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Outline

Outline and learning objectives of this talk

® Introduce a class of Oth order optimization methods, “SSD”

® survey our prior analysis results

®* Argue that stepsize selection is a key issue

® suggest two ideas to help

® show some ML examples where these methods make sense

® Discuss ongoing directions
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Motivation: Oth order methods / derivative-free optimization

mg}i f(x) where we do not have access to V f(x)
xTc

Traditional applications: PDE constrained optimization, when the adjoint state method or automatic differentiation is inapplicable

- e.g., multiphysics codes with complicated adjoints (and hard to code in HPC); memory issues in AD for time-dependent problems, etc.
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Motivation: Oth order methods / derivative-free optimization

m%b f(x) where we do not have access to V f(x)
xrc

Traditional applications: PDE constrained optimization, when the adjoint state method or automatic differentiation is inapplicable

- e.g., multiphysics codes with complicated adjoints (and hard to code in HPC); memory issues in AD for time-dependent problems, etc.

Machine learning applications
- hyper parameter tuning

- black-box attacks, e.g., adversarial attacks on a model (attacker doesn’'t have access to source code)
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Motivation: Oth order methods / derivative-free optimization

m%}l f(x) where we do not have access to V f(x)
xTc

Traditional applications: PDE constrained optimization, when the adjoint state method or automatic differentiation is inapplicable

- e.g., multiphysics codes with complicated adjoints (and hard to code in HPC); memory issues in AD for time-dependent problems, etc.

- hyper parameter tuning
- black-box attacks, e.g., adversarial attacks on a model (attacker doesn’t have access to source code)
Recent theme of my work: exploit multi-fidelity models

- in applied math, for PDE simulations, we often have several physics based models (with different approximations), different

discretizations, different numerical precisions, reduced-order models, etc

- machine learning also has examples of multi-fidelity models
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Context

High dimensions,

low accuracy

Low dimensions,

high accuracy

A guiding principle:

\_

Local methods

“zeroth order": approximate V f(x) (e.g., w/ finite differences)

| stochastic zeroth order:  approximate g such that gl = Vf(x)

___today’s talk

polling methods: Nelder-Mead, coordinate descent, etc.

-~

-

Global / model-based methods
polynomial model, minimize with a trust-region (“DFO-TR")

see our new paper “A Unified Framework for Entropy Search and
Expected Improvement in Baye5|an Optlmlzatlon N Cheng et al. ICML ‘25

Gaussuan process ‘model, use ach|S|t|on function to tradeoff exploratlon

and epr0|tat|on ( BayeS|an Opt|m|zat|on ')

the time spent in the optimization method (creating and solving surrogate models)

should equal

the time spent in the function evaluation (e.g., solving the PDE, training neural net...)

. hence, the best method to use depends a lot on the problem.
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Misc. / heuristics

genetic algorithms, particle swarm,

CMA-ES, simulated annealing, etc.
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A stochastic zeroth-order method: SSD

, xr+ hqg) — f(x
Assume we can compute/approximate quVf(m) = (hm / 9) — /T )> q

PR 7 e.g., finite differences, or forward-mode AutoDiff

directional derivative, “two-point” estimator in ZO literature

d

another perspective: CITVf($) — Esﬁ(t) where ©(t) = f(x +tq)
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A stochastic zeroth-order method: SSD

, xr+ hqg) — f(x
Assume we can compute/approximate quVf(:L‘) = (}ILIE% S ;IL) /{ )> q

Even better, average a few copies to reduce variance

¢
QQ'Vf(x) =) qaq Vf(x) Q :g[(ha---aQE] Q'Q=1,., E (%QQT> Sy
i=1
1 Q
T — o7
columns not independent! < Q il Q )

Stephen Becker (CU) High-dimensional DFO: Stochastic Subspace Descent and improvements ICCOPT 2025, USC, Los Angeles



A stochastic zeroth-order method: SSD

Assume we can compute/approximate quVf(w) — (hm

Even better, average a few copies to reduce variance

¢
d
QQ'Vf(x)=) a4/ Vf(x) Q :Z[Cha---afh] Q'Q=1,., E (ZQQT> .y
i=1
1 Q
g A T _ + -
Algorithm: stochastic subspace descent (SSD) Q Q - 2l Q Q
Repeat:
Draw a @ ; O(¥) oracle calls - )
e T
v /néQQ VIHX) It's a type of “stochastic gradient method” (direction is unbiased)
- / 7 but has much stronger guarantees due to its structure
stepsize

e.g., the direction is descent direction with prob. 1 if Q) is continuous

Important: draw new (independent) @ every iteration
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A stochastic zeroth-order method: SSD

Assume we can compute/approximate qq' Vf(x) = (Hm )iff

Even better, average a few copies to reduce variance

14
QQ'Vf(x)=) a4 Vf(x) Q=la, . aq Q'Q=1Iy, E (%QQT> = Iixa
1=1

Equivalent formulation... and why we call it “SSD”"

Columns of @) form a basis for V

4 N\ Algorithm 1 Stochastic Subspace Descent (SSD)
Algorithm: stochastic subspace descent (SSD) Require: 7 > Stopsize
Repeat: Require: z; € R? > Initial point
Draw a @) O(Z)oracle calls 1: for k=0,1,2,... do | |
o g QQ TV f (X) 2: Choose subspace Vj of dimension ¢ < d
S /"g 3 gk < projy, (Vf(zk)) > Project onto subspace
- / ) 4: L1l < L — NGy
stepsize 5: end for
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StOChaStiC Oth—Order methOdS Much recent work on variants, 2011—2020

D. Leventhal and A.S. Lewis, Randomized Hessian estimation and directional search, Optimization (2011)

Variants have been investigated for a |0ng time... » Z. Zhang, Scalable Derivative-Free Optimization Algorithms with Low-Dimensional Subspace Techniques (thesis in Chinese
2011, preprint with proof sketches in English 2025, arXiv 2501.04536), “NEWUOAs"
. ¥ = n i
Under various na mes, e€.g., [ra ndom gradlent , Id ndom *S. U. Stich, C. Muller, and B. Gartner, Optimization of convex functions with random pursuit, SIAM J. Opt. (2013)

Yu. Nesterov, Random gradient-free minimization of convex functions, '11 / Yu. Nesterov and V. Spokoiny, FoCM 2017

oursuit’, “directional search”, “random search”

P. Dvurechensky, A. Gasnikov, and A. Tiurin, Randomized similar triangles method: A unifying framework for accelerated

v

J. Matyas, Random Optimization, Automation & Remote Control, 1965 randomized optimization methods (coordinate descent, directional search, derivative-free method), arXiv:1707.08486
P. Dvurechensky, A. Gasnikov, and E. Gorbunov, An accelerated directional derivative method for smooth stochastic convex

optimization; arXiv:1804.02394
S. Ghadimi and G. Lan, Stochastic first- and zeroth-order methods for nonconvex stochastic programming, SIAM J. Opt. (2013)

v

M. Gaviano, Some general results on convergence of random search algorithms in

minimization problems, Towards Global Optimisation, 1975.

v

F.J. Solis and R. J-B. Wets, Minimization by random search techniques, Math. of * R. Chen and S. Wild, Randomized derivative-free optimization of noisy convex functions, arXiv:1507.03332 (2015).
Operations Research. 1981 (no rate) * K. Choromanski, M. Rowland, V. Sindhwani, R. E. Turner, and A. Weller, Structured evolution with compact architectures for

B. POlyak 1987 T. Salimans, J. Ho, X. Chen, S. Sidor, and |. Sutskever, Evolution strategies as a scalable alternative to reinforcement learning,
Yu. Ermoliev and R.J.-B. Wets, Numerical techniques for stochastic optimization, arXiv:1703.03864 (2017).

scalable policy optimization, ICML, 2018.

v

v

cha pter 6, Springer_\/eﬂag, 1988. * J. Duchi, M. Jordan, M. Wainwright, A. Wibisono, Optimal Rates for Zero-Order Convex Optimization: The Power of Two
Function Evaluations, |EEE Trans Info Theory (2015)
A. S. Berahas, L. Cao, K. Choromanski, K. Scheinberg, A Theoretical and Empirical Comparison of Gradient Approximations in
Derivative-Free Optimization, 2019 (published in FoCM '22)
F. Hanzely, K. Mishchenko, P. Richtarik, SEGA: Variance Reduction via Gradient Sketching, NeurlPS 2018
cousin of “direct search” methods, cf. S. Gratton, C. W. Royer, L. N. Vicente, Z. Zhang, Direct Search Based on Probabilistic
Descent, SIAM J. Opt. (2015)

For recent results (2015-2025) on zeroth-order ML, see: Since 2020...

» “Zeroth-order Machine Learning” AAAI tutorial 2024 ’[D. Kozak, S. B., A. Doostan, and L. Tenorio. A stochastic subspace approach to gradient-free optimization in high dimensions.]
: : : COAP, 2021.
> Wotao Yin, Sijia Liu, Pin-Yu Chen
_ _ _ _ D. Kozak, C. Molinari, L. Rosasco, L. Tenorio, S. Villa. Zeroth-order optimization with orthogonal random directions. Math.
» https://sites.google.com /view/zo-tutorial-aaai-2024/
va SETS , ; , Program., 2023
Chen et al., DeepZero: Scaling up Zeroth-Order Optimization for Deep Model Training, ICLR 23 * M. Rando, C. Molinari, L. Rosasco, S. Villa. An optimal structured zeroth-order algorithm for nonsmooth optimization. NeurlPS
Yu et al., SubZero: Random Subspace Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning, 2024
24 > M. Rando, C. Molinaro, S. Villa, L. Rosasco. Stochastic zeroth order descent with structured directions. COAP, 2024
Liu et al., Sparse MeZO: Less Parameters for Better Performance in Zeroth-Order LLM Fine-Tuning, ‘24 > R. Nozawa, P.-L. Poirion, A. Takeda. Zeroth-Order Random Subspace Algorithm for Non-smooth Convex Optimization, JOTA,
Zhang et al., Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark, 2025 .
ICML 24 * H.Q. Cai, D. McKenzie, W. Yin, Z. Zhang. Zeroth-Order Regularized Optimization (ZORO): Approximately Sparse Gradients

and Adaptive Sampling, SIOPT, 2022
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StOChaStiC Oth—Order methOdS »Much recent work on variants, 2011—2020

D. Leventhal and A.S. Lewis,

Variants have been investigated for a long time... © Z. Zhang,
Under various names, e.g., “random gradient”, “ © 'S U. Stich, C. Muller, and B. Gartner,
"o b . " Yu. Nesterov, / Yu. Nesterov and V. Spokoiny,

J J * P. Dvurechensky, A. Gasnikov, and A. Tiurin,

 J. Matyas, Random Optimization, Automation & Remote Control, 1965

- M. Gaviano, Some general results on convergence of random search algorithms in ~ - Dvurechensky, A. Gasnikov, and E. Gorbunov,
minimization problems, Towards Global Optimisation, 1975. - 5. Ghadimi and G. Lan.

- F.J. Solis and R. J-B. Wets, Minimization by random search techniques, Math. of * R. Chen and S. Wild,

Operations Research, 1981 (no rate) > K. Choromanski, M. Rowland, V. Sindhwani, R. E. Turner, and A. Weller, S
- B. Polyak 1087

* Yu. Ermoliev and R.J.-B. Wets, Numerical techniques for stochastic optimization,

> T. Salimans, J. Ho, X. Chen, S. Sidor, and |. Sutskever,

Chapter 0, Springer—VerIag, 1988. *J. Duchi, M. Jordan, M. Wainwright, A. Wibisono,
( \ * A.S. Berahas, L. Cao, K. Choromanski, K. Scheinberg,
MOSt |iteratu re fOCUSGS on € =1 " F. Hanzely, K. Mishchenko, P. Richtarik,
* cousin of “direct search” methods, cf. S. Gratton, C. W. Royer, L. N. Vicente, Z. Zhang,
|glle =1
How is q typically chosen? T 1I Since 2020...
J[qq ] — —ddxd ’ |
d D. Kozak, S. B., A. Doostan, and L. Tenorio
_ Spherical (Or Ga USSian, Scaled appropriately) * D. Kozak, C. Molinari, L. Rosasco, L. Tenorio, S. Villa.
or * M. Rando, C. Molinari, L. Rosasco, S. Villa.
- Canonical baSiS VeCtOr, q ~ unlform[e]—? AR ed] * M. Rando, C. Molinaro, S. Villa, L. Rosasco.
- - R. N . P.-L. Poirion, A. Takeda.
(hence SSD reduces to randomized coordinate descent) e e e

\ j " H.Q. Cai, D. McKenzie, W. Yin, Z. Zhang.

(S
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StOChaStiC Oth—Order methOdS Much recent work on variants, 2011—2020

D. Leventhal and A.S. Lewis,
Variants have been investigated for a long time... Z. Zhang,

Under various names, -

: Most work has focused on a single directional derivative, ¢ =1

J. Matyas, Random Qg - ™

—©— Target accuracy 1e-03 100 dimensional quadratic
—*— Target accuracy 1e-04 test problem, using
Target accuracy 1e-05
—¥— Target accuracy 1e-06
—&—Target accuracy 1e-07

————___ |~9—Target accuracy 1e-08
—

u. Nesterov and V. Spokoiny,

o
-
o
o

M. Gaviano, Some ger
minimization problems
F.J. Solis and R. J-B.
Operations Research, |
B. Polyak 1987

Yu. Ermoliev and R.J {

exact linesearch, averaged

Q1

-

-

o
I

over 200 experiments

\

¢ =dis gradient descent,

e
=

chapter 6, Springer-V¢g

fcn evaluations to reach target accuracy
S
o
o

sweet sp(// and non-stochastic
r 3000 . -
Most literature foc
2000 r - Zhang,
- —se —
How is q typicall o
q yp y 1 OOO | I \J | I
0 20 40 60 80 100 o
More iterations, /¢ Fewer iterations,

- spherical (or G but each one costly

each one chea

or .. but the optimal cFl)mice may bel </ < d

- canonical basis vector, ¢ ~ Unitormfery, . . ., €4] M. Rando. C. Molinaro. S. Villa. L. Rosasco,
R. Nozawa, P.-L. Poirion, A. Takeda.

(hence SSD reduces to randomized coordinate descent)
k J H.Q. Cai, D. McKenzie, W. Yin, Z. Zhang.

[
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Our first analysis

~

Gleorem (Kozak, Becker, Tenorio, Doostan '20)
Assume: minimizer attained, gradient Lipschitz, stepsize 1r chosen appropriately.

1. If fis convex, IT

f(xr) — 7 < 2? ER2 = O(k™")

2. If fis not necessarily convex but satisfies the Polyak-Lojasiewicz inequality,

Ef () — < p"(f(mo) = f*) = O(p")

3. If fis strongly convex, statements of 2 above hold, and also

and  f(zr) — f*

T, —> argmin_ f(x)

4. If fis not convex (nor PL),

\/f(mk’)HQ < QQL(JB(ZUO) - f*)

min D

(Generic SSD
Q'Q=1I,y,

k' e{0,....k} — Y/ k-+1

\_

High-dimensional DFO: Stochastic Subspace Descent and improvements

Stephen Becker (CU)

-

d = ambient dimension

¢ = #£ directional derivs

d
7 = 1 is gradient descent

1 is PL constant

L is gradient Lipschitz constant
l1

K”:dL

IS stepsize

J

ICCOPT 2025, USC, Los Angeles
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Our first analysis

Our analysis is comparable to analysis of similar algorithms

Assume f obtains its minimum and V f is L-Lipschitz continuous.

ﬁ[‘heorem 1 (Kozak, Becker, Tenorio, Doostan '19, Thm. 2.4). The SSD algorithm with stepsize

n = %g grves
d L
E — f*<|2-2R?
flaw) = 7 =|257
where SSD
R=  sup _inf lz =27
o|f (@) <f(wo) " Eargminf 1</¢<d

ue.g., f is coercive = R < o0). -

ﬁ‘heorem 2 (Nesterov, Spokoiny ’17, Thm. 8). Take stepsize n = T di L then the random gradient
method with a Gaussian direction converges as

k—1 ]
1 Z Ef(ﬂfz) o f* S 4(d + 4)L ||ZEO B ZU*H2 GaUSSIan
" it : (=1

1s any optimal solution.

*

Kwhe're x

AN

convex, not necessarily strongly convex, scenario
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Our first analysis

Our analysis is comparable to analysis of

similar algorithms

Assume f obtains its minimum, V f is L-Lipschitz continuous, and f is u PL or strongly convex.

ﬁheorem 3 (Kozak, Becker, Tenorio, Doostan 19, Cor. 2.3). The SSD algorithm with stepsize  qgp

\where x* 1s any optimal solution.

n = %2 grves
. ¢ </(<
o E f(z) ~ f* < o (flao) = ) with p=|1-2=] lsf=d
ﬁheorem 4 (Nesterov, Spokoiny 17, Thm. 8). Take stepsize n = 7 di L then the random gradient
method with a Gaussian direction converges as .
E f(zx) — f* < Spbllwo — a2 with p=[1-£__ saussian
g = 2P 70 L8(d+4) /-1

AN

strongly convex or PL scenario

Stephen Becker (CU) High-dimensional DFO: Stochastic Subspace Descent and improvements
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but that theory doesn't capture

0 ————

1 03 . coordinate descent

102_
101

100_
0L == SSD - Haar, /=10

0- — = SSD-CD, £=10

-

Objective Function

0 200 400

Function Evaluations

-

.

Algorithm: “Haar” SSD

Draw the random matrix @) as follows:

{q1,...,q¢} a basis for span{qi,...,q¢}  q; N N(0,T)
(or any uniformly random subspace)

Equivalently, draw from the Haar distribution

the full story

Observation: sometimes SSD (with Haar) drastically

outperforms randomized coordinate descent (CD)

Both of them are valid instantiations of SSD

So, the details of Q matter!

Satisfies

Q'Q=Iixi, E (%QQT> ~ Luxa

but goes even further.

Stephen Becker (CU) High-dimensional DFO: Stochastic Subspace Descent and improvements ICCOPT 2025, USC, Los Angeles
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.. but that theory doesn't capture the full story

SSD drastically outperforms

randomized coordinate descent (CD)

dimension 100

1.00

fixed stepsize

0.75

S

-

0.50

0.25:

S, coordinate descer

e

\~
~§
‘--
—-------_
—

0.00:

————

0 2500 5000 7500 10000

Function Evaluations

Stephen Becker (CU)

1.0

0.8

0.6

0.4

0.2:

fVVe can force it to happen by making a

Nesterov's “worst function in1 the world”
fr’_

1=1
uhis has intrinsic dimension of r

problem with low “intrinsic” dimension, e.g.,

Par(@) = A2 + ) (20 —wig1)” +27)/2 — 11) /4,

~

j

dimension 1,000

coordinate descent

r=20£=3

dimension 10,000

1.0

--=-- @Gradient Descent
—— SSD - Haar
— SSD -CD

new method

\\
—~
~§
~~

—
-
~~-~
——

0

2500 5000 7500 10000

Function Evaluations

High-dimensional DFO: Stochastic Subspace Descent and improvements

0.9

0.8:

0.7

0.6

coordinate descent

0 2500 5000 7500 10000

Function Evaluations
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Improved theory (specialized to SSD-Haar)

Tighter analysis using concentration-of-measure:

-

\-

~

Lemma 2 (Johnson-Lindenstrauss style embedding, from Kozak, Becker, Tenorio 19, Lemma 1).
Ve € (0,1), if £ > €72, Q ~ Haar(d x £), then Y0 # g € R,

d T 112
o d1Q%

— g7

<14+¢€¢ w/ prob. § > 0.8

Stephen Becker (CU)

High-dimensional DFO: Stochastic Subspace Descent and improvements

4 )

d = ambient dimension

Recall..

\€ — # directional derivi

Note: coordinate descent style projections

do not have similar nice embedding properties

ICCOPT 2025, USC, Los Angeles 19



Improved theory (specialized to SSD-Haar)

Tighter analysis using concentration-of-measure:

(
Lemma 2 (Johnson-Lindenstrauss style embedding, from Kozak, Becker, Tenorio 19, Lemma 1).

Ve € (0,1), if £ > €2, Q ~ Haar(d x £), then Y0 # g € R?,
T 112
Q%

e < <14+¢€ w/ prob. 6 > 0.8
\ ( HQHZ

... and putting 1t all together

. 2

Theorem 3 (Kozak, Becker, Tenorio ’19, Thm. 1). If f is strongly convex and V f is Lipschitz
continuous, then for an appropriate stepsize ny, the sequence (xy) generated by SSD (with Q) ~
Haar), for k > 100, satisfies

Flop) = f* < (1+ (1 =)p)*2 (flzo) — f*)  with probability > 0.998,

_ where p < 1 depends on £, d and % Lipscf;}'\f\z and strong convexity parameters. y

\due to possibility of failure of JL

error in JL embedding

Stephen Becker (CU) High-dimensional DFO: Stochastic Subspace Descent and improvements

4 )

d = ambient dimension

Recall..

kﬁ — # directional derivi
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Extension: Variance Reduction
f /Qtrol variate

Algorithm SVRWG: Variance Rédl\lced SSD method, “VRSSD”
1: for k Az/lﬂ,/ ..do

> k is the “epoch”

2: 24 Vf(xg) > Expensive, but not done often
3: wo < Tk
4: fort=1,2,...,7T do > Typically T' = O(d)
5: Draw @) ~ Haar(d x ¢)

: _nl{200T _ 2007 _71) > '
6: Wit1 < Wy — N (EQQ V f(wy) — ag (KQQ I) z) > o, to be estimated

regular SSD term N _

7 Tht1 < WT 7

orthogonal projection
only use control variate in orthogonal subspace

(since we know gradient in main subspace)

Theorem 4 (Kozak, Becker, Tenorio, Doostan 2019; Thm. 2.7). If f is strongly convex and V f is
Lipschitz continuous, then for an appropriate stepsize ny, the sequence (xy) generated by VRSSD
converges almost surely to the (unique) minimizer of f and at a linear rate (the rate depends on n

d .
and ay) A We do not require the ERM structure!
J

\
fulx) ~ fla) - |
‘&enerlc (non-algorithmic) control variates
/control variate, coarse approximation, cheap to evaluate

Algorithm Proposed CoarWel variance reduced SSD/Random-Gradient

1: fork:1,2,...V

2: z < Vf(xr)
3: Draw @Q ~ Haar(d x ¢)

4 Tyl & Tk — Mk (%QQTVf(afk) T ag (%QQTZ B Z))

> Full coarse-grid gradient

@om the literature:
Algorithm SAGA (Defazio, Bach, Lacoste-Julien ’14) for solving the ERM model

1. Vi=1,....N, 20 = z4: store {Vfi(:v(i)) NV | in table
2: for k=1,2,... do

3: Draw j ~ Uniform([1,...,N])

4. Z % Z’fil sz(x(@))

5: Thtl < Tl — 1M (ij(a:k) — ij(a:(j)) + 5)
6 Re-define #1) +— 3, and update table with V f;(z())

> From table

our variant:

Algorithm SAGA-style Variance Reduced SSD method
1: Pre-compute z <— V f(xq)
2: for k=1,2,... do
3: Draw @) ~ Haar(p x r)
£ apn e o - ($QQTV f(wk) — $QQTE + 2)
5: Z4+ 24+ QQY(Vf(xy) —2z) v Update of z is low-memory, unlike original SAGA

Key idea: easy to do orthogonal projection

Stephen Becker (CU)

High-dimensional DFO: Stochastic Subspace Descent and improvements

key: update control variate in the subspace

J
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r=20, =3 Nesterov's “worst function in the world

Extension: stepsize selection ot
Far(@) = M(@] + > (2 — 2i41)” +27)/2 — 1) /4,
uhis has intrinsic dimenZ:)il of r
dimension 100 dimension 1,000 dimension 10,000

coordinate descent

1.00: 1.0 1.0: _
) coordinate descent
N --=-- @Gradient Descent
N | g 0.9
:!)- 0.75 0.8 ——— SSD - Haar
2 0.50; 0.6 55D - CD 0.8: new method
Q
> 4 ‘ S
“= 0.25 0.4 S new method 0.7 e
0.00L. ‘ ~~~~~~ T 0.2 ' _ \-" “““““ : 0.6 ' _ _ ' \\"
0 2500 5000 7500 10000 0 2500 5000 7500 10000 0 2500 5000 7500 10000
Function Evaluations Function Evaluations Function Evaluations

Recall previous example
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Extension: stepsize selection

fixed stepsize

linesearch

1.00:

0.75:

0.50:

0.25;

0.00:

dimension 100

\~§
‘._-
-—----—_--
S—

T————

0O 2500 5000 7500 10000
Function Evaluations

- —
e
-
\ﬁ--\-
—\
-
-~

" -

new method .

T

0 25‘(_)0 5000 75'0(_) 10000
Function Evaluations

r=20, =23

Far(x) = )‘((x%

uhis has intrinsic dimension of r

Gesterov's “worst function in the world”

r—1

Z (CL‘z — il?z'+1)2

1=1

'CE’/Z“)/Q o 561)/4,

dimension 1,000

coordinate descent

1.0:

---=- @Gradient Descent

0.8 —— SSD - Haar
06 —— SSD-CD
0.4 o new method
0.21_ | T =
0 2500 5000 7500 10000

Function Evaluations

-

0 25*(_)0 5000 75’0(_) 10000
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c . . fl\lesterov’s “worst function in the world” \
Extension: stepsize selection R et

Far(@) = M2+ (25— @iq1)” + 27)/2 — 21) /4,

1=1
ths has intrinsic dimension of r J
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o We”t We’'re not the first to try to exploit low-effective dimension...
4(7; 050 (e.g.:
O * D. Golovin, J. Karro, G. Kochanski, C. Lee, X. Song, Q. Zhang. Gradientless descent: highdimensional zeroth-order optimization. ICLR, 2020
S<) * H. Qian, Y. Q. Hu, Y. Yu. Derivative-free optimization of high-dimensional non-convex functions by sequential random embeddings. |JCAI, 2016
o= 025 new method ( * P. Yue, L. Yang, C. Fang, Z. Lin. Zeroth-order optimization with weak dimension dependency. COLT, 2023
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r =20, { =23 ﬁ\lesterov s “worst function in the world

r—1

‘ Working hypothesis: SSD-Haar nicely exploits low-dimensional structure... J
3 . if we have an aggressive stepsize )
1.00; 1
| So the main question is, how to choose the stepsize?
0.50] ! For DFO/0th order methods, line search traditionally considered too expensive :
(perhaps conventional wisdom is wrong) ‘
0.25{ N\ 3 .
0.00L. o We'll provide two proposals: ﬁ
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o : ] o Joint project with Killian Wood,
Stepsize selection: Polyak stepsize Drona Khurana
Golyak stepsize for gradient descent (1983) \
Recently revisited a lot in literature
77Polyak _ f(a?k) _ f* f* — Hldijﬂ f(w) well, to be preCIS;’(waC;uj”}/*
: IV f(zx)]]? e = min : , Tmax
IV f(z)|?

Polyak
\ L+1 = Lk — T Vf(xk) J

cf. John Duchi’s semi-plenary July 22

. . . . 1
Derivation from a model-based view point: ;1 = argmin my(y) - ly — x||?

Yy 277max
Asi & Duchi '19; Loyizou et al. '21; Berrada et al. '19; Davis & Drusvyatskiy '19; Schaipp et al. ‘23

Model Algorithm
mi(y) = f(y) Proximal Point
mi(y) = f(xr) + (Vf(zk), y — xk) Gradient descent, fixed stepsize
my(y) = max{f(xr) + (Vf(zr), vy — ), [} Gradient descent, Polyak stepsize | 9 |
Ea

m}{mear
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Stepsize selection: Polyak stepsize

J

Golyak stepsize for gradient descent (1983) \ rOur extension to SSD case:
Recently revisited a lot in literature
. ] xr) — 1 = min x
nPolyak _ f(mk) o f* f* _ méﬂf(il?) nlEOlyak SSD _ Héfgrvk;(mf])cng fk wé{mk]}—l—cole( )
: IV f (k) |12 :
K wk-|-1 = 1) — nEOlyaka(wk) J K wk_|_1 — xp — 77]1;)01yak_SSDQQva($k)
. . . . 1 9
Derivation from a model-based view point: xp,1 = argmin my(y) 1 5 |y — x|
Yy Thmax
keep the same model.. myg(y) = max{f(xr) + (V[ (L), vy — xr), f2}
. 1 2
.. but change the context: xp11 = argmin mg(y) + —|ly — x|
@E{wk}—l—colQ) 277
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Stepsize selection: Polyak stepsize

Polyak stepsize for gradient descent (1983) Our extension to SSD case:
Recently revisited a lot in literature
* * .
* *x Polyak-SSD f(mk) — Ir = 11111 f(w)
nPolyak - flxw) — f J5 = min f(x) m. " — Qv I;HZ K pe{@p+oolQ
k o 2 L
|V f(xw)]]
- Polyak - Polyak-SSD T
Lk+1 = T — 1) vf(mk) Lp4+1 = L — Ny QA Vf(wk)
Quadratic Rosenbrock Ackley
SSD : — 10° [ — PCD
102 - ms SSD Polyak ] mms SSD Polyak
= d = 100, ¢ =10 ; ¢ =15 1071 15
16727 s .
102
. 10041 NI | Powell Con lIrections %
’_L 10-3: SD P.)iyalK T - |
Q‘ - ? ’;‘ 10-3
= © 10-1 5 e
1074 1074
: Powell's BOBYQA| 10723 ]
| = ssD . i 1075 -
| === SSD Polyak 10-3 ] : ) .
1o-5 { — BoBYOA i Powell Conjugate Directions 1964
i | , -
0 1000 2000 3000 4000 5000 6000 7000 0 2500 5000 7500 10000 12500 15000 17500 10 0 2000 4000 6000 8000 10000 12000
# calls # calls # calls

Works fine in practice, our analysis is ongoing
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Stepsize selection: bifidelity surrogate

KClassic exact linesearch
gr = QQ ' Vf(xy)

*

Kmk—kl =) — N gk

n* = argming(n)  o(n) = f(zr —ngs)

~

/

Expensive ©o(n) = f(xr —ngy)

Inaccurate ™% (

Stephen Becker (CU)

ideally would do line search
on this but too expensive

v

Joint project with Nuojin (Noki) Cheng

(Google)

i : : : low
Premise: suppose we have a cheap, inaccurate approximation [

High-dimensional DFO: Stochastic Subspace Descent and improvements
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Joint project with Nuojin (Noki) Cheng

Stepsize selection: bifidelity surrogate (Google
\ ideally would do line search

C on this but too expensive

gr = QQ "V f(x) /

*

n* = argming(n)  o(n) = f(zr —ngs)

kmk—kl =X — 1 gk j

lassic exact linesearch

i : : : low
Premise: suppose we have a cheap, inaccurate approximation [

data (function evaluations) surrogate model
* L .
Expensive o(n) = flzr —ngy,) {¢(0), p(Nmax) } " = argmin ()
co-kriging (1D) —> (n) > traditional line search
Inaccurate SOIOW(U) def flOW(mk —ng,) {Splovv(ni) ?21 on surrogate model

(computationally “free”)
e.g., calibrate low-fidelity model

Convergence analysis in our preprint “Stochastic Subspace Descent Accelerated via Bi-fidelity Line Search”
arxiv.org/abs/2505.00162, Nuojin Chen, Alireza Doostan, Stephen Becker
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ML bifidelity example 1 Context:

- black-box model

. . ! . low : : :
Premise: suppose we have a cheap, inaccurate approximation [ - high-dimensional, low accuracy

Example: black-box adversarial attack Carlini & Wagner "17, black-box extension Chen et al. 17

For a given sample, find a small perturbation such that the machine learning algorithm misclassifies it

particular training example

(features and true label)

// switching to ML notation!

mein _fcross—elrltropy(g(w]L - 6)7 ny) T THGHQ
« +—

——— encourages small perturbation

\

model output: vector with probability of different classes

yT “panda” noise Y “gibbon’

57.7% confidence 99.3% confidence

Image source: Explaining and Harnessing Adversarial Examples, Goodfellow et al, ICLR 2015
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ML bifidelity example 1 Context;

- black-box model

. . ! . low : : :
Premise: suppose we have a cheap, inaccurate approximation [ - high-dimensional, low accuracy

Example: black-box adversarial attack

For a given sample, find a small perturbation such that the machine learning algorithm misclassifies it

particular training example

(features and true label)

min _fcross—ent1"Opy(g(m]L T E)a yT) T THEHQ

€ .
encourages small perturbation

MNIST is 28 x 28 images so d = 784
model output: vector with probability of different classes

Train two models on MNIST data: (60k training, 10k test)

(f is output of large model, trained conventionally A
convolution (32 filters) -> convolution (64 filters) -> 119x larger
max-pooling/flatten, fully connected (1024 neurons) Large model Small model
-> 10 class output. RelLU activation, 5x5 kernels # arameters 3 274 634 27 562
\_ ) P : : :
~ R Test Accuracy  99.02% 82.21%
£°% is output of small model
trained not on MNIST but on output of large model
(knowledge distillation), 1000 samples In some scenarios, small model
convolution (2 filters) -> max-pooling/flatten, fully connected (16 neurons) IS not just cheap but “free”
\ -> 10 class output. RelLU activation, 2x3 kernels .
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ML bifidelity example 1: Results # HF fun calls: 2000 5000 7000
Test Case 1 AT [RSRT R

CD
FS-SSD
SPSA
GS
HF-SSD
BF-SSD
VR-SSD | SPSA

I" D dient D t
"\ BF-SSD starts at 1000 GD (Gradient Descent)

HF Function value

0 1000 2000 3000 4000 5000 6000 7000
Equivalent HF Function Calls

(d) BF-SSD (Label=5, Predict=6)
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ML bifidelity example 2 Context:

- black-box model

. . ! . low : : :
Premise: suppose we have a cheap, inaccurate approximation [ - high-dimensional, low accuracy

Example: soft prompting black-box LLM
We want to fine-tune a LLM like BERT or GPT

Instead of modifying network, lightweight alternative is to learn embeddings that are prepended to input sequence
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ML bifidelity example 2 Context:

- black-box model

. . ! . low : : :
Premise: suppose we have a cheap, inaccurate approximation [ - high-dimensional, low accuracy

Example: soft prompting black-box LLM
We want to fine-tune a LLM like BERT or GPT

Instead of modifying network, lightweight alternative is to learn embeddings that are

Task: binary sentiment analysis (classify a movie review as positive or negative)

froken : Str — REt*4  tokenizer converts strings of any length to an embedding

Pretrained: REX4 10,1 classifier (we use small Disti1BERT, small version of BERT =784
& 9

transformer

(z,y) € str x {0,1}  data from ac1IMDB database
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ML bifidelity example 2 Context:

- black-box model

. . ! . low : : :
Premise: suppose we have a cheap, inaccurate approximation [ - high-dimensional, low accuracy

Example: soft prompting black-box LLM
We want to fine-tune a LLM like BERT or GPT

Instead of modifying network, lightweight alternative is to learn embeddings that are prepended to input sequence

Task: binary sentiment analysis (classify a movie review as positive or negative)

froken : Str — REt*4  tokenizer converts strings of any length to an embedding

Pretrained: : REt>4 570, 1 classifier (we use small D1st1 IBERT, small version of BERT S
C 9

transformer

(z,y) € str x {0,1}  data from ac1IMDB database

cross-entropy loss

xrcRd

/
[ & € argmin E(s ) [CE(/. (cotfz, froken(2)]). y)])
A

\ risk, replaced by empirical risk for training

< 10
F(2) = 55 3 CB(fuleat(, fuoken(z0)), )
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ML bifidelity example 2 Context:

- black-box model

. . ! . low : : :
Premise: suppose we have a cheap, inaccurate approximation [ - high-dimensional, low accuracy

Example: soft prompting black-box LLM
We want to fine-tune a LLM like BERT or GPT

Instead of modifying network, lightweight alternative is to learn embeddings that are prepended to input sequence

Task: binary sentiment analysis (classify a movie review as positive or negative)
froken : Str — REt*4  tokenizer converts strings of any length to an embedding

Pretrained: < f.: R™*% — [0, 1] classifier (we use small D1st1 1BERT, small version of BERT)

(z,y) € str x {0,1}  data from ac1IMDB database

cross-entropy loss

. /
[ x* € argmin 4:(z,y) [C.E(fc(cat[w, ftoken(z)])v y)])

xrcRd

f uses a sample size of 10  High-Fidelity A

1 : g
f o Uses a sample size of 2 LOW—FIde|Ity \ risk, replaced by empirical risk for training

< 10
F(2) = 55 3 CB(fuleat(, fuoken(z0)), )
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ML bifidelity example 2: Results

6.825 x 1071 -
[O)
E ‘.
cg 6.824 x 1071 -
g Spall's SPSA
o o -1
t; 6.823 x 10 HF-SSD uses
g “perfect” linesearch
"= 6.822x107!-
—
LL
I
~  6.821x 1071 { === GD
é’ s CD
o 6.82 x 10°L - FS-55D BF-SSD
= | s SPSA
o  819%x10°1{ - HF-SSD
L v BF-SSD ¢ = 50

] VR— D
6.818 x 107! - 55
0 200 400 600 800 1000 1200 1400 1600

Equivalent High-Fidelity (HF) function calls
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Bonus ideas

3. Just do a line search!
e.g.. C. Paquette, K. Scheinberg. A Stochastic Line Search Method with Expected Complexity Analysis. SIOPT, 2020.

Probably works great, but we haven't analyzed in our context
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Bonus ideas

3. Just do a line search!
e.g.. C. Paquette, K. Scheinberg.

Probably works great, but we haven't analyzed in our context

4. Barzilai-Borwein stepsize

has been used before in SGD methods, e.g., C. Tan, S. Ma, Y.-H. Dai, Y. Qian. Barzilai-Borwein Step Size for Stochastic
Gradient Descent. NIPS, 2016.

Popular scalar approximation to attempt to solve secant equation Bs =y where s =x;, — xr_1

y=V/flzg) = Vf(xkp-1)
NBB1 = 5]
'y
STy . . .. T
BB2 = TE In a DFO setting, the BB1 stepsize is reasonable: we have s explicitly, and s Yy can be computed

with two directional derivatives

Downside: even in deterministic full-gradient settings, convergence isn't guaranteed
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What's next? Biased sampling

Suppose we have a crude estimate, g, of the gradient

e.g., from past iterations, or low-fidelity model, etc.

™~

try quasi-Newton ideas?
How to exploit this?

we already saw a few ways — here is one more:

1

v = ZZ_lQQTVf(:Bk) and  Tg+1 = T — NV

where each column g of Q is iid g ~ N (0,3)
and £ =021+gg' /gl

N\

Then still unbiased, E|v] = V f(x)

but hopefully much lower variance.

adjust based on our confidence in gradient estimate

inspired by Boullé and Townsend 22

Stephen Becker (CU) High-dimensional DFO: Stochastic Subspace Descent and improvements ICCOPT 2025, USC, Los Angeles



What's next? Biased sampling

Preliminary example on a quadratic function

SSD with exact linesearch, £ = 3, d = 100

- - O I I I I I I I
Suppose we have a crude estimate, g, of the gradient 1074 Hoar 55D, v = 0TV (&), O ~Haar ]
. . . [ — — Weighted Gaussian SSD, v = 5-1QQTV ~N(0,5 =0T +ggT)|]
e.g., from past |ter§@, or low-fidelity model, etc. } clghted fraussian 551, © QQV/(@), @~ NOE=0"+99 )
1L |
try quasi-Newton ideas? 10 t :
How to exploit this? 3
.
we already saw a few ways — here is one more: S 102t Works well for low-accuracy -
ks
8
S10°F :
| T _ 2 :
v = ZZ QQ Vf(xy) and Xpy1 = x| —NU =
D
S 107 F :
where each column g of @ is iid ¢ ~ N(0,X)
and X =02I+gg'/lgl’ 10° -l
“used simplest possible estimate, § = Tx — Tg—1
adjust based on our confidence in gradient estimate . i
10- I I I I I I I I I

0 100 200 300 400 500 600 700 800 900 1000
Then still unbiased, E[v] = V f(xy) terations

but hopefully much lower variance.

works poorly when / is large,

since then Gaussian is inferior to Haar

inspired by Boullé and Townsend ‘22
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What's next? Understand dependence on Hessian eigenvalues

1
Restrict to convex quadratic functions for simplicity, f(x) = §wTHw +c'x

The min and max eigenvalue of H control worst-case behavior (if using fixed stepsize)

.. but the interior eigenvalues play a role with average-case analysis and/or exact line search
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What's next? Understand dependence on Hessian eigenvalues

Restrict to convex quadratic functions for simplicity, f(x) = %wTHm +c'x
The min and max eigenvalue of H control worst-case behavior (if using fixed stepsize) d=100,/ =5
.. but the interior eigenvalues play a role with and/or

Case A: 1 big eigenvalue, the rest small Case B: 1 small eigenvalue, the rest large

(Small “numerical rank”) & = Amax/Amin = 100 (Full “numerical rank”) K = Amax/Amin = 100

I I I 1 OO T T I
: ' — Fcn error, Fixed Stepsize

- = Fcn error, Exact Linesearch

Reference rate 1 - 0.05 -

— Reference rate 1 - 1.06e-03 ]

10_1 :

10_2 _ ‘
_ huge benefit of exact line search, :

107 _
: no benefit to exact line search,

error
error

107 ¢ rate exceeds worst-case prediction 03t rate matches worst-case prediction

— Fcn error, Fixed Stepsize

4 | | i ]
10 7 ¢ - - Fen error, Exact Linesearch ] 104 ;
: Reference rate 1 - 9.91e-04 ] - fixed Stepsize o : |

_ — Reference rate 1 - 3.20e-02 - Z xact line Search I

l l —5 I I I
10
0 500 1000 1500 2000 0 500 1000 1500 2000

iterations iterations
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Conclusion

Stephen Becker (CU)

® Oth order methods have their roles
® stepsize selection (and/or line search) is important

 multi fidelity is useful

Thanks for your attention
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https://stephenbeckr.github.io/papers/#talks

