”
a. Warmup: PCA

(on

Classical sketches

Method 1: PCA (non-linear)

Principal Component Analysis (aka Hotelling or Karhunen-Loeve transform)

Take SVD
X = U1 U]

2

where |||

Y%(I)pCA-X

where (I)pCA

Note:

21
0

small. Then PCA takes the form of

2. Applications
Warmup: linear algebra
K-means clustering

Tensor factorizations

O 0o T w

Gradient-free optimization

Principal component analysis of the

fineStructure co-ancestry matrix
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https://commons.wikimedia.org/wiki/File:PCA_of British_people.png

Gilbert, E., O'Reilly, S., Merrigan, M. et al. The Irish DNA Atlas: Revealing Fine-
Scale Population Structure and History within Ireland. Sci Rep 7, 17199 (2017)

» Costly but linear in N: (O(p?N) direct, or about O(psmanpN) Krylov)

» Non-linear, since ®pcp is determined by X

» Need to process all of X before we can apply y; <+ Ppca - z;

Stephen Becker (CU Boulder)
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1. Randomized “sketches”
. . . a. Warm-up: PCA
Method 2: sub-sample dimensions (i.e., rows) R
’ a. Ap\F;\lllgfr:(:: linear algebra
R randomly samples rows L e tesormations
d.  Gradient-free optimization

o rows —

Psmall = ]i

=
S
=

Psmall Y — Psmall B (E
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1. Randomized “sketches”
a. Warmup: PCA

Method 2: sub-sample dimensions (i.e., rows) G
R randomly samples rows e cocerm

a
b

c.  Tensor factorizations

d Gradient-free optimization

o rows —

Psmall R

=
S
=

Psmall Y — Psmall b

How to choose R?

» Uniformly at random (... poor performance) ) “oblivious®
> According to row-norm (... better, not great, and slower) —

_ _ . non-oblivious”
» According to leverage scores based on partial SVD (... better, slow)

(like PCA)

One benefit: for many applications, this avoids computing all entries of the RHS in the first place!

That's sometimes the bottleneck...
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1. Randomized “sketches”
Warmup: PCA

Method 2: sub-sample dimensions (i.e., rows) o

2. Applications

O

Warmup: linear algebra
K-means clustering

Tensor factorizations

O 0o T w

Gradient-free optimization

Leverage scores

ith leverage score is Euclidean norm squared of the ith row of Q

[For keen observers: this isn't useful if N > p. What to do then?
Can essentially prove separately for all pairs of points (so N =2)
and then take union bound (not an issue, since failure decays fast).

Technically, usually prove via subspace embeddings |
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1. Randomized “sketches”
a. Warmup: PCA

Method 3: dense random matrix R

. Warmup: linear algebra

K-means clustering

Theorem (Johnson-Lindenstrauss, 1984 (and Indyk-Motwani, 1998))

Choose ® = @ ,pdn With pemai o< €% log N iid rows each N (0, p/psmaii), then for
a//:vz-,xj S {xl,...,a:N} C RP,

a
b

c.  Tensor factorizations

d.  Gradient-free optimization

“oold standard” for accuracy among

_ 1% — @)

1 —¢ <1+4-¢

|z; — C127’H2 randomized data-oblivious sketches

(for any Euclidean norm results)

with constant probability.

)
/
QA
S

Rp Rpsmall

®;; ~ N(0,p/Dsman)
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1. Randomized “sketches”
a. Warmup: PCA

Method 3: dense random matrix e

Warmup: linear algebra

K-means clustering

Theorem (Johnson-Lindenstrauss, 1984 (and Indyk-Motwani, 1998))

Choose ® = @ ,pdn With pemai o< €% log N iid rows each N (0, p/psmaii), then for
a//mz-,xj S {xl,...,a:N} C RP,

Tensor factorizations

o 0 T w

Gradient-free optimization

_ 1% — @)

1 —¢ <1+4-¢

|z; — 5|2

with constant probability.

» & is linear and data-independent (unlike PCA)

out @ is not orthogonal (unlike PCA)  (though variants can be made to be orthogonal)
ndependent of original dimension p

ndependent of conditioning of X (unlike PCA)

Probabilistic (unlike PCA)

vV v v V¥V

Usually not practical since too costly since computing ® X is O(ppsman V) '

Depends on what its purpose is... N
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1. Randomized “sketches”
a. Warmup: PCA

Method 3: dense random matrix b Gl st

2. Applications

a. Warmup: linear algebra
b.  K-means clustering
c.  Tensor factorizations
d.  Gradient-free optimization
Bipartite Expander
graphs Extensions of applicability, for example:

O entire subspaces and manifolds

........
R At A
o

(using covering-number arguments)

NN .'-)-"T s s .',
Wil ‘ Ry
i . -
R ! _ d F i
S A . T
W ;

ves eo 0o 9

image: De Castro,

IEEE TIT 2010
Many extensions, for example: N
O sub-Gaussian entries, and/or dependent rows (e.g., columns uniform on sphere)
CountSketch O dependent columns, e.g., Haar measure on orthogonal matrices P X
example O sparse matrix (worse performance though)
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1.

a.

Method 4: Fast Johnson-Lindenstrauss Transforms :

2.

R samples rows; F Fourier-like; D diag. w/ random =+1 entries (“Rademacher”)
(uniformly)

p p p

Psmall R
Dppr = pr-F P B

Orthogonal /unitary, ideally with small max entry

(so identity matrix is bad)

o 0 T w

Randomized “sketches”
Warmup: PCA
Classical sketches
Structured sketches
Applications
Warmup: linear algebra
K-means clustering
Tensor factorizations
Gradient-free optimization

Stephen Becker (CU Boulder) Randomization Methods for Big Data, 9/19/2025 AMS colloquium
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1. Randomized “sketches”

Method 4: Fast Johnson-Lindenstrauss Transforms o G

2. Applications

o L

R samples rows; F Fourier-like; D diag. w/ random =£1 entries (“Rademacher”) e e
(uniformly) e o
P P P
Psmall R
Dppr = pr-F P B
Cost:
» F(x) costs plog p (vs p* naively)
» hence O(pN log p) to compute & X
Guarantees: almost as good as classical Johnson-Lindenstrauss
First guarantees in the Fast Johnson-Lindenstrauss paper
Ailon and Chazelle, “Approximate nearest neighbors and the fast Johnson-Lindenstrauss transform”, STOC 2006
Think of F as FFT or DCT or Hadamard transform
N
also known under many names, e.g., Random Orthogonal System (ROS), FJLT D X

Stephen Becker (CU Boulder) Randomization Methods for Big Data, 9/19/2025 AMS colloquium 14



1. Randomized “sketches”
a. Warmup: PCA

Method 4: Fast Johnson-Lindenstrauss Transforms Gl

2. Applications
a. Warmup: linear algebra
b K-means clustering
c.  Tensor factorizations
d.  Gradient-free optimization

How to get guarantees?

Basic idea is that after applying the first two steps, resulting

matrix has (almost) uniform leverage scores...

.. S0 uniform subsampling is (almost) leverage score sampling.

Stephen Becker (CU Boulder) Randomization Methods for Big Data, 9/19/2025



Method 4: Fast Johnson-Lindenstrauss Transforms

More intuition

Suppose we want to estimate ||x||3 for & € R” by sampling just pgman entries
(and multiplying by p/psman). Wlog, let ||x|2 = 1.

>
>

\ 4

from

High variance if « has a few large components
Intuition: the matrix FD flattens out input vectors

» Components of & can be as large as 1

» Average component of x is p_1/2

p

Define y = F Dz, so ||y[l2 = ||z|l2. Then yy =) . F1 &2
» Eyi =0since Ee; =0

> Var(yi) = p~ ! since .Flz,j <n= p*

and ||xz]|2 = 1 and ¢; independent

Hoeffding inequality:
P(lyr| > 1) < 2e77%/2

So chance that one of y; for 5 =1,...,pis >t is less than 192(3_10’52/2

So with constant probability, can choose t ~ \/10_1 log(p)

Conclusion: the max component of y is about the same as its average

1.

2.

component. Subsampling y will have much less variance than subsampling .

Stephen Becker (CU Boulder)

Randomization Methods for Big Data, 9/19/2025

“Improved analysis of the subsampled randomized Hadamard transform™ (Tropp, 2010); see also Ailon and Chazelle

a.
b.
c.

a.
b.

Randomized “sketches”
Warmup: PCA
Classical sketches
Structured sketches
Applications
Warmup: linear algebra
K-means clustering
Tensor factorizations
Gradient-free optimization

AMS colloquium
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Method 5: subsample entries of a matrix

Keep z; € R? but with only psman nonzeros
ldea goes back to landmark Achlioptas/McSherry paper (2001)

N

X' = X

This is the odd-one-out so far, because it's not the same linear operator applied to every column

1.

Stephen Becker (CU Boulder) Randomization Methods for Big Data, 9/19/2025 AMS colloquium

Randomized “sketches”
Warmup: PCA
Classical sketches
Structured sketches
Applications
Warmup: linear algebra
K-means clustering
Tensor factorizations
Gradient-free optimization
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1. Randomized “sketches”
a. Warmup: PCA
I\/l ¥ o o 7y n n b.  Classical sketches
ethod 6: “precondition,” then subsample entries of a mat o st s
. ition, n subsam ntri matrix -« s

a. Warmup: linear algebra
b.  K-means clustering
c.  Tensor factorizations
d.  Gradient-free optimization

Our new twist: first precondition with Random Orthogonal System (ROS)

(i.e., first 2 matrices from the Fast JLT)
p p N

Y =»r| F p p X

Stephen Becker (CU Boulder) Randomization Methods for Big Data, 9/19/2025



Why precondition?

Easy to see that better than uniform sampling of X is non-uniform sampling,
with probability proportional to magnitude of entry

cf. Achlioptas, Z. Karnin, and E. Liberty 2013

Disadvantage of weighted sampling is the extra pass through data

Stephen Becker (CU Boulder)

Randomization Methods for Big Data, 9/19/2025

AMS colloquium

1.

o L

o 0 T w

Randomized “sketches”
Warmup: PCA
Classical sketches
Structured sketches
Applications
Warmup: linear algebra
K-means clustering
Tensor factorizations
Gradient-free optimization

19



1. Randomized “sketches”

n = Warmup: PCA
W h reCO n d t O n 7 . Classical sketches
y p I I n c.  Structured sketches

2. Applications

o W

Warmup: linear algebra

K-means clustering

Easy to see that better than uniform sampling of X is non-uniform sampling,
with probability proportional to magnitude of entry
cf. Achlioptas, Z. Karnin, and E. Liberty 2013

Tensor factorizations

o 0 T w

Gradient-free optimization

In our analysis, we have terms like (want this small)

HXHmax—entry — z:ql,a}fN ‘XZ]‘
j:]‘,"',p

Assuming ||z;||2 = 1,
> it is possible for || X||max.entry = 1 (BAD)
> best case is || X||max-entry = 1//D

Stephen Becker (CU Boulder) Randomization Methods for Big Data, 9/19/2025



1. Randomized “sketches”
a. Warmup: PCA

W h d . t . 7 b.  Classical sketches
y p reCO n I I O n n c. Structured sketches
2. Applications

Warmup: linear algebra

K-means clustering

Easy to see that better than uniform sampling of X is non-uniform sampling, oL
d.

with probability proportional to magnitude of entry Cradientree optimization
cf. Achlioptas, Z. Karnin, and E. Liberty 2013

In our analysis, we have terms like (want this small)

HXHmax—entry — Z,_I{la)X |ng‘
i=1,...,
Assuming ||z;|| = 1,
> it is possible for | X||max-entry = 1 (BAD)

> best case is || X||maxentry = 1//D

Benefit of preconditioning
After applying ROS, exponentially small chance that

H YHmax—entry > \/log(Np)/\/ﬁ N

N.B. Since F D is unitary, bounds in spectral /Frobenius norm are unchanged

Stephen Becker (CU Boulder) Randomization Methods for Big Data, 9/19/2025



Theory: estimating the mean

: _ N : .. 2
Given a true mean z = + >_;_, 7;, and our estimate of it z from sampled data,

where ¥ = Dsmail/ P

Theorem (Pourkamali-Anaraki & B., IEEE Trans. Info Theory 2017)

02 =7 and ||z — Z||o < ¢ with probability greater than

— N~t2 /2 )
| X[ Frax-row + /3] X || max-entry

1 —2pexp (

(Slmp/’fy’ng to Psmall K P K N)

Stephen Becker (CU Boulder)

Randomization Methods for Big Data, 9/19/2025

1.

2.

Randomized “sketches”

a. Warmup: PCA

b.  Classical sketches

c. Structured sketches
Applications

a. Warmup: linear algebra

b.  K-means clustering

c.  Tensor factorizations

d.  Gradient-free optimization

AMS colloquium
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Theory: estimating the mean

Given a true mean 7 = += > ._1 %, and our estimate of it z from sampled data,

(Pourkamali-Anaraki & B., IEEE Trans. Info Theory 2017)

L2 =17 and ||z — Z||s < ¢ with probability greater than

=20 ([ T
— 2pexp
||XHmaxrow+ /3||XHmax—entry

where v = Dsmall/ (simplifying to psmai; <K p <K N)

If X has normalized columns, then || X ||maxentry = 1 and || X ||max-row = V' N are
possible, which is bad.

Lemma

If X is preconditioned, then ( for Np = 10", 1/log(2Np) + 1000 = 32)

P < | X || maxentry = j—_ \/log (2N p) 4+ 1000 ;

\ /

V2N
p

VAN

.001

P { HXHmax-row > ' \/lOg(QNp) + 1000} < .001

1.

Randomized “sketches”
a. Warmup: PCA
b.  Classical sketches
c. Structured sketches
Applications
a. Warmup: linear algebra
b. K-means c lustering
c.  Tensor factorizations
d.  Gradient-free optimization
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1. Randomized “sketches”
Warmup: PCA

[oD)

Theory: estimating the mean L
leeﬂ d tr tee . - ’ a.Ap\F;\l/laCfrfwlZ;:slinear algebra
Probability theory aside b Kemeans clustering
(symmetric Bernoulli, aka Rademacher), & Gradientiree optimization
43% - Let Y; — +1 be Ild Bernoulli, z = N Zz_l Y; (transform of Binomial)
» E(z) =0
» Var(z) = 1/N
where Chebyshev, Markov inequalities arkon
| X>OPM2U§%
P(lz] > ) < — Chebysh
f X hi (‘ |_ )_NtQ (Z|)y(5e\;4|>ta)§ti2
nossiblf Example: N =10* and ¢ = 0.1, P(]z| > ) < 0.01
| u ]
1Y Concentration INEq. Bernstein, Hoeffding, Chernoff
1S
A —Nt?/2
P(|lz| > t) < 2exp /
1+ (/3
Example: N =10* and ¢ = 0.1, P(|z| > ) < 21072
intuition: central limit theorem says random sums of iid rv should X

look Gaussian, and for a Gaussian, we have exponential concentration

Stephen Becker (CU Boulder) Randomization Methods for Big Data, 9/19/2025 AMS colloquium 24



1. Randomized “sketches”
Warmup: PCA

Classical sketches

o L

Structured sketches

0

Method 7: CountSketch _
p I

Tensor factorizations

O 0o T w

Gradient-free optimization

N Introduced in Charikar et al. (2004), more analysis
+1 in, e.g., Clarkson and Woodruff (2017)

D i ) Psmall }X
Psmall @ 1 X

HEA

Based on hash functions

(as a side-effect, doesn’t need full iid random

+1 =1 variables for analysis to work)

11 See “appendix” of these slides for more details

Every column has exactly 1 nonzero entry, location chosen uniformly at random (and value is a Rademacher r.v.)

Has some guarantees, though not as good as a Gaussian (and not a JLT)

.. but it's very fast to apply N

cost: nnz(X), so no more than p/N (vs psmanp!NV with a Gaussian)

Stephen Becker (CU Boulder) Randomization Methods for Big Data, 9/19/2025 AMS colloquium 25



Introduced in Pham, & Pagh (2013), more analysis
in, e.g., Diao, Zong, Sun, Woodruff (2018)

Method 8: TensorSketch

TensorSketch is just CountSketch when the input can be written as a tensor product

(for a special choice of the hash and sign functions)

@T : Rp — Rpsmall

V= ,0(1) & U(Q) where size is p = p(l) -p(2)

Not (yet!) related to tensors

Two tricks:
* Computationally, combine small sketches in a convenient way

® For analysis, we lose independence, but CountSketch analysis didn't require full independence!

Stephen Becker (CU Boulder) Randomization Methods for Big Data, 9/19/2025 AMS colloquium

1.

Randomized “sketches”
Warmup: PCA
Classical sketches
Structured sketches
Applications
Warmup: linear algebra
K-means clustering
Tensor factorizations
Gradient-free optimization
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1. Randomized “sketches”

Introduced in cmore analysis  a Warmup: PCA
Classical sketches

Method 8: TensorSketch N eg. Gl

2. Applications

(on

Warmup: linear algebra
K-means clustering

Tensor factorizations

TensorSketch is just CountSketch when the input can be written as a tensor product

o 0 T w

Gradient-free optimization

(for a special choice of the hash and sign functions)

@7. : Rp — Rpsmall

UV = ’U(l) X ’U(Q) where size is p = p(l) -p(2)

a101
a1bs
a1b3
a1 bl _alb_ CLle
a — |d ,b: bg (I@bz CLQb — CL2b2
_CL3_ _bg_ _agb_ CLng

azby
azbo
azbs_

Kronecker /tensor product of vectors

Stephen Becker (CU Boulder) Randomization Methods for Big Data, 9/19/2025



1. Randomized “sketches”

Method 8: TensorSketch o G

2. Applications

o L

Warmup: linear algebra
K-means clustering

Tensor factorizations

O 0o T w

Gradient-free optimization

q)T : Rp — Rpsmall

V= ,0(1) X U(Q) where size is p = p(l) -p(2)

Kronecker/tensor product of vectors  [ab;] |
h another equivalent definition:
102
o L o a1b3 a®@b = vecgy (ba,T)
aq bl CL1b Cbgbl
a = |us 7b: b2 a®b= a2b — a2b2 _blal b1a2 blCLg_ _Clel @2[91 @3[91_
| A3 ] _bS_ _a3b_ CLQbS baT: bgal b2a2 b2a3 — CleQ CLQbQ CLng
&3[?1 _bgCLl bg@g bgCLg_ _Cleg CLng CLgbg_
a3b2
La3bs._

vec: Rp(l)Xp(z) _ Rp(l)p(Q)

more generally,
(A ® B)vece (X) = vece (BXAT)

VEC

oo ® ]

mat = vec-1

Stephen Becker (CU Boulder) Randomization Methods for Big Data, 9/19/2025 AMS colloquium 28



1. Randomized “sketches”
a. Warmup: PCA

TensorSketch: applying to matrices Ll
From vector case v = vV @ vPto matrix case A = AVRA® . ..9AN) o o

a.
b.

c.  Tensor factorizations

d.  Gradient-free optimization

I B B ... B
Recall the Kronecker product: e 12 a1J
&21B CL22B .« .. CLQJB
ARB=| . | | e RIKXIL
/ \ - L
I xJ K x L _a/I]_B CLI2B a/IJB_

Khatri-Rao product A ®B=[a;®b; as®@by---a; @b e RIEXL  (J=1)

pointwise multiplication (aka Hadamard product)

Observe aob = (aT ® bT)T

FFTs are doing circular convolution,

-\ ' i.e., multiplying polynomials modulo
)) ) a fixed modulus. See appendix

N
and with some work, @7 (A) = FFT~! (@ (FFT (S<”)A(")

N

ifA=AVUA®x...0AW)

small countSketch

Stephen Becker (CU Boulder) Randomization Methods for Big Data, 9/19/2025 AMS colloquium 29



1. Randomized “sketches”
a. Warmup: PCA

TensorSketch: complexity analysis Ll

Warmup: linear algebra

K-means clustering

q)T : Rp — Rpsmall
(2)

a.
b.

c.  Tensor factorizations

d.  Gradient-free optimization

p=pY . p

Complexity (per mat-vec):

CountSketch applied as TensorSketch CountSketch applied naively generic dense matrix multiply
O(p(l) _I_p(Q) =+ Psmall logpsmall) VS O(p(l) . p(2)) VS O(p(l) ) p(2) ) psmall)
small CountSketches polynomial multiplication via FFTs

Savings grow as we have more tensor products

THE MORE YOU SRVE
AT E If o =pp) .. pl@)
O(p(l) p(z) .« o p(q) Psmall l()g psmall) VS O(p(l)p(Z) o p(q))

(Even larger savings if input factor matrices are sparse)
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1. Randomized “sketches”
a. Warmup: PCA

Method 9: Kronecker Fast Johnson-Lindenstrauss sketch Lo

2. Applications
a. Warmup: linear algebra
b.  K-means clustering
c.  Tensor factorizations
d.

Gradient-free optimization

As for TensorSketch, suppose each column of data looks like v = v X v

. 1) (2
zes: p = p1) . p@ ) ) )
Recall the Fast Johnson-Lindenstrauss (FJLT): & = RFD Psmall |
pt-F | pt B
uniform subsampling
P p @) @ Fourier_like  diagonal with Rademacher r.v.

The Kronecker FJLT has a similar structure: 57\ 517\

Orpim = R ( FO PO g £ D<2>)

which is efficient to apply since

R (;<1>D<1> ®;<2>D<2>).(v<1> 2 ,U<2>) _ R ((;<1>D<1>v<1>) 2 ;<2>D<2>v<2>))

and uniform subsampling can be done implicitly without forming this

O Battaglino, Ballard, Kolda, “A practical randomized CP tensor decomposition”, SIAM J. Matrix Anal. Appl. (2018)

O Jin, Kolda, Ward. “Faster Johnson—Lindenstrauss transforms via Kronecker products,” Information and Inference: A Journal of the IMA (2021)

O Malik & B. “Guarantees for the Kronecker fast Johnson—Lindenstrauss transform using a coherence and sampling argument,” Lin. Alg. & its Applications (2020)
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1. Randomized “sketches”
a. Warmup: PCA

Method 9: Kronecker Fast Johnson-Lindenstrauss sketch Lo

2. Applications
Warmup: linear algebra
K-means clustering

a

b

C. Tensor factorizations
(q) .

p— p(l)p(2) ¢ o e Gradient-free optimization

Orpiir = R ( FOH P o FAOPQR) o o F@ D(q)) D D

Theorem (Thm 4.2 in Malik & B. 2020) , N oo ,
— ' 16 49 A4N?(q+1) 4pMW N2 (g + 1) A4pl D N2 (g + 1)
If all datapoints have a Kronecker structure, Psmai > 3 2 log 5 log 5 .- - log 5

and ¢ = (I)KFJLT
then with probability at least 1 — ¢

dx; — dx ;|3
Vo, z; € {x1,...,xn} CRP 1—€§H Z ‘72H2<1—|—€
|z — ;13

proof idea: FJLT keeps leverage scores almost uniform. With Kronecker product structure, this is (almost) true also,

due to properties of leverage scores of Kronecker products

\ in fact, can extend. See: Malik, Xu, Cheng, B., Doostan, Narayan.

“Fast Algorithms for Monotone Lower Subsets of Kronecker Least Squares Problems”,
https:/ /arxiv.org/abs/2209.05662

O Malik & B. “Guarantees for the Kronecker fast Johnson—Lindenstrauss transform using a coherence and sampling argument,” Lin. Alg. & its Applications (2020)
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Method 9: Kronecker Fast Johnson-Lindenstrauss sketch 2_i’ﬁApgi_E};jgziiiiihes
. S,

W@ ...

Gradient-free optimization

Srpir = R ( FOPW o FOPD o o F@ D<q>> D=7

Theorem (Thm 4.2 in Malik & B. 2020)

16 44 AN*(q¢+1 ApI N2 (g + 1 Apl D N2 (g + 1
If all datapoints have a Kronecker structure, Psmall > 3 2 log ( (g )) log ( o 5((1 )> .- - log ( o 5((1 )>
and ¢ = (I)KFJLT
then with probability at least 1 — ¢
br, — Px. |2
\V/CCi,CBjE{CL‘l,...,LEN}CRp 1_5§H 32H2<1+5
lzi — 243

Theorem (Johnson-Lindenstrauss, 1984 (and Indyk-Motwani, 1998))

Choose ® = ® .4y With Dsman o< € 2 log N iid rows each N'(0, p/Psmaii), then for
all z;,z; € {x1,...,25} C RP,

no dependence on p

for reference: - | Pz — P2

1 —¢ <1+4-¢
|z; — ;|2

with constant probability.
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Stephen Becker (CU Boulder)

1.

2.

OUTLINE
Randomized “sketches”
a. Warmup: PCA
b. Classical sketches
c. Structured sketches
Applications
a-
b. K-means clustering
c. Tensor factorizations
d.

Gradient-free optimization

Randomization Methods for Big Data, 9/19/2025

AMS colloquium
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1. Randomized “sketches”
a. Warmup: PCA

One application of sketching: least-squares R

2. Applications
Warmup: linear algebra

a.

b.  K-means clustering
c.  Tensor factorizations
d.

| east-squares

Gradient-free optimization

Solve x1,s = argmin ||Ax — b||, A is p X N with p > N

Approach 1: randomization to quickly find preconditioner BLENDENPIK, LSRN

» If A= QR is a QR-decomposition, then AR~ " is well-conditioned

“sketch-to-precondition”

» Idea: do QR-decomp on reduced-dimension matrix ® A

> On large, very ill-conditioned matrices (and tall), about 4x faster than LAPACK
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One application of sketching: least-squares

| east-squares
Solve ar,s = argmin ||Ax — b||, A is p X N with p > N

Approach 2: directly solve sketched problem Sarlos, Woodruff, Mahoney, etc.
“sketch-to-solve” > Directly sove min, || ®(Az — b)|
> Theoretical bounds on objective error if ® has psman = Npolylog(/N) rows

> i.e., Psmall IS independent of p

For a sub-sampling sketch, this lets you avoid even computing some entries of b,

which can be very useful when each entry of b is, e.g., the output of a simulation

Stephen Becker (CU Boulder) Randomization Methods for Big Data, 9/19/2025 AMS colloquium

1.

o L

Qa 0 T o

Randomized “sketches”
Warmup: PCA
Classical sketches
Structured sketches
Applications
Warmup: linear algebra
K-means clustering
Tensor factorizations
Gradient-free optimization
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1. Randomized “sketches”
Warmup: PCA

One application of sketching: least-squares -

2. Applications

o W

Warmup: linear algebra
K-means clustering

Tensor factorizations

Qa 0 T o

Gradient-free optimization

, Ais p x N with p >

Solve 1,5 = argmin ||Az — b

Approach 1: randomization to quickly find preconditioner BLENDENPIK, LSRN

f A= QR is a QR-decomposition, then AR is well-conditioned

dea: do QR-decomp on reduced-dimension matrix ® A

On large, very ill-conditioned matrices (and tall), about 4x faster than LAPACK

Approach 2: direCtIy SOIVe SkEtChed pr0b|em Sarlos, Woodruff, Mahoney, etc.
Directly sove ming ||®(Az — b)]|
Theoretical bounds on objective error if ® has psmann = Npolylog(/N) rows

i.e., Psmall IS independent of

Other applications: SVDs, matrix multiplies, Nystrom /CUR /Interpolative Decompositions, QR without pivoting
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Stephen Becker (CU Boulder)

1.

2.

OUTLINE

Randomized “sketches”
a. Warmup: PCA

b. Classical sketches
c. Structured sketches
Applications
a. Warmup: linear algebra
:
c. Tensor factorizations
d.

Gradient-free optimization

Randomization Methods for Big Data, 9/19/2025

AMS colloquium
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Interlude: one-pass methods

Single computer

rComputer \
r _ ~
Hard drive(s)
- b 1B y
<. < r ~
RIS IR . communication
. . . ) ) . slower than
4 4 4 computation
a2V N
Main memory (RAM)
B
- 8 G B
- »

1. Randomized “sketches”
a. Warmup: PCA
b.  Classical sketches
c.  Structured sketches
2. Applications
a Warmup: linear algebra
b. K-means clustering
C Tensor factorizations
d Gradient-free optimization

Often want to minimize number of passes through a dataset if it's large
® communication cost can be significant
® in the extreme case, new data is constantly streaming in and we could

never store it all
Think of a pass as a “for” loop through the dataset

Streaming is a special case of a “one-pass” method

Example: google indexing the web is streaming

1. Google finds a website and downloads the site

2. Applies algorithm to index/categorize/rank it

3. Discards the website (keeps only meta-data, ranking, etc.)
4. Never has to store entire WWW all at once

Stephen Becker (CU Boulder)
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1. Randomized “sketches”
a. Warmup: PCA
I t | d ] t h d b.  Classical sketches
n e r u e o O n e_ p a SS m e O S c.  Structured sketches
2. Applications

Example: computing the sample variance 6° .

Warmup: linear algebra
K-means clustering

Tensor factorizations

o0 T oo

Gradient-free optimization

2-pass method [ o+

] — 1

N T pseudoco} N ]

pass #1 M " - H n’u
0

) 5 e
pass #2 0'2 — S Z (.’,UZ — ILL) pseudocc} 5_2 “ 5_2 4 (ZEZ B /1)2

1-pass method

motivation: Var[X]| = E[X?] — E[X]” 4=0,s=0

pass #1

Stephen Becker (CU Boulder) Randomization Methods for Big Data, 9/19/2025 AMS colloquium 40



Interlude: one-pass methods

A major application of sketching is to create one-pass algorithms:

we spend one-pass to apply the sketch, and the sketched data is then

small enough that we don't “count it" in our budget anymore

1. Randomized “sketches”
a. Warmup: PCA
b.  Classical sketches
c.  Structured sketches
2. Applications
a.  Warmup: linear algebra
b. K-means clustering
c.  Tensor factorizations
d.  Gradient-free optimization

Stephen Becker (CU Boulder) Randomization Methods for Big Data, 9/19/2025 AMS colloquium
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Machine Learning 101: K-means clustering

data points

RP

1.

Randomized “sketches”
a. Warmup: PCA
b.  Classical sketches
c.  Structured sketches
Applications
Warmup: linear algebra

a.
b. K-means clustering
C. Tensor factorizations
d.

Gradient-free optimization

Stephen Becker (CU Boulder) Randomization Methods for Big Data, 9/19/2025



Machine Learning 101: K-means clustering

Step: initialize with guesses for cluster centers

RP

1.

Randomized “sketches”
a. Warmup: PCA
b.  Classical sketches
c.  Structured sketches
Applications
Warmup: linear algebra

a.
b. K-means clustering
C. Tensor factorizations
d.

Gradient-free optimization

Stephen Becker (CU Boulder) Randomization Methods for Big Data, 9/19/2025



1. Randomized “sketches”
a. Warmup: PCA

Machine Learning 101: K-means clustering s

K-means clustering
Tensor factorizations

o0 T oo

Gradient-free optimization

Step: update assignments

Stephen Becker (CU Boulder) Randomization Methods for Big Data, 9/19/2025



Machine Learning 101: K-means clustering

RP

Step: recompute cluster means

1.

Randomized “sketches”
a. Warmup: PCA
b.  Classical sketches
c.  Structured sketches
Applications
Warmup: linear algebra

a.
b. K-means clustering
C. Tensor factorizations
d.

Gradient-free optimization

Stephen Becker (CU Boulder)

Randomization Methods for Big Data, 9/19/2025



Machine Learning 101: K-means clustering

RP

Step: update assignments

1.

Randomized “sketches”
a. Warmup: PCA
b.  Classical sketches
c.  Structured sketches
Applications
Warmup: linear algebra

a.
b. K-means clustering
C. Tensor factorizations
d.

Gradient-free optimization

Stephen Becker (CU Boulder)

Randomization Methods for Big Data, 9/19/2025



Machine Learning 101: K-means clustering

RP

Step: recompute cluster means

1.

Randomized “sketches”
a. Warmup: PCA
b.  Classical sketches
c.  Structured sketches
Applications
Warmup: linear algebra

a.
b. K-means clustering
C. Tensor factorizations
d.

Gradient-free optimization

Stephen Becker (CU Boulder)

Randomization Methods for Big Data, 9/19/2025



1. Randomized “sketches”
a. Warmup: PCA

Machine Learning 101: K-means clustering s

K-means clustering

Tensor factorizations

o0 T oo

Gradient-free optimization

Step: recompute cluster means

RP

* but it need not converge to the optimal solution!
Theorem:

K-means procedure (Lloyd’s algorithm) converges™
Proof:

There are only a finite number of assignments, and we can never cycle since each iteration is an improvement
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K-means clustering: complexity

fl—lard K-means / Lloyd's algorithm:
{z;}i=1,.. v CR?

1. Update cluster centers up € RP for k=1,..., K
2. Update assignments ¢; € {1,...,K} fori=1,..., N

N~

~

Let X = (z;)i=1,... N
To update assignment of z;:

» Compute ||z; — pil|| (cost: p flops).

» For all k£, and all 4, this means O(K Np) cost.

Stephen Becker (CU Boulder)

Randomization Methods for Big Data, 9/19/2025

AMS colloquium

1.

a.
b.

C.

a.
b.
C.
d.

Randomized “sketches”
Warmup: PCA
Classical sketches
Structured sketches
Applications
Warmup: linear algebra
K-means clustering
Tensor factorizations
Gradient-free optimization
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1. Randomized “sketches”
a. Warmup: PCA
b Classical sketches

K-means clustering: complexity

Let X = (xrg)izl,...,N

To update assignment of z;:
» Compute ||z; — pil|| (cost: p flops).
» For all k£, and all 4, this means O(K Np) cost.

2. Applications
Warmup: linear algebra

a.
b. K-means clustering
c.  Tensor factorizations
d.

Gradient-free optimization

Our sampling is suitable for streaming data

A )

Our idea: apply “preconditioned” entry-wise subsampling

p p N

..<
|
i~

Ry
i~

v Bo{r X

pl @ X N

. _ N . .o
Given a true mean z = % Zi:l x;, and our estimate of it x from sampled data,

Theorem (Pourkamali-Anaraki & B., IEEE Trans. Info Theory 2017)
EZ =7 and |z — Z|| < t with probability greater than

Because we're estimating the mean, we

—N~vt2/2
1 —2pexp
- - X %qax_row L 3 X max-entry
can use the theorems discussed earlier! (” s e 510 )
where ¥ = Dsmall/ D (simplifying to psman < p < N )J

Stephen Becker (CU Boulder)

Randomization Methods for Big Data, 9/19/2025 AMS colloquium
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1.

MNIST handwritten digits

2.

Goal: recover cluster centers, using K-means clustering algorithm

Stephen Becker (CU Boulder)

Data: V = 21,002 examples of 28 x 28 pixel images (p = 784)

AMS colloquium

a.
b.

C.

o 0 T oo

Randomized “sketches”
Warmup: PCA
Classical sketches
Structured sketches

Applications
Warmup: linear algebra
K-means clustering

Tensor factorizations

Gradient-free optimization
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Experiments: I\/INIST handwritten dlglts

Stephen Becker (CU Boulder)

(b) K-means, many passes

(a) true cluster centers

Randomization Methods for Big Data, 9/19/2025

AMS colloquium

1.

o 0 T oo

Randomized “sketches”
Warmup: PCA
Classical sketches
Structured sketches

Applications
Warmup: linear algebra
K-means clustering
Tensor factorizations

Gradient-free optimization
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1. Randomized “sketches”
a. Warmup: PCA

Experiments: MNIST handwritten digits S

a.
Tru b. K-means clustering

c.  Tensor factorizations

d.  Gradient-free optimization

(a) true cluster centers

vanil entry-ge subsamlin o

r _ " - ™

(c) sparsified K-means, 1 pass, (g) feature extraction, 1 pass

no preconditioning

Other method. in literature

(h) feature selection, 3 passes
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Experiments: MNIST handwritten digits

(a) true cluster centers

o ' * - ™

-

vanil entry-ge subsamlin o

(c) sparsified K-means, 1 pass, (g) feature extraction, 1 pass

no preconditioning

03 g

(d) sparsified K-means, 1 pass,
preconditioned

Other method. in literature

o,

(h) feature selection, 3 passes

Stephen Becker (CU Boulder)

AMS colloquium

1.

Randomized “sketches”
Warmup: PCA
Classical sketches
Structured sketches

Applications
Warmup: linear algebra
K-means clustering
Tensor factorizations

Gradient-free optimization
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1. Randomized “sketches”
a. Warmup: PCA

A I\/l N I S T b.  Classical sketches
CC u ra Cy O n c.  Structured sketches
2. Applications

Warmup: linear algebra

Now look at classification accuracy (averaged over 50 trials)

1.

a.
b. K-means clustering
c.  Tensor factorizations
d.  Gradient-free optimization

=
CIO
| »
|
!

O
o0

“two-pass’ version even more accurate

——

assignment accuracy
o
~

-~ Sparsified K-means
Sparsified K-means, 2 pass

O
o

O
O

(no preconditioning)

1 -
0.9 7o~ e ————% -
&
- - K-means 508
0.6 T c
0 -~ Sparsified K-means ©
‘r < 0.7
Sparsified K-means T | - - K-means
S
9p)
S

O
o

4
|
A | |

—
N
(@)
N
w

005 01 015 02 025 0.3

o

0 005 01 015 02 025 0.3
sparsity ratio

sparsity ratio
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1. Randomized “sketches”
a. Warmup: PCA

Speed on “Infinite MNIST" s

2. Applications
. Warmup: linear algebra

a
b. K-means clustering
c.  Tensor factorizations
d

. Gradient-free optimization

“Infinite MNIST", p = 784, but now N = 9,631,605 instead of 21,002

56 GB data, split into 58 chunks to keep RAM usage around 1 GB

Time to find assignments  Time to update all centers Combined time
Algorithm Absolute Speedup  Absolute Speedup  Absolute  Speedup
K-means 130.0s 1 X 150.8s 1 X 280.8s 1 X
Sparsified 1.3s 100 x 5.7s 26.4 X 7.0s  40.1x

at 20x undersampling; accuracy is 89% (vs 92% for K-means)
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Stephen Becker (CU Boulder)

1.

2.

OUTLINE
Randomized “sketches”
a. Warmup: PCA
b. Classical sketches
c. Structured sketches
Applications
Warmup: linear algebra
K-means clustering

a.
b.
c. | Tensor factorizations
d.

Gradient-free optimization

Randomization Methods for Big Data, 9/19/2025

AMS colloquium
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Tensor Background: what is a tensor?

AChange in notation temporarily

y
|

y
|

/
|

> A tensor X € Rhi>xExxInis an array of dimension N, also
called an N-way tensor or order N tensor.

> A matrix X € R"*"2 js 3 2-way tensor.
> A vector x € R" is a 1-way tensor.

» A scalar x € R is a 0-way tensor.

Stephen Becker (CU Boulder)

Randomization Methods for Big Data, 9/19/2025

AMS colloquium

1.

o L

o N o W

Randomized “sketches”
Warmup: PCA
Classical sketches
Structured sketches
Applications
Warmup: linear algebra
K-means clustering
Tensor factorizations
Gradient-free optimization
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1. Randomized “sketches”
Warmup: PCA

EXa m p | eS Of te n SO rs b.  Classical sketches

C. Structured sketches

[oD)

2. Applications
Warmup: linear algebra

K-means clustering

For example, [Kolda & Sun, '08] consider these datasets: Tensor factorizations

» The Enron dataset has size 1K x 1K x 1.1K x 200 and | e o
consists of elements of the form (user,user,keyword,day).
Element (/,j, k, /) is 1 if user i sent an email to user j with
keyword k on day /, O otherwise.

» The DBLP dataset has size 5K x 1K x 1K and consists of
elements of the form (author,conference keyword). Element
(i,J, k) is 1 if author i published a paper at conference j

containing the keyword k in the title, O otherwise. %%

»
-

o N o W

These are examples of sparse tensors

‘v
james steffes@enron.com” ®

= 4
» &

JeffDasovich

Image: https://homes.cs.washington.edu/~jheer/projects/enron/
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1. Randomized “sketches”
Warmup: PCA

Examples of tensors -

2. Applications

[oD)

Warmup: linear algebra
K-means clustering
Tensor factorizations

Q 0 T w

Gradient-free optimization

Image: Center for Turbulence Research (Stanford)

[Austin et al., "16] consider tensor data produced by high-fidelity

< Variables —

combustion simulations with the following properties:
» 3-dimensional spatial grid with 512 points per dimension e ot
» 64 variables are tracked per grid point X
> 128 time steps 512 x 512 x 512 x 64 x 128 (8 TB) El | o Spa
1
Spatial Spatial
This is a dense tensor Grid Grid

.. we'll want methods that work with both sparse and dense tensors
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1. Randomized “sketches”
a. Warmup: PCA
b.  Classical sketches

Examples of tensors

C. Structured sketches
2. Applications
Warmup: linear algebra

K-means clustering

For example, | | consider these datasets:

The Enron dataset has size 1K X 1K x 1.1K x 200 and
consists of elements of the form (user,user,keyword,day).
Element (7, /, k, /) is 1 if user i sent an email to user j with
keyword k on day /, 0 otherwise.

The DBLP dataset has size 5K x 1K x 1K and consists of
elements of the form (author,conference keyword). Element
(i,j, k) is 1 if author i published a paper at conference |
containing the keyword k in the title, 0 otherwise.

a.

b.

c. Tensor factorizations
d.  Gradient-free optimization

heuron

[ | consider tensor data produced by high-fidelity J
combustion simulations with the following properties: -
3-dimensional spatial grid with 512 points per dimension
64 variables are tracked per grid point
128 time steps 512 x 512 x 512 x 64 x 128 (8 TB) %?—_‘
. _|.* ‘..‘-“’:‘;
Others: A E
: . : : L] Ll
» Chemometrics (emission x excitation x samples, for fluorescence spectroscopy) —j—?

» Neuroscience (neuron x time x trial /stimulus, for calcium imaging)

» Criminology (day x hour x location x crime, e.g., Chicago crime dataset)

Images: Tamara Kolda
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1. Randomized “sketches”
Warmup: PCA

Examples of tensors e

2. Applications

O

a.  Warmup: linear algebra

For example, | | consider these datasets: oo lomene dustene

The Enron i . - - ) d.  Gradient-free optimization

consists of One-pass methods

Element (

keyword k All these tensors have a time or sample index

The DBL

elements ¢ As time/samples increase, we don’t want to store old ones

(i,j, k) s

containing i.e., want a streaming/one-pass method
combustion sir THIS IS A BIG MOTIVATION FOR SKETCHING

3-dimensi

64 variabl J
128 time step

O1Z X D1Z X JO1Z2 X 0OA# X 120 ké ID)

Others:
Chemometrics (emission x excitation x samples, for fluorescence spectroscopy)
Neuroscience (neuron x time x trial /stimulus, for calcium imaging)

Criminology (day x hour x location x crime, e.g., Chicago crime dataset)

Stephen Becker (CU Boulder) Randomization Methods for Big Data, 9/19/2025



1.  Randomized “sketches”
. . . . a. Warrrllup: PCA
Tensor operations 1: matricization R
2. Applications
Matricization (i.e., flattening) turns a tensor X’ into a matrix X, e e
c. Tensor factorizations
d.  Gradient-free optimization

Same idea as turning a matrix (e.g., an image) into a vector

Stephen Becker (CU Boulder) Randomization Methods for Big Data, 9/19/2025



Tensor operations 1: matricization

Matricization (i.e., flattening) turns a tensor X into a matrix X,

\/2)

Stephen Becker (CU Boulder)

Same idea as turning a matrix (e.g., an image) into a vector

> X

Randomization Methods for Big Data, 9/19/2025

column fibers

AMS colloquium

1.

2.

Randomized “sketches”

a. Warmup: PCA

b.  Classical sketches

c.  Structured sketches
Applications

a.  Warmup: linear algebra

b.  K-means clustering

c. Tensor factorizations

d.  Gradient-free optimization
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1.  Randomized “sketches”
T » 1 L n " » Z \(/Z\I/:;Z;apl:siectéhes
enSOr OperatIOnS u matrICIZatIOn c.  Structured sketches
2. Applications
Matricization (i.e., flattening) turns a tensor X' into a matrix X, e e
c. Tensor factorizations
d.  Gradient-free optimization

Same idea as turning a matrix (e.g., an image) into a vector

3

'\/2,

row fibers
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1. Randomized “sketches”
. . . . a. Warn.wp: PCA
Tensor operations 1: matricization -
2. Applications
Matricization (i.e., flattening) turns a tensor X into a matrix X(n) § lvmmplulib
c. Tensor factorizations
d.  Gradient-free optimization

Same idea as turning a matrix (e.g., an image) into a vector

3

'\/2,

“tube” fibers
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Tensor operations 2: tensor-times-matrix

Example:

s Let X € RIXIXK 3pd A € RVXHE

s We define Y = X x5 A € RIXIXL glementwise by
K
Yijl = Z Lijk Akl -
k=1

= In matrix terms, Y (3) = AX(3).

X A Y
/// . \\////
/// \\////

X (3)
matricize — K —

1. Randomized “sketches”
a. Warmup: PCA
b.  Classical sketches
c.  Structured sketches
2. Applications
a Warmup: linear algebra
b K-means clustering
c. Tensor factorizations
d Gradient-free optimization

Conveniently, order doesn’t matter*

DC><1A1 ><2A2::x><2A.2 ><1A1

Nnverse matricize

Enormal matrix multiplication
Stephen Becker (CU Boulder) Randomization Methods for Big Data, 9/19/2025
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1. Randomized “sketches”
a. Warmup: PCA

The Tucker decomposition s

. Warmup: linear algebra

A Tucker decomposition of X € R{1*2XXIn s of the form (. Torsor tactoizat
d

X=Gx1 AN xg AP ... xy AW = [G: AW AP . AW (shorthand notation)

. Gradient-free optimization
where G € RE1XR2XXEN gnd each A(") ¢ RInxEn,
i g

G is the core tensor and A", n=1.2..... N, are factor

matrices.
We say that X is a rank-(Rq, Rs, ..., Ry) tensor.
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1. Randomized “sketches”
a. Warmup: PCA

Applications of the Tucker decomposition S

Warmup: linear algebra

K-means clustering

= Data compression. Storing the red and green objects require

a.
b.

c. Tensor factorizations
d.  Gradient-free optimization

less storage than the full blue tensor.

= Data analysis. Use rows of factor matrices as feature

vectors—unsupervised learning.

T

¢
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Computing the Tucker decomposition

Given a data tensor X € Rt 2XXIN \ye can find a
decomposition X ~ [G; AL A(N)]] by solving the
optimization problem

min ~[|X —[G; AN, AP AM])2, (4)
G,AML AWN)

where G € RFaxFexXEy qnd A(M) ¢ RInXEn for n =12 ... N.

= Nonlinear!

= A common approach to this issue is to use alternating least
squares (ALS): Minimize with respect to each A(™ and G one
at a time. Repeat!

= With ALS, each subproblem is linear and easily solved.

ALS same as higher-order orthogonal iteration (HOOI)
and if you do just one iteration, it's like higher-order SVD (HOSVD)

Stephen Becker (CU Boulder) Randomization Methods for Big Data, 9/19/2025
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Computing the Tucker decomposition

The algorithm looks like this. Repeat the following until

convergence:

1. Forn=1,..., N, update

An) — arg min (@il\f A(Z)) GZ;L)AT _ XZ;L)

2. Update G = X x4 AWDT X 9 AT . X N AMT,

arg min (®1:N A(i)) Z(:) — X()

(10)

(11)

(12)
2

-

1.

Randomized “sketches”
a. Warmup: PCA
b.  Classical sketches

C. Structured sketches

2. Applications

(Line 12 follows if the factor matrices are orthogonalized)

Make extensive use of this identity:

Y= x; AW x; A® ... xy AW &

.
Yy = A"X (A(N) R @AM g A D g. . g A(l))

Stephen Becker (CU Boulder)
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Computing the Tucker decomposition

The algorithm looks like this. Repeat the following until

convergence:

1. Forn=1,..., N, update

A" = argmin

(

Ry A

1 1 T
) GyA — Xy

2. Update G = X x4 AWDT X 9 AT . X N AMT,

Issues when dealing with large, sparse tensors:

= [ he Kronecker product matrix is huge.

= [he series of tensor-times-matrix products is very costly, and

can require lots of additional memory when X is sparse.

= \We address this problem by using TensorSketch.

Aside: we initially thought that solving the least-squares problem would be an issue,

and something to fix with sketching, but this is not exactly the case —

Stephen Becker (CU Boulder)

Randomization Methods for Big Data, 9/19/2025

1.

2.

AMS colloquium

a.
b.

C.

o N o W

Randomized “sketches”
Warmup: PCA
Classical sketches
Structured sketches
Applications
Warmup: linear algebra
K-means clustering
Tensor factorizations
Gradient-free optimization

(2



1. Randomized “sketches”
a. Warmup: PCA

Our modified algorithm: Tucker-TS s

2. Applications

We simply sketch each of these least-squares problems with . _vammpfllt?b
TensorSketch operators S, n =1,.... N + 1, which are defined T e o
at the start of the algorithm:
1. Forn=1,..., N, update
2
A™ = argmin ||[ S Ry AD ) G] AT —sWX]
I (n) (n)
AERInxEn iFn I
(and orthogonalize) 18)
2. Update sketched once at
, , Very beginning
_ : (N+1) (7) . Q(N+1)
9 — arg 1111l H (S ®i:N A ) Z(:) S X(:) H2 .
zERRlx-“XRN
19
Tricks: ( )
* don't draw new sketches each iteration
" the TensorSketches have CountSketches/hashes in common S(n)7 S(n) (each is leave-one-out)

" (G update solved via conjugate gradient (CG) algo, and can prove it is well-conditioned

* advanced tricks and variants in the paper
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P P 2_
(a) Varying dimension size (1), Rt =R (b) Varying dimension size (I), R =R
P rue true
10% N c 4 1e-0 % ¢
- i Out of memory ol ARy e
e ............................... | CLTLTEE T ER PR TR PRI PTTIIT | CELTTTTTTYCITTITTITTI T TTIrTY 4 /(;)\10 " S ““‘ """"""""" 1005
o : 0 Q- > i Outof Lt
_“2’ O 1e-1 g [ memory 0
= : e 0% S
2 Q—Q‘ -+ -+ T iﬁ/ .........................
i Out of memory .h
1 0-2 L 1 I e_2 1 OO | | |
1e+3 1e+4 1e+5 1e+6 1e+3 1e+4 1e+5 1e+6
Dimension size (l) Dimension size (1)
—4}— TUCKER-TS (proposal) —©— TUCKER-ALS/MET MACH —}— TUCKER-TS (proposal) —O— TUCKER-ALS = € =MET(2) MACH
sousfeess TUCKER-TTMTS (proposal) =€ FSTD1 s TUCKER-TTMTS (proposal) ==& MET(1) —&— FSTD1

Figure 3: Relative error and run time for random sparse 3-way tensors

with varying dimension size I and nnz(Y) ~ le+6. Both the true and

target ranks are (10,10, 10).

Tucker-TS approximates least-squares like this:

1 1
argminx§ Az — b||5 ~ argmin$§

= (A'd'dA) AT D Db
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1. Randomized “sketches”
a. Warmup: PCA

V - d b.  Classical sketches
I e O c.  Structured sketches
2. Applications
Warmup: linear algebra
K-means clustering

a
b
(e) Frame 200 c. Tensor factorizations
TR T d Gradient-free optimization

500

i o '_";'|‘ ¥
L by “ L 4 A e
) SR
A
Ty o 4
y 3 e %)
s S %Y
" | 2 X ,“.‘ % an o)
oy
& L3 R |

(c) Frame 1650

- - - —r —
5 ,u“Th X.A i) -“'l.) ; 5 !
A A 0 ) R B i TR |
v g f s
b ) Y
#
L

(d) Frame 1850

v A0 A

373

3 3
b 4 c,‘, Cop) 5

...........

. — Correct classification
3 - 1 - > -
Incorrect
classif-
Eﬁ ication
© 2 — e L e — Lo
@)
O Current frame
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000
Frame Frame Frame Frame Frame

Figure 6: Five sample frames with their assigned classes. The frames (b) and (d) contain a disturbance.

38 GB video (can't all fit into RAM): 2,200 frames, each of size 1,080 by 1,980 pixels
Compute rank (10,10,10) factorization, 30 iterations max

Find 3 factor matrices — take the one corresponding to time and run k-means clustering

We load chunk-by-chunk and do the sketches (in one pass)

(used Tucker-TTMTS variant)
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1. Randomized “sketches”
a. Warmup: PCA
| ] | ] | ] | ] | ] | | |
I\/I t t l s | t - h t t b.  Classical sketches
O Iva Ing pp ICa IOn- S ape Op II I llza IOn C. Structured sketches

2. Applications
Warmup: linear algebra
K-means clustering

a.

b.

c.  Tensor factorizations

d. Gradient-free optimization

Forward problem: find vertical stress o,

conforming finite element mesh, used in FEniCS

/
5 /,/’
. //

O boundary traction

I I

linear elasticity PDE

(boundary conditions

depend on shape of
the hole)
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1. Randomized “sketches”
. . . . . . . a. Warmup: PCA
n b.  Classical sketches

I\/IOtlvatIng AppllcatIOn- Shape OptlmlzatIOn c.  Structured sketches
2. Applications

a Warmup: linear algebra

b K-means clustering
c.  Tensor factorizations
d

Forward problem: find vertical stress o,

conforming finite element mesh, used in FEniCS - Gradient-free optimization

O boundary traction

EEEEEEEEE

linear elasticity PDE £Y

-

(boundary conditions

depend on shape of
the hole)

Inverse problem: what shape minimizes the vertical stress?

parameterize the shape of the hole as follows, which automatically enforces a constant area constraint

d/2—1
1 1 .
r(0) =5 +0 ; NoTES (Top1 sin((2k + 1) - 0) + 2510 cos((2k + 1) - 9))

optimization variable:

r € RY
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1. Randomized “sketches”

Generic PDE-constrained optimization e

2. Applications

o L

. _ . a.  Warmup: linear algebra
implicitly saying that u solves the PDE o Komeans clusterng
c.  Tensor factorizations
. . rd d. Gradient-free optimization
min L(u) subject to @(u,x) =0
u,x

Examples:

= Au, u(0) =h “2" is the initial condition
i = c*Au, u(0) = h "2 is a parameter

Au=0, u(l') =h “z" is the boundary condition

L(u)is the loss which penalizes something like:
> deviation from observations

> drag

> mass

> cost of materials

> compliance

etc.
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1. Randomized “sketches”
a. Warmup: PCA

Generic PDE-constrained optimization .

2. Applications

. - . a. Warmup: linear algebra
implicitly saying that u solves the PDE o Komeans clusterng
c.  Tensor factorizations
. . d. Gradient-free optimization
[mm L(u) subject to ¢(u,z) =0 ’
u,x

d(u,z) =0 — u=u(x)

Rewrite: [ min (2) * £(u(z) |

.. but finding the gradient is tricky:

_aﬁoﬁ’u
- Ou Ox

Vf(z)
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1. Randomized “sketches”
Warmup: PCA

Why not just find gradients automatically? s

2. Applications

[oD)

J he adjoint state method and reverse-mode automatic differentiation can

Warmup: linear algebra
K-means clustering

Tensor factorizations

Q 0 T o

automatically calculate gradients in about the same time (~4x) as a function

Gradient-free optimization

evaluation

= .. so if we can evaluate f(x) numerically, we can find the gradient

« (this applies if f:R? = R; f:R% = R? with ¢>1 is another story)

Note: we're assuming derivative exists, just hard to actually calculate

This is not non-smooth optimization
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1. Randomized “sketches”
Warmup: PCA

Why not just find gradients automatically? S

2. Applications

O

VThe adjoint state method and reverse-mode automatic differentiation can

Warmup: linear algebra
K-means clustering

Tensor factorizations

Q 0 T o

automatically calculate gradients in about the same time (~4x) as a function

Gradient-free optimization

evaluation

xRequires specialized /restricted libraries/code (dolfin-adjoint/FEniCS, autograd)

Jax, PyTorch, Tensorflow,
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1. Randomized “sketches”
Warmup: PCA

Why not just find gradients automatically? S

2. Applications

O

JThe adjoint state method and reverse-mode automatic differentiation can

Warmup: linear algebra
K-means clustering

Tensor factorizations

automatically calculate gradients in about the same time (~4x) as a function

Q 0 T o

Gradient-free optimization

evaluation

Requires specialized /restricted libraries/code (dolfin-adjoint/FEniCS, autograd)
XAdjoint state method requires a method to solve adjoint PDE

(and have to parallelize for HPC)
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1. Randomized “sketches”
Warmup: PCA

Why not just find gradients automatically? S

2. Applications

O

JThe adjoint state method and reverse-mode automatic differentiation can

Warmup: linear algebra
K-means clustering

Tensor factorizations

Q 0 T o

automatically calculate gradients in about the same time (~4x) as a function

Gradient-free optimization

evaluation

Requires specialized /restricted libraries/code (dolfin-adjoint/FEniCS, autograd)
Adjoint state method requires a method to solve adjoint PDE
= difficult to maintain in large code bases, e.g., 4D-var for weather codes
XS|OW if used for intermediate calculations involving some

o . f:RT— R
= e.g., seismic inversion with many observations
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1. Randomized “sketches”
Warmup: PCA

Why not just find gradients automatically? S

2. Applications

O

JThe adjoint state method and reverse-mode automatic differentiation can

Warmup: linear algebra
K-means clustering

Tensor factorizations

Q 0 T o

automatically calculate gradients in about the same time (~4x) as a function

Gradient-free optimization

evaluation

Requires specialized /restricted libraries/code (dolfin-adjoint/FEniCS, autograd)
Adjoint state method requires a method to solve adjoint PDE
= difficult to maintain in large code bases, e.g., 4D-var for weather codes
Slow if used for intermediate calculations involving some d
S | fiRY = R
= e.g., seismic inversion with many observations
xPossibIe memory explosion

= e.g., time-dependent problems. Check-pointing schemes somewhat helpful

Example: hyper-parameter optimization in deep learning
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1. Randomized “sketches”

Why not just find gradients automatically? o,

2. Applications

o W

/ he adjoint state method and reverse-mode automatic differentiation can Warmup: linear algebra

K-means clustering

Tensor factorizations

a0 o o

automatically calculate gradients in about the same time (~4x) as a function

Gradient-free optimization

evaluation

xRequires specialized /restricted libraries/code (do1fin-adjoint/FEniCS, autograd)
xAdjoint state method requires a method to solve adjoint PDE

= difficult to maintain in large code bases, e.g., 4D-var for weather codes
xS|OW if used for intermediate calculations involving some p

o | fiRT = RY

= e.g., seismic inversion with many observations
xPossibIe memory explosion

= e.g., time-dependent problems. Check-pointing schemes somewhat helpful

x?equires access to original source code
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Why not just find gradients automatically?

/ he adjoint state method and reverse-mode automatic differentiation can

automatically calculate gradients in about the same time (~4x) as a function

evaluation

Requires specialized /restricted libraries/code (do1fin-adjoint/FEniCS, autograd)
Adjoint state method requires a method to solve adjoint PDE
= difficult to maintain in large code bases, e.g., 4D-var for weather codes
Slow if used for intermediate calculations involving some p
f:R® — R
= e.g., seismic inversion with many observations
Possible memory explosion
= e.g., time-dependent problems. Check-pointing schemes somewhat helpful
f'Requires access to original source code
xAssumes a computational structure

= inapplicable for physical observations (wind farms; rollout in Al)

Stephen Becker (CU Boulder) Randomization Methods for Big Data, 9/19/2025
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1. Randomized “sketches”
Warmup: PCA

Baseline Algorithms (for comparison) s

p 2. Applications
f:R*—=R

o L

a.  Warmup: linear algebra
These days, often called “zeroth order” optimization JI norine finite-difference error. eniovs well E ie':;j"fzcct'z;::fns
Algorithm Gradient Descent via Finite Differences & & - SOy d.  Gradient-free optimization
1. for k=1,2.... do understood convergence
2. Estimate gx = V f(xy) > Use finite ditferences xrequires d+1 function evaluations per iter.
3: Thal < Tk — NIk > For appropriate step-size n
4 )

Why not use traditional Derivative Free Optimization (DFO) methods?

\Answer: most classical DFO methods don't scale well with dimension y

Note: there are many other DFO methods.. but we won't discuss in this talk

From heuristics to theoretically based, from local to global

- Heuristics: Nelder-Mead, genetic algorithms, particle swarm optimization
- e.g., CMA-ES, Covariance matrix adaptation evolution strategy

- Simulated Annealing (typical as heuristic)

- Bayesian Optimization

- Model is Gaussian Process, with acquisition function (exploration/exploitation tradeoff)
- DFO-TR (Trust-region)

- Model is polynomial
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1. Randomized “sketches”
Warmup: PCA

Baseline Algorithms (for comparison) s

y 2. Applications
f:R* =R

O

a.  Warmup: linear algebra
b.  K-means clustering
, , — : ignoring finite-difference error, enjoys well- . Tensor factorizations
Algorithm Gradient Descent via Finite Differences & & 1oy d.  Gradient-free optimization
1. for k=1,2,... do understood convergence
2:  Estimate g ~ V f(xy) > Use finite differences requires d+1 function evaluations per iter.
3: Thal < Tk — Nk > For appropriate step-size 7
Algorithm Randomized Coordinate Descent (CD) /just 1 function evaluation per iteration

1: for k=1,2,... do

2: Choose j € {1,2,...,d} at random
3: Jr = ejejTVf(xk)

4: Tia1 < Tk — Nk Gk > For appropriate step-size 7y (or exact minimization... depends on structure)

Xpoor convergence properties, slow rates
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1. Randomized “sketches”
Warmup: PCA

Stochastic Subspace Descent Assume we can compute this! " 0
/ <8 ’ .Ap\[j\l/i:fr:(::nnear algebra

q ]_) forward f|n|te d|ﬂ: K-means clustering
2) forward-mode AD

o W

directional derivative qq’ Vf(xy) = QE% Hawt b .f?) - f(%))

a

b

c.  Tensor factorizations

d. Gradient-free optimization
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1. Randomized “sketches”
a. Warmup: PCA

Stochastic Subspace Descent .

2. Applications

a.  Warmup: linear algebra
. : . : . i —|_ h . — £z b. K-means clusterin
dlreCtIOHa| der|Vat|Ve quVf(afk) — (hm f( . q> f( k)> q c. Tensorfactorizatiogns
h—0 h d. Gradient-free optimization
d
Q — [Q17 qz, . .. 7QE] ™~ Haar(d X 6) QTQ — Iﬁxﬁa K <ZQQT> = lgxd
¢
d QT Q= E & ﬂJT —

One benefit: in the limit ¢ = d, QQT = I4x a4, and so we'll recover the full gradient

(for Gaussians, this is only true in expectation)
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1. Randomized “sketches”
Warmup: PCA

Stochastic Subspace Descent } o e

Structured sketches

O

2. Applications

a.  Warmup: linear algebra
. : . : . i —|_ h . — £z b. K-means clusterin
d|reCt|Ona| der|Vat|Ve quVf(ajk) — (hm f( . Q) f( k)> q c. Tensorfactorizatiogns
h—0 h d. Gradient-free optimization
d
Q — [qla qz, . .. 7Q€] o Haar(d X é) QTQ — ]Exﬁa I (ZQQT> — [dxd

Algorithm “Stochastic Subspace Descent” (SSD)
1: for k=1,2,... do
2. Draw Q ~ Haar(d x £) or any generic SSD
3: Tk+1 < Tk — ﬁk%QQTVf(fL‘k)

d
Generic SSD [QTQ = lyxe, 4 <ZQQT> = [dde

Both Haar and Coordinate Descent methods are valid generic SSD
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1. Randomized “sketches”
a. Warmup: PCA

Stochastic Subspace Descent i

Warmup: linear algebra

K-means clustering

a.
b.
C. Tensor factorizations
d.

directional derivative qq’ Vf(xy) = (%12% flaw +h .hQ) — f(xk)> q

Gradient-free optimization

d

Q=lm et ~Haawdx ) QUQ=Tour, E (50QT) = uus

Algorithm “Stochastic Subspace Descent” (SSD)
1: for k=1,2,... do
2: Draw () ~ Haar(d x /)
3: Tk+1 < Tk — Uk%QQTVf(iUk)

We call () a “Haar"” distributed r.v. (i.e., the Haar measure over orthogonal matrices),

but really care about QQ” which is a projection matrix (onto col(Q)).

We get () via Gram-Schmidt (or appropriately modified QR) on a Gaussian G,
and note col(Q)) = col(G)w.p. 1, so our update is equivalent to

d

Th41 < Tk — nkz 73col(G) (Vf(il?k))

and hence the term “stochastic subspace’.
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1. Randomized “sketches”
a. Warmup: PCA

First theory results (for generic SSD) e

Structured sketches
ﬁheorem (Kozak, Becker, Tenorio, Doostan '20) \

Assume: minimizer attained, gradient Lipschitz, stepsize 7xchosen appropriately.

\ constant L \ 1

n= =+
1. If fis convex, d L
A * d L 2 —1
Lf(2r) — 7 < QZER =O(k™")

2. Applications
Warmup: linear algebra
K-means clustering

Tensor factorizations

Q 0 T o

Gradient-free optimization

/ constant W

2. If fis not convex but satisfies the Polyak-Lojasiewicz inequality,

Ef(xy) — fF < pk(f(af;o) — ) = (’)(pk) and f(x) SN SSD is a special type of SGD,

_ but results are much better
3. If fis strongly convex, statements of 2 above hold, and also

than generic SGD analysis

T — argmin,, f ()

4. If fis not convex (nor PL),

< §2L(f(l’o) — f7)

min B[V f ()]

k' €{0,.... k) — k41 ff* et hin (z) N
— T
d d =ambient dimension | | |
Generic SSD [QTQ = Iyyy, D (ZQQT> — [dxdj @ _ 4 directional derivsjz — 1is gradient descent
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1. Randomized “sketches”
Warmup: PCA

Numerical Results: better than expected s

2. Applications

o L

a.  Warmup: linear algebra
MLE + node choice for Gaussian Process example E -P;e:;:n;cctlz:z:fns
d. Gradient-free optimization
10—
103- coordinate descent
102_
5 10%
= 101 = SSD - Haar, £ =10
LL 0 — = SSD-CD, (=10
$ -107 ¢
s =100
L -10>
S Zips
0 200 400

Function Evaluations

Observation: sometimes SSD (with Haar) drastically

outperforms randomized coordinate descent (CD)

d
Generic SSD QTQ = lyxe, 4 (zQQT> = lgxd
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1. Randomized “sketches”

. L,
Numerical Results: better than expected s
Haar SSD drastically outperforms f We can force it to happen by making a \2 .Ap\F;\lll;:fr:zg:slinear algebra

K-means clustering

problem with low “intrinsic” dimension, e.g.,

Tensor factorizations

randomized coordinate descent (CD)

o 0 T W

Gradient-free optimization

Nesterov's “worst function in the world”

L : A (X CIZ—I—Z i — Tit1) S 2—x1)/4,
Gradient Desc:&neW method far(x) = 1 i+ )/ )/
— SSD - Haar
—— SSD-CD r = 20 k This has intrinsic dimension of r j
¢/ =3
dimension 100 dimension 1,000 dimension 10,000
g 1.00 1.0 coordinate descent 1.0 coordinate descent
2] ---=- @Gradient Descent
.8 0.9:
8- 0-75 0.8 —— SSD - Haar
o)
v 0.50 0.6 —— 55D -CD 0.8
= new method
g<) 0.25 0.4 i new method 0.7 \\\
= | Shnewmethod T T
0.00 o2t  TTTm=—s 0.6 S
0 2500 5000 7500 10000 0 250_0 5000 7509 10000 0 250_0 5000 7509 10000
Function Evaluations Function Evaluations Function Evaluations
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Numerical Results: better than expe

Haar SSD drastically outperforms

randomized coordinate descent (CD)

---- Gradient Descent new method

—— SSD - Haar —

— SSD-CD r =20
(=3

dimension 100

dimension 1,000

cted

1.

f We can force it to happen by making a

Nesterov's “worst function in the world”
far(x) = A((z] + Z

k This has intrinsic dimension of r

_ xz—|—1

problem with low “intrinsic” dimension, e.g.,

_I_ CI?,,%)/Q o sz1)/47

j

dimension 10,000

10— 10 e coordimatedescent
I B W _ radient descent

§ 107" gradient descent 10~ 5

8 1072 102

% 1073 1073

QL

= 10~* 10~4

107> new method 107 new method 8 107> new method

0O 2500 5000 7500 10000 0

no theory yet . tion Evaluations

Randomization Methods for

Stephen Becker (CU Boulder)

25'90 5000 75'09 10000 0
Function Evaluations

25'90 5000 75'09 10000
Function Evaluations

Big Data, 9/19/2025

AMS colloquium

\2_

o L

Q 0 T o

Randomized “sketches”
Warmup: PCA
Classical sketches
Structured sketches
Applications
Warmup: linear algebra
K-means clustering
Tensor factorizations
Gradient-free optimization
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1. Randomized “sketches”
Warmup: PCA

Theory: explain better-than-expected results s

2. Applications

o L

Warmup: linear algebra

Previous theorem didn’'t actually rely on properties of Haar distribution, just generic ():
d
T n T
— I ] 4, — — I
Tighter analysis using concentration-of-measure: (Q ¢ Ext (KQQ ) dXdJ

Lemma 2 (Johnson-Lindenstrauss style embedding, from Kozak, Becker, Tenorio ’19, Lemma 1). \
Ve € (0,1), if £ > €2, Q ~ Haar(d x £), then Y0 # g € RY,

d T 112
1—6§—HQ l <1l4¢€ w/ prob. § > 0.8

\ ¢ gll? J

S is 10 x 100, error ||(S'S — Iel|2

K-means clustering

Tensor factorizations

Q 0 T o

Gradient-free optimization

T Gaussian
coordinate sampling

1.5-
S
L
% | Coordinate sampling does
E not have this property!

0.5 a Recall... h

d = ambient dimension
0 — ¢ = # directional derivs

\_ _J

‘k \ / W 1 5
Errors
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1. Randomized “sketches”
Warmup: PCA

Theory: explain better-than-expected results s

2. Applications

O

Warmup: linear algebra

Previous theorem didn’'t actually rely on properties of Haar distribution, just

Q"Q=lit, E (500" = Lixa

K-means clustering

Tensor factorizations

Q 0 T o

Gradient-free optimization

Tighter analysis using concentration-of-measure:

Lemma 2 (Johnson-Lindenstrauss style embedding, from Kozak, Becker, Tenorio '19, Lemma 1).
Ve € (0,1), if £ 2> €2, Q ~ Haar(d x ¥), then V0 # g € RY,

T 112
) i

1 <
¢ gl

<1l4e¢€¢ w/ prob. 6 > 0.8

KI‘heorem 3 (Kozak, Becker, Tenorio ’19, Thm. 1). If f is strongly convex and V[ is Lipschitz \
continuous, then for an appropriate stepsize ni, the sequence (xyp) generated by SSD (with Q ~
Haar), for k > 100, satisfies

Flop) — f* < (L+ (1 —)p)"2(f(xo) — f*)  with probability > 0.998,

where p < 1 depends on £, d and the Lipschitzxand strong convexity parameters.

due to possibility of failure of JL

error in JL embedding
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https://amath.colorado.edu/faculty/becker/

1. Randomized “sketches”

Introduced in Charikar et al. (2004), more analysis = wamup: Pca

M et h Od 7 CO U ntS ketc h in, e.g., Clarkson and Woodruff (2017) . E'Sii'ii'riﬁeiiiiihes

2. Applications

(on

Warmup: linear algebra
K-means clustering

Tensor factorizations

O 0o T w

S : R" — R™ linear operator

Gradient-free optimization

AChange in notation temporarily Input Output

O = S 1
D => N
Psmall == ™M

n K X
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1. Randomized “sketches”
Warmup: PCA

Method 7: CountSketch Gl

2. Applications

o L

Warmup: linear algebra
K-means clustering

Tensor factorizations

o 0 T w

S : R" — R™ linear operator

Gradient-free optimization

Notation: |[n|=(0,1,...,n —1)
(use 0-based indexing)

Step 1:
Multiply by random sign*
+1|4+1]|+1
+1|4+1(+1
S [n] — {::1}
. —1|-1]-1
(uniform)
11|41
—1|-1]-1
—1|-1]-1
—1|-1]-1
+1|4+1(+1
—1|-1]-1

* technically doesn’t have to be fully random, but must be 2-wise independent

s(i) L s(j) ifi#
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1. Randomized “sketches”

Method 7: CountSketch o G

2. Applications

o W

Warmup: linear algebra
K-means clustering

Tensor factorizations

S : R" — R™ linear operator

o 0 T w

Gradient-free optimization

Step 2:
Assign an output row to
every input row (randomly

or with a hash function)

h:n] — |m]

(uniform)

Again, don't need all of hli] to be independent, only pairwise independent

(but easy enough to make them all independent)
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1. Randomized “sketches”
Warmup: PCA

Method 7: CountSketch s

2. Applications

o W

Warmup: linear algebra
K-means clustering

Tensor factorizations

S : R" — R™ linear operator

o 0 T w

Gradient-free optimization

Step 3:
Each output row is the sum

of corresponding input rows
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1. Randomized “sketches”
Warmup: PCA

Method 7: CountSketch s

2. Applications

o W

Warmup: linear algebra
K-means clustering

Tensor factorizations

S : R" — R™ linear operator

o 0 T w

Gradient-free optimization

Step 3:
Each output row is the sum

of corresponding input rows
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1. Randomized “sketches”
Warmup: PCA

Method 7: CountSketch s

2. Applications

o W

Warmup: linear algebra
K-means clustering

Tensor factorizations

S : R" — R™ linear operator

o 0 T w

Gradient-free optimization

Step 3:
Each output row is the sum

of corresponding input rows
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1. Randomized “sketches”
Warmup: PCA

Method 7: CountSketch s

2. Applications

o W

Warmup: linear algebra
K-means clustering

Tensor factorizations

S : R" — R™ linear operator

o 0 T w

Gradient-free optimization

Step 3:
Each output row is the sum

of corresponding input rows
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1. Randomized “sketches”

Method 7: CountSketch b G s

2. Applications

o W

Warmup: linear algebra
K-means clustering

Tensor factorizations

O 0o T w

S : R" — R™ linear operator

Gradient-free optimization

Complexity analysis: every input element is touched once
.. SO linear complexity

(and can exploit sparsity)
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1. Randomized “sketches”
a. Warmup: PCA

I\/l t h d 7 n C tS k t h b.  Classical sketches
e O - O u n e C c. Structured sketches
2. Applications
. Warmup: linear algebra
K-means clustering

b.
S . Rn % Rm ||near OperatOr Z Tensor factorizations

. Gradient-free optimization

A formula for the output:

Vs

S

L
m

[ -1}
u=38), uy= Y s(j)v h:ln| —|m] hash
jlh(g)=1

.. and note that the following polynomial has the output as its coetfficients:

p(r) = > (7)) v M) = >l Y sG] = wie ! (this will be key shortly...)
Jj€ln] i€lm)| jlh(g)=1 i€lm)|
H/—/
Us
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Introduced in Pagh (2013), more analysis

Method 8: TensorS ketch in, e.g., Diao, Zong, Sun, Woodruff (2018)

TensorSketch is just CountSketch when the input can be written as a tensor product

(for a special choice of the hash and sign functions)

AChange in notation temporarily T:R" — R™
o= S v=ov" ®v? where size is n = nW . n@
p = N
Psmall == ™M

Not (yet!) related to tensors
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Introduced in , more analysis

TensorSketch n o,

TensorSketch is just CountSketch when the input can be written as a tensor product

(for a special choice of the hash and sign functions)
T :R" — R™

v=ovY @v?®  wheresizeis n=nl.p®

a101
a1bs
a1b3
a1 bl alb CLle
a — |d ,b: bg a®b: CLQb — CLQbQ
as bg agb CLng
azby
azbo
azbs_

Kronecker /tensor product
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TensorSketch

T :R" - R™
V= fu(l) X U(Q) where size is n — n(l) : n(2)
Kronecker /tensor product "a1b1 ] |
a1 b another equivalent definition:
o L o a1b3 a®@b = vecgy (ba,T)
aq bl CL1b Cbgbl
a— (da] , b= b2 a®b= a2b — a2b2 _blal b1a2 blCLg_ _Clel @2[91 Clgbl_
| a3 _bS_ _CLgb_ CLQbS baT — bg&l b2a2 b2a3 — CleQ a2b2 CLng
&3[?1 _bgCLl bg@g bgCLg_ _&1[?3 CLng CLgbg_
a3b2
a30s3

more generally,

vee : [ntV] x [n?] = [ntV) . n@)
(A ® B)vece (X) = vece (BXAT)

vec ! = mat : [nMY - n®] = [nM] x [n®)
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TensorSketch

Pick hash functions in a decomposable way:

Input has structure UV = ’U(l) X ’0(2) with sizes 1 = n(l) : n(2)

h:n] — |m]

build small AW : [V
hash functions: p(2) . [ (2)

1

PV (51) + 2 (j2)  mod m

1
S
>

-

5

.

=S
||

(we're being loose about how we write the input, since
we can use the mat/vec bijection as needed)

Fact: as long as h(Pis fully independent (or at least 3-wise independent), then & is 2-wise independent
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TensorSketch

Pick hash functions in a decomposable way:

Input has structure UV = ’U(l) X U(Q) with sizes 11 = n(l) . n(Q)

build small ~ AD [ h:[n] = [m]

hash functions: (2) . [ (2)

1
B

h(ji,j2) = BV (j1) + h'P(j2)  mod m

1
-

Fact: / is 2-wise independent (we're being loose about how we write the input, since

we can use the mat/vec bijection as needed)

S [n] — {::1}
s(j1,d2) = sV (1) - 52 (o)

same trick for s :n(l): — %1}
sign functions: s : [n¥] = {£1}

still pairwise independent, as needed for theory!
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1. Randomized “sketches”
a. Warmup: PCA

T S k t h b.  Classical sketches
e n SO r e C c. Structured sketches
2. Applications

Warmup: linear algebra

what’s the point? Huge computational speedup.

Z S 1) ( ) R DG) Z uz(l) ol

a
b K-means clustering

c.  Tensor factorizations

d Gradient-free optimization

A M = [m
P& @ el e
- ' Z S 2) ( )P G) Z u,EQ) L
[n(2)] 1€|[m]

Let's compute this: p(l)(m) -p(2) (r) mod ™ —1
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TensorSketch

what’s the point? Huge computational speedup.

p(l)(ai) -p(Q)(:B) —

Stephen Becker (CU Boulder)

2

j1€[n)]

8(1)(]-1) 'vg(il) 'xh(l)(jl) . Z <(2) (]2) ‘UJ('S) -xh(Q)(jQ)

j2€[n(2)]

Randomization Methods for Big Data, 9/19/2025

1.

Randomized “sketches”
a. Warmup: PCA
b.  Classical sketches
c. Structured sketches

Applications
a. Warmup: linear algebra
b.  K-means clustering
c.  Tensor factorizations
d.  Gradient-free optimization




1. Randomized “sketches”
a. Warmup: PCA

T S k t h b.  Classical sketches

e n SO r e C c. Structured sketches
2. Applications
- - a Warmup: linear algebra
what’s the point? Huge computational speedup. o Komeans clstering
c.  Tensor factorizations
d Gradient-free optimization

. (1) (; . 2)(;
pP () -pP) = Y sD() ‘Ug('ll) PO ST @) ‘”Ug('i) . 1) (52)
jren] j2€n(2)]
. . (1) (; )
_ 3 sD (1) - s (o) '”Ug('ll) . UJ(,? o h V1) R ()
j1€[nM], j2€[n(2)]
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1. Randomized “sketches”
a. Warmup: PCA

b.  Classical sketches

Te n SO rS ketc h c. Structured sketches
2. Applications

. . a.  Warmup: linear algebra

what’s the point? Huge computational speedup. b, Kemeans clustering
c.  Tensor factorizations
d.

Gradient-free optimization

— > sV (1) - sP () - otV 0l V0D L ph PG

J1 J2
j1€[n], ja€[n(2)]
- L AW (5)RE) (4
= > S(j1, J2) - Vjyjp - ™ UIRTU
j1€[nM], ja€[n(2)] \

because input has tensor product structure

because of how we defined our sketch
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1. Randomized “sketches”
a. Warmup: PCA

T S k t h b.  Classical sketches

e n SO r e C c. Structured sketches
2. Applications
- - a Warmup: linear algebra
what’s the point? Huge computational speedup. . Kmeans clustering
c.  Tensor factorizations
d Gradient-free optimization

. 1) r)( . 2) R
) 5(1)(]1).%(1). RGO Y 5(2)(]2).%(2). h(2) (j2)

jr€[n] jo€[n(2)]
- Z 3(1)(]'1) . ¢(2) () 0511 Xl
j1€[nW], ja€[n()]
LT Sl st ON0
j1€[nM], j2€n()]
= > S(J1,72) - Vs, p"U32) mod 2™ — 1

j1€nM], j2€[n(?)]

PV (@) ()

N—"
VR
)
N—"
°

A (1) .2 (42)

ké _ xdm—l—(kﬁ mod m) __ xdm—l—(kﬁ mod m) __ (xm)dx,kﬁ mod m — ijé mod m

x mod =" — 1

Recall 2 =1 mod 2™ —1
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1. Randomized “sketches”
a. Warmup: PCA

T S k h b.  Classical sketches

e n SO r etC c.  Structured sketches
2. Applications
. . a Warmup: linear algebra
what’s the point? Huge computational speedup. b, Kemeans clustering
c.  Tensor factorizations
d

Gradient-free optimization

| (1) (4, | ) (4,
pD(z) - p®(2) S sW(y) .U](,P, ARG YT 5P () ,U](S), h2) (j2)

j1€n)] ja€ln®]
- - (1) ( (2)(;
LY OGSOl o
j1€[n], jo€[n(2)]
S S() - g, - MGG
j1€[nM], j2€[n(2)]
h ) S(j1,72) - Vi 4, - "2 mod ™ — 1
j1€[nM], ja€[n(2)]
= p(r)

\ coefficients are the output
of the CountSketch!
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1. Randomized “sketches”
Warmup: PCA

TensorSketch e Gl

2. Applications

o W

How to multiply polynomials? X lvmmplulib
c.  Tensor factorizations
(23;‘2 — 31 — 4) . (an —x + 5) d.  Gradient-free optimization
p(z) q(x)
xo CIfl $2
p(z) 3

115 a@)
5132 CIfl ZEO
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1. Randomized “sketches”
Warmup: PCA

TensorSketch e Gl

2. Applications

o W

Warmup: linear algebra

How to multiply polynomials?

K-means clustering

Tensor factorizations

o 0 T w

Gradient-free optimization

(227 + 3z +4) - (2° — 2+ 5)

o 4
20 12 — 21
4 312

11-1 5

R

2.1
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1. Randomized “sketches”
Warmup: PCA

TensorSketch e Gl

2. Applications

o W

. - Warmup: linear algebra
How to multiply polynomials? + clusterng

K-means clustering

Tensor factorizations

o 0 T w

Gradient-free optimization

(227 + 3z +4) - (2° — 2+ 5)

o 4 3
20 12 = 20" +x
3| 2
1 -115
I T A
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1. Randomized “sketches”

Warmup: PCA
I S k t h . Classical sketches
e n SO r e C c. Structured sketches

2. Applications

o W

Warmup: linear algebra

How to multiply polynomials?

K-means clustering

Tensor factorizations

o 0 T w

Gradient-free optimization

(227 + 3z +4) - (2° — 2+ 5)

o 4 3 2
20 1 .2 = 20" +x° +11x
41 31| 2
1 -1/ 5
R

4-143-(-1)+2-5=11
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1. Randomized “sketches”

Warmup: PCA
I S k t h . Classical sketches
e n SO r e C c. Structured sketches

2. Applications

o W

Warmup: linear algebra

How to multiply polynomials?

K-means clustering

Tensor factorizations

o 0 T w

Gradient-free optimization

(227 + 3z +4) - (2° — 2+ 5)

o 4 3 2
20 1 .2 = 20" +x° +11x” +11x
4 312
1]1-115
i

4.(-1)+3-5=11
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1. Randomized “sketches”
Warmup: PCA

TensorSketch e Gl

2. Applications

o W

Warmup: linear algebra

How to multiply polynomials?

K-means clustering

Tensor factorizations

o 0 T w

Gradient-free optimization

(227 + 3z +4) - (2° — 2+ 5)

0.4 3 2
20 12 = 20" 4+ +11x° +11x +20
413 2
1 -115
A T A

4.5 =20
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1. Randomized “sketches”

Warmup: PCA
I S k t h . Classical sketches
e n SO r e C c. Structured sketches

2. Applications

o W

Warmup: linear algebra

How to multiply polynomials?

K-means clustering

Tensor factorizations

o 0 T w

Gradient-free optimization

(227 + 3z +4) - (2° — 2+ 5)

%
a4 3 2
20 12 = 20" 4+ +11x° +11x +20
4131 2
11l s = 112° + 132 + 21 mod 2° — 1
A T A

4.5 =90 .. this is circular convolution!
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1. Randomized “sketches”
a. Warmup: PCA

TensorSketch: complexity analysis L.

2. Applications

. . . . . . . . a. Warmup: linear algebra
Convolution Theorem (for circular convolutions * ) pointwise multiplication o Komeans clustering
c.  Tensor factorizations
d.  Gradient-free optimization

Fg+h)=F(g)F(h) ie. gxh=F'(F(g)F(h))

Discrete Fourier Transform (implemented via FFT)
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1. Randomized “sketches”
a. Warmup: PCA

TensorSketch: complexity analysis L.

a
b

c.  Tensor factorizations

d.  Gradient-free optimization

Complexity:
CountSketch applied as TensorSketch CountSketch applied naively generic dense matrix multiply
T :R" - R™ OnY +n? £ mlogm) vs OnHn?) vs OnWn@m)
_ ). (2
n=n " small CountSketches polynomial multiplication via FFTs

Savings grow as we have more tensor products

[ftn = n(l)n(z) - n(Q)

OnW +n® 4+ +n9 4+ mlogm) vs OnMIn® ... .p0)
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