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There is growing interest in constructing quantum devices that control increasingly large

numbers of quantum systems. There is a tremendous need for methods that can measure the quality

and other properties of these devices. Such measurements often amount to learning the expectation

value of a quantum observable with respect to the quantum state of the device. Learning expectation

values is also a key component in many well-known applications such as quantum machine learning

and quantum optimization algorithms. Because of the large system sizes involved, it is essential

to find methods for learning expectation values that are e!cient with respect to the system size.

Existing methods that have rigorous guarantees and are practical to implement are often not optimal

for observables of interest. Other methods are heuristic, or require the use measurement protocols

that are challenging to implement experimentally with current technology.

In this study, we propose an estimation procedure, The Optimal Observable expectation value

Learner or TOOL, that can learn the expectation values of observables using the outcomes of any

given measurement protocol. We show that there is a seminorm on the set of all observables, which

we call the minimax norm, that characterizes the smallest possible estimation error for learning a

given observable using the outcomes of a given non-adaptive measurement protocol to a specified

confidence level in the worst case over all states. We prove that TOOL is minimax optimal for every

observable by showing that it can achieve an estimation error to within a small constant factor of

the minimax norm.

For many applications, one wishes to learn the expectation value of more than one observable

from the same experiment. A popular method for learning the expectation values of one or many

observables with rigorous guarantees is classical shadows. Classical shadows has near-optimal

performance in the worst case over all observables. We prove that TOOL always performs at least
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as well as classical shadows. Moreover, we show by example that TOOL dramatically outperforms

classical shadows for many observables of interest. This highlights the need to characterize the optimal

performance for the task of simultaneously learning the expectation values of many observables.

Under a mild assumption, we give such a characterization using the minimax norm and prove that

TOOL is nearly minimax optimal for this task.

We also study the applications of TOOL to fidelity estimation. Using experimental data from

a trapped-ion quantum computer, we show that TOOL performs well in practice and matches the

estimates obtained from Maximum Likelihood Estimation (MLE), but with rigorous guarantees

on the estimation error unlike MLE. We also compare TOOL with another popular method called

direct fidelity estimation, which estimates the fidelity by judiciously sampling Pauli observables

and measuring them. We show that there is a di”erent importance sampling scheme for Pauli

measurements for which TOOL performs as well as, or better than, direct fidelity estimation.

Since TOOL constructs an estimator using only the observable, the measurement protocol,

and the confidence level, it provides the flexibility to perform estimation for experiments that have

already been performed and experiments that will be performed in the future. Similarly, since the

minimax norm can be computed beforehand, it can be used to compare the performance of di”erent

measurement protocols and allow minimax optimal design of experiments.
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Chapter 1

Introduction

1.1 Overview and motivation

Quantum information science presents an opportunity to perform tasks that are ine!cient

or sometimes impossible to perform classically. This includes a wide range of tasks, spanning

multiple fields of science such as computation [73, 38], communication [5, 18], metrology [40], and

cryptography [41]. This has engendered a great amount of research and investment into developing

quantum technologies, in particular the development of a general-purpose quantum computer. While

it may take some time to build a large-scale fault-tolerant quantum computer that can outperform

classical computers, we can still benefit from the theoretical and technological advancements that

are achieved on the road to building such a computer.

In order for a quantum protocol to obtain an advantage over a classical protocol, it is

necessary to utilize a resource that is quantum mechanical. For example, using an entangled state,

one can create nonlocal correlations that no classical system can produce [9, 51, 93, 42]. Such

states can be harnessed for tasks like device-independent quantum key distribution [81], quantum

teleportation [10, 80], and quantum metrology [40]. Because real quantum devices are noisy, the

state prepared by the device can be very di”erent from the resource state that was necessary for

implementing the desired quantum information task, which can lead to poor performance or even

failure in implementing the task. This motivates us to learn what quantum state was prepared by

the device. Unfortunately, it turns out that for learning a d-dimensional quantum state to an error

For the most up-to-date version of this thesis, please consult the arXiv or contact the author.
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ε in trace distance with high probability, every procedure needs at least $(d2/ε2) copies of the state

in the worst case [46]. For a system of n qubits, the dimension d = 2n scales exponentially with the

number of qubits. Thus, even the most e!cient quantum tomography procedures [78, 46] become

intractable for large system sizes.

Fortunately, we rarely need the fully reconstructed quantum state in practice. Usually, it

su!ces to learn some properties of the quantum state depending on the application. One such

property, which is focus of our study, is the expectation value of an observable with respect to

the quantum state prepared by the device. We focus on the task of learning the expectation

values of observables because it is an integral component in several applications such as the

characterization of quantum systems [29, 49], entanglement verification using an entanglement

witness [23], quantum optimization algorithms [99, 14], quantum machine learning [13, 86, 105], and

quantum chemistry [19, 7]. Consequently, there is a vast literature on estimation of expectation

values, including both rigorous and heuristic approaches as well as applications to experiments.

We refer the reader to recent review articles [4, 37] on learning properties of quantum systems for

references and details. In our discussion below, we focus on some recent results on the complexity

of estimating expectation values.

There are two steps involved in learning the expectation values of observables: (1) perform

measurements on the quantum state, and (2) process the measurement outcomes to obtain estimates

of the expectation values. See Fig. 1 for a schematic of this process. Since we only need to learn

the expectation value, we can considerably reduce the number of samples required to perform

the estimation to a fixed precision. Indeed, for learning the fidelity with a pure quantum state,

which is a special case of estimating expectation values, Ref. [33, 26] proposed a randomized Pauli

measurement protocol and an estimation procedure that can learn the fidelity to an error ε with high

probability using O(d/ε2) samples in the worst case. Since the dimension d = 2n grows exponentially

with the number of qubits n, this provides an exponential improvement over quantum tomography.

Building on the idea of performing randomized measurements, Ref. [54] proposed the now well-

known technique of classical shadows for simultaneously learning many observables. The classical
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Quantum system

Measurement
Estimation
procedure

Estimate
Figure 1: A schematic of the procedure for learning the expectation value of an observable O, with
respect to the quantum state prepared by the device. Measurements are made on the unknown
state, and the measurement outcomes are processed by an estimation procedure to give an estimate
for the expectation value.

shadows method involves randomly selecting a unitary operator from a fixed ensemble of unitary

operators, rotating the state by the sampled unitary, performing computational basis measurements,

and processing the measurement outcomes to estimate many observables simultaneously. Ref. [54]

showed that there is a norm →·→
shadow

called the shadow norm on the set of observables that depends

on the chosen unitary ensemble, such that O(max1↑i↑R →Oi→2shadow log(R)/ε2) copies are su!cient

to simultaneously learn the expectation values of O1, . . . ,OR. If the unitary ensemble is the set

of all global Cli”ord unitaries, then →O→
shadow

scales as the Hilbert-Schmidt norm of O. On the

other hand, if O is a k-local observable (which is an operator that acts non-trivially on at most k

qubits) and the unitary ensemble is the set of all local Cli”ord unitaries, then →O→
shadow

is bounded

above by 4k times the operator norm of O. In particular, classical shadows can simultaneously
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learn the expectation values of exponentially many low-weight Pauli observables e!ciently using

local measurements. Similar results were obtained by [31, 25, 16, 60] for learning low-weight

Pauli observables or reduced density matrices. This motivated further research on randomized

measurement protocols [30], and several generalization and applications of classical shadows to

di”erent problems of interest[55, 47, 45, 58, 2, 57].

If we wish to learn the expectation value of a weight-n Pauli observable, which is a Pauli

observable that acts non-trivially on n qubits, to an error ε with high probability, classical shadows

requires %(2n/ε2) samples using unitary ensemble of global/local Cli”ord operators. Consequently,

for both global and local random Cli”ord measurements, we need at least $(2n/ε2) samples to

simultaneously learn all the Pauli observables to an error ε using classical shadows. This prompts

the question of whether it is possible to e!ciently learn the expectation values of many observables

simultaneously. The general problem of simultaneously estimating the expectation values of many

observables is called shadow tomography, and was introduced by Aaronson [1]. [1] showed that

performing entangled measurements on Õ((log(R))4 log(d)/ε4) copies of the d-dimensional state are

su!cient to simultaneously learn the expectation values of 0 ↘ O1, . . . ,OR ↘ I to an error ε with

high probability, where by writing Õ we hide additional logarithmic factors log log(R), log log(d),

and log(1/ε). In particular, we can e!ciently learn the expectation values of all 4n Pauli observables

using poly(n) copies of the state. [1] also showed that one needs at least $(min{d2, log(R)}/ε2}

copies of the state to simultaneously learn the expectation values of R observables, in the worst

case over all observables satisfying 0 ↘ O1, . . . ,OR ↘ I. Aaronson’s results have subsequently been

improved and generalized [6, 44, 96].

While the results of [1] are appealing from a theoretical standpoint, performing entangled

measurements on a large number of copies is incredibly challenging with current technological

capabilities. Towards remedying this situation, it was recently shown by [65, 21] that one can

simultaneously learn all n-qubit Pauli observables using Õ(log(d)/ε4) copies of the state, where

entangled measurements are performed only on two copies of the state at a time. This is about as

good as we can do, because it was shown that without using entangled measurements, one needs
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at least $(d/ε2) copies of the state to simultaneously learn all the Pauli observables [56, 20, 21].

This shows that entangled measurements can provide fundamental advantages over performing

unentangled measurements. Another avenue to reduce the number of copies needed for estimation

is by adaptively choosing the next measurement to perform depending on the outcome observed in

the previous experiments. Similar to entangled measurements, adaptive measurements can provide

an advantage over non-adaptive measurements for shadow tomography [22, 95, 103, 28].

While both entangled and adaptive measurements are theoretically appealing, performing

non-adaptive measurements on a single copy of the state at a time remains the most practical

with current technology. Therefore, it is important to know how well one can do for non-adaptive

measurements. Towards this end, [54] proved that one needs at least $(B2 log(R)/ε2) copies of

the state to learn the expectation values of R observables to an error ε with high probability

in the worst case over all observables satisfying max1↑i↑R →Oi→shadow ↘ B (see Thm. 8.2 and

Thm. 8.3 for a precise statement of their result). Later, [69, Thm. (6.3)] derived the lower bound of

$(dmin{d2, log(R)}/(ε2(1 + log(L)/d))) on the number of copies of the state needed for shadow

tomography using L non-adaptive measurements, in the worst case over all observables with a bound

of d/2 on the Hilbert-Schmidt norm.

The lower bounds discussed above are for the worst case over all states (since the estimation

error ε must be valid no matter what state is prepared by the quantum device), and the worst case

over all observables with a fixed bound on a norm. Due to the presence of noise or experimental

imperfections, it can happen that the state prepared by the device is very di”erent from what we

intended to prepare. Since there is no way for us to know what state has been prepared by the

device except by performing measurements on the state, it is reasonable to study the worst-case

performance over all states. This will inform us on how the number of copies required to perform

estimation will scale as a function of the dimension and error, no matter what state is prepared

by the device. In contrast, for most applications in quantum information, the observables whose

expectation values we want to learn are known to us either before or after the measurements are

performed. Therefore, it is important to know what is the optimal performance for learning the
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expectation values of the specific observables we are interested in, and not the worst case over all

observables.

Furthermore, the lower bounds discussed above are derived by allowing a large class of

measurement protocols, such as all non-adaptive measurements. While this is an important question

from a theoretical standpoint, the measurements that achieve the lower bound may be hard to

implement experimentally. For example, global Cli”ord measurements achieve the worst-case lower

bound of [54], but they are challenging to implement for large system sizes with current technology.

In practice, the measurements that are implementable/implemented in an experiment depend

on several factors such as the observables of interest, the architecture of the quantum computer,

current technological limitations, and noise. Hence, it is useful to know how well one can learn

the expectation value of a given observable using the outcomes of a measurement protocol that is

implementable in an experiment.

We are, therefore, motivated to answer the following basic problem.

Learning Quantum Expectations (LQE):

(1) Given an observable O and a measurement protocol M, what is the smallest possible error

(over all estimation procedures) for learning the expectation value of O using the outcomes

of M with probability greater than 1↗ ω for all states?

(2) Is there a constructive estimation procedure that can achieve this estimation error to within

a constant factor?

LQE asks for a quantification of the “optimal performance” as a function of O, M, and ω, in the

worst case over all states. Observe that we quantify the performance in terms of the estimation

error instead of the number of copies of the state. This is necessary because LQE allows one to

specify an arbitrary measurement protocol as an input, and as a result, the number of copies of the

state used for estimation is fixed by M. That said, for many measurement protocols of interest, one

can translate between the “smallest estimation error for a fixed number of copies of the state” and

the “minimum number of copies of the state needed for a fixed error”.
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Finding answers to LQE is also helpful from a theoretical standpoint, because we can study

the performance for other cases of interest. For example, if we know the optimal performance for

every observable, we can compute or bound the optimal performance of simultaneously learning

many observables. Similarly, if we know the optimal performance for every measurement protocol,

we can compute or bound the optimal performance when allowing one to implement a measurement

protocol from a given set of measurement protocols.

1.2 Summary of the main results

In this section, we summarize the main results of our study. We begin by providing an answer

to LQE for non-adaptive measurements. By a (non-adaptive) measurement protocol, we mean a

list of positive operator-valued measures (POVMs), along with the number of times each POVM is

repeated (see Def. 2.1). We show in Thm. 7.13 that for each measurement protocol M and each

confidence level 1↗ ω ↑ (0.75, 1), there is a seminorm →·→M,ω
on the set of observables, such that for

every observable O, →O→M,ω
gives the optimal estimation error for learning the expectation value of

O to within a factor of 1/c(ω). The constant c(ω) is defined in Eq. (7.32). For confidence levels

greater than or equal to 95%, we have 1/c(ω) < 5, and therefore, Thm. 7.13 gives a fairly tight

bound on the optimal estimation error.

The precise definition of the seminorm →·→M,ω
is given in Def. 7.1. Intuitively, →O→M,ω

measures

how far apart the expectation value of O can be with respect to states that are “close enough”. Since

we only have access to the states through the measurements we perform, we measure the distance

between two states through the distance between the probability distributions over measurement

outcomes determined by the states. It turns out that the “correct” distance measure to look at is

the average Bhattacharyya distance determined by M (Def. 3.4). How close the states need to be

depends on the chosen confidence level ω and the total number of samples used by M.

The reason →·→M,ω
is not a norm, and only a seminorm, is that for learning the expectation

value of an observable ϑI that is a multiple of the identity, the optimal estimation error is zero.

This is because the expectation value of ϑI with respect to every state is equal to ϑ, and therefore
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there is nothing to learn. We show that if we “mod out” all the multiples of identity from the set

of all observables, then →·→M,ω
defines a norm (Prop. 7.2). For this reason, we refer to →·→M,ω

as

the minimax norm, where “minimax” alludes to the fact that →·→M,ω
characterizes the best (“min”)

performance in the worst case (“max”) over all states.

The minimax norm satisfies several desirable properties. Importantly, it can be calculated by

convex optimization (Prop. 7.5.3). It is invariant under measurement symmetries (Prop. 7.8.4), and

satisfies the data-processing inequality (Prop. 7.9). A more comprehensive list of properties of the

minimax norm, including a geometric interpretation, can be found in Sec. 7.1.

The other important aspect of Thm. 7.13 is that there is a constructive estimation procedure,

which we call The Optimal Observable expectation value Learner or TOOL, that can achieve an

estimator error to a small constant factor of →O→M,ω
. Given O, M, and 1 ↗ ω as inputs, TOOL

constructs an estimator for the expectation value of O using convex optimization (see Box 3). The

estimator so constructed is an a!ne function of the observed frequencies (Prop. 5.12), and can

e!ciently compute estimates from the data as a result. Since the construction procedure itself does

not depend on the experimental data, the estimator can be constructed either before or after the

measurements are performed. This gives us the flexibility to perform estimation for experiments

that will take place in the future, as well as those that have already been completed.

TOOL was introduced in [91, 92] in the context of fidelity estimation, and is obtained by

adapting results from statistics [62, 43, 61] to the problem of learning expectation values of

observables. For the general statistical problem studied by Juditsky & Nemirovski [62], we present

a simplified, less computationally intensive procedure to construct an estimator (Box 2). The

estimator we construct satisfies all the guarantees of [62] (Thm. 4.14), and is more amenable to

theoretical analysis. Additional results on the estimation procedure and estimation error for the

general statistical problem can be found in Sec. 4.3.

We study the application of TOOL to fidelity estimation in Ch. 6. Since the fidelity with a pure

state is equal to the expectation value of the projector onto that pure state, fidelity estimation (for

a pure target state) is a special case of estimating expectation values. We find that TOOL performs
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well on experimental data obtained from a trapped-ion quantum computer. The estimates computed

using TOOL agree well with maximum likelihood estimation (MLE) [53]. On the other hand, through

numerical simulations, we show that using (a variant of) bootstrap confidence intervals for MLE

can sometimes give erroneous results, unlike TOOL which is guaranteed to be correct. We also

compare TOOL with direct fidelity estimation (DFE) [33, 26]. We use a slightly di”erent importance

sampling scheme for Pauli measurements, and show that for this sampling scheme, TOOL gives the

same or better sample complexity than DFE depending on the target state.

Since the minimax norm characterizes the optimal performance for every observable and every

measurement protocol, and TOOL achieves an estimation error to within a small constant factor

of the minimax norm, we can bound the minimax norm to understand how well one can do for

di”erent problems of interest. A lower bound on the minimax norm will give us a limit on how well

every estimation procedure can do, whereas an upper bound will show that TOOL can achieve that

error to within a constant factor. We use this strategy to answer a few questions of interest.

We begin with the following question: what is the minimum number of samples needed to

learn the expectation value of O? Is there a measurement protocol that achieves this lower bound on

the number of samples? The answer to these questions is what one intuitively expects – measuring

in the eigenbasis of the observables O gives the optimal performance. In Thm. 7.15, we derive a

lower bound on the number of samples, and in Prop. 7.16, we show that measuring in the eigenbasis

is su!cient to achieve this lower bound to within a constant factor.

Next, we fix the measurement protocol M, and ask what are the observables whose expectation

value we can learn to within an arbitrarily small error using outcomes of M. The answer to this

question is also intuitive and familiar to many – we can only learn the expectation values of those

observables that are in the linear span of the POVMs in M. In Prop. 8.12, we give an explicit lower

bound on the estimation error for observables that lie outside the linear span of M.

Next, we study focus on randomized measurement protocols, which have received much

attention in the recent literature [30]. All randomized measurements can be expressed using a single

e”ective POVM, as explained in Sec. 2.2. Therefore, it su!ces to study measurement protocols
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where a single POVM is measured many times. Classical shadows, while originally proposed for

U-random unitary measurements for unitaries sampled from the set U, were later generalized to all

informationally complete POVMs [2, 57]. This includes, for example, single-setting measurements

such as SIC-POVMs [83]. The definition of shadow norm for informationally complete POVMs is

given in Def. 8.4. Since TOOL is optimal for every observable and every measurement protocol, it

must, in particular, match the performance of classical shadows. We explicitly show in Cor. 8.6 that

TOOL performs at least as well as classical shadows for learning the expectation value of one or

many observables.

Since the classical shadows protocol is optimal in the worst case over observables with a fixed

bound on the shadow norm [54], there is some observable satisfying this bound on the shadow

norm for which no estimation procedure can do better than classical shadows. On the other hand,

TOOL is optimal for every observable. Therefore, we can ask the question if there are observables

for which TOOL performs better than classical shadows. For answering this question, we focus on

local non-adaptive measurements on a system of n qubits, as they are one of the easiest types of

measurement one can perform in an experiment. By local measurements, we mean that each qubit

is measured separately. For local non-adaptive measurements, [54] showed that $(3kB2 log(R)/ε2)

measurements are necessary to simultaneously learn the expectation values of R k-local observables,

in the worst case over all k-local observables whose operator norm is bounded above by B (see

Thm. 8.3 for a precise statement of their result). [54] also showed that by choosing the unitary

ensemble U = Cl↓n

1
to be the set of local Cli”ord unitaries on n qubits, classical shadows can

simultaneously estimate the expectation values R k-local observables to an error of ε using at most

O(4kB2 log(R)/ε2) samples. For this reason, we focus on the case where U is the set of local Cli”ord

unitaries. Since performing a U-random unitary measurement is equivalent to uniformly sampling a

weight-n Pauli operator and measuring in its eigenbasis, we refer to such measurements as uniformly

random Pauli measurements. For uniformly random Pauli measurements, we prove in Cor. 8.8

that there are many observables of interest for which TOOL can perform exponentially better than

classical shadows. This result also holds for learning the expectation values of many observables
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simultaneously. Thus, TOOL can perform exponentially better than both classical shadows as well

as the worst-case lower bound of $(3k log(R)/ε2) for local non-adaptive measurements obtained

by [54].

A frequently mentioned feature of classical shadows is that one can choose the observables whose

expectation values we wish to estimate after performing the measurements. An important aspect to

note here is that while the observables can depend on the measurement protocol (i.e., the U-random

unitary measurement that was performed), they must not depend on the measurement data. We

remark that this feature is not unique to classical shadows or U-random unitary measurements, and is

a common property of many statistical procedures. For example, one can perform tomography using

any informationally complete measurement, and store a classical description of the reconstructed

state for future use. One can later choose the observables (independent of the observed data)

whose expectation values needs to be estimated, and estimate the expectation values of these

observables using the reconstructed state. TOOL shares the same feature, and works much better

than tomography for estimating expectation values. One can implement an arbitrary measurement

protocol in an experiment, and store the measurement outcomes for future use. The observables can

be chosen later (independent of the observed outcomes), and TOOL can give optimal performance

for all the chosen observables. This contrasts with classical shadows that can be far from optimal

for many observables.

Because classical shadows and the worst-case lower bounds derived in [54] can give sub-

optimal results for many observables, we are motivated to derive bounds on the optimal performance

of shadow tomography using non-adaptive measurements. First, we note that every estimation

procedure that can learn the expectation values of any given observable, and in particular TOOL,

can be extended to simultaneously learn the expectation values of many observables following the

strategy in Box 7. Box 7 is a simple application of the union bound, and many estimation protocols

used in quantum information (such as classical shadows) use such a strategy to simultaneously

learn the expectation values of many observables. We show in Prop. 7.18 that for estimation

procedures that simultaneously learn the expectation values of the observables O1, . . . ,OR using the
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outcomes of a given measurement protocol M to a confidence level of 1↗ ω ↑ (0.5, 1) using the union

bound, maxi →Oi→M,ω/R
characterizes the optimal estimation error. Furthermore, TOOL achieves

this estimation error to within a factor of 1/c(ω), showing that TOOL is also minimax optimal

for shadow tomography amongst estimation procedures that use the union bound (Prop. 7.17).

Similarly, we characterize the optimal estimation error for simultaneously learning the expectation

values of many observables by allowing one to implement a measurement protocol from a given set

of measurement protocols in Prop. 7.19.

Since the minimax norm can be used to characterize the optimal estimation error for learning

one or many observables for any given measurement protocol, it can be used to compare the perfor-

mance of di”erent measurement protocols. One can also use the minimax norm to perform minimax

optimal experimental design, by optimizing the minimax norm over a given set of measurement

protocols.

The main drawback of TOOL is the computational complexity for constructing the estimator

and computing the minimax norm (estimation error). If M denotes the total number of POVM

elements in the measurement protocol and d denotes the system dimension, then in the worst case

scenario, our implementation of TOOL given in Sec. 5.4 needs O(Md2) +O(d3) time and O(Md2)

memory to perform the optimization to construct the estimator and compute the minimax norm

for a single observable. Once the estimator is constructed, the estimator can compute estimates

from N measurement outcomes in O(N) time. Since the estimator can be reused as many times as

necessary (for a given O, M, and 1↗ ω), the costly computation only needs to be performed once.

While the worst-case computational complexity of TOOL is bad, it is possible to improve the

computational complexity for special cases of interest. For example, for fidelity estimation, there is

a 2-outcome POVM (which models a large class of measurement protocols), for which TOOL can

construct the estimator and compute the minimax norm in O(1) time and memory, independent

of the system dimension (see Prop. 6.1). We leave the problem of devising e!cient algorithms for

constructing the estimator using TOOL for other cases of interest as a problem for future research.

On the other hand, the worst-case computational complexity of classical shadows for a single
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observable is O(Nd2) time and O(Nd2) memory, since the d≃ d observable as well as the shadows

need to be stored and expectation values need to be computed. If we focus on the unitary ensembles

of global or local Cli”ord unitaries, then the memory can be reduced to O(d2) instead of O(Nd2)

since the shadows are stabilizer states and can be stored e!ciently, and only the observable needs

to be stored. The time complexity remains O(Nd2) in this case because the observable whose

expectation values needs to be estimated may not have any classically e!cient description. However,

when the observable can be written as a linear combination of polynomially many (in the number of

qubits) projectors onto stabilizer states, classical shadows can be implemented in O(N polylog(d))

time and memory.

We present a brief comparison of TOOL and classical shadows in Tab. 1.

TOOL Classical shadows [54]

Optimal for every observable ! "

Optimal for shadow tomography !
a

"

Optimal for every measurement
protocol

! "

Estimation error ⇐ →·→M,ω
⇐ →·→

shadow

√
log(2/ω)

N

b

Worst-case computational complexity O(Md2) +O(d3) once,
O(N) afterwards

O(Nd2)

a
Optimal amongst estimation protocols that use union bound to simultaneously learn in l→-norm

b
For N repetitions of an informationally complete POVM

Table 1: A brief comparison of TOOL and classical shadows. M denotes the total number of POVM
elements, d denotes the system dimension, and N denotes the number of samples. By optimal, we
mean minimax optimal in the worst case over all states.
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Chapter 2

Preliminaries

In this chapter, we review some definitions, concepts, and results that are used in this thesis.

We also introduce some notation that is used throughout this thesis.

Sets are denoted by the calligraphic upper case letters such as X,Y,Z. Random variables

are denoted by upper case roman letters such as X,Y,Z, while lower case letters such as x, y, z

denote the values taken by random variables. Linear and a!ne maps are also denoted by upper case

roman letters such as L and A. The set of natural numbers (excluding zero) is denoted by N. The

set of real numbers is denoted by R, while the set of non-negative real numbers is denoted by R+.

The set of extended real-valued numbers is denoted by R = R⇒ {±⇑}. The set of complex numbers

is denoted by C. Given a complex number z ↑ C, we denote z↔ to be its complex conjugate. All the

logarithms appearing in study are with respect to base e unless specified otherwise. For any M ↑ N,

we denote [M ] = {1, . . . ,M}. The Kronecker delta function is defined as ωij = 1 if i = j and 0

if i ⇓= j. Given some statement P on a set $, we denote {P} = {ϖ ↑ $ | P (ϖ) is true} to be the

set of elements of $ where the statement P holds. For example, if f is a real-valued function on

$ and a ↑ R is some number, we write {f ↘ a} = {ϖ ↑ $ | f(ϖ) ↘ a}. We denote an indexed

family as {Oi}i↗I or (Oi)i↗I, where the elements/objects Oi (which could be vectors, matrices,

etc.) are indexed by elements of a set I. Formally, an indexed family is a function from I to the set

{Oi | i ↑ I}. Indexed families help to keep track of the order of elements (when I is ordered) and

allow for repetitions of elements, in contrast with sets which are unordered and contain no repeated

elements. Next, we define the asymptotic order notation. Let f, g be non-negative functions on

�����������������������
�����	����������������
����������




15

X1 ≃ · · ·≃XN , where for all i ↑ [N ], Xi is either N or (0,⇑). We say f = O(g) if there are positive

numbers B and C such that mini xi ⇔ B implies f(x1, . . . , xN ) ↘ Cg(x1, . . . , xN ). We say f = $(g)

if there are positive numbers B and C such that mini xi ⇔ B implies f(x1, . . . , xN ) ⇔ Cg(x1, . . . , xN ).

We say f = %(g) if f = O(g) and f = $(g). Our definitions concerns the asymptotic behavior of f

and g as all the parameters are approaching infinity, and this may di”er from the definitions in the

literature for the order notation for multi-parameter functions. Finally, we note that we use the

abbreviation “i”” to mean “if and only if”.

2.1 Linear algebra

We call a vector space over R a real vector space and a vector space over C a complex vector

space. In the following discussion, K is either R or C. An inner product on a vector space V

over K is a function ↔·, ·↓ : V ≃ V ↖ K such that ↔u, v + w↓ = ↔u, v↓ + ↔u,w↓, ↔u,ϑv↓ = ϑ ↔u, v↓,

and ↔u, v↓↔ = ↔v, w↓ for all u, v, w ↑ V and ϑ ↑ K. When convenient (e.g., when working with pure

quantum states), we will use the Dirac notation: vectors are denoted by |ϱ↓, and inner product

between |ς↓ and |ϱ↓ is denoted by ↔ς|ϱ↓. A vector space equipped with an inner product is called

an inner product space.

Given a subset U ↙ V, the span of U is spanU = {
∑

n

i=1
ϑiui | (∝n ↑ N)(∝i ↑ [n])ϑi ↑

K, ui ↑ U}. A (Hamel) basis B of V is a minimal spanning set (i.e., spanB = V and for any

B→ ⊋ B, spanB→ ⊋ V). The number of basis vectors is called the dimension of V, denoted by

dimV = |B|. It can be shown that the dimension is independent of the choice of basis. V is

said to be finite-dimensional if dimV < ⇑. All vector spaces in this study are assumed to be

finite dimensional, unless stated otherwise. Any vector v ↑ B can be written as a unique linear

combination of basis vectors. A collection of vectors v1, . . . , vn are said to be linearly independent if

∑
n

i=1
ϑivi = 0 implies ϑi = 0 for all i ↑ [n]. It can be verified that a basis B is a maximal linearly

independent set (i.e., every set strictly containing B is linearly dependent). Given an n-dimensional

inner product space V, an orthonormal basis of V is a collection of n vectors B = {e1, . . . , en}

that satisfies ↔ei, ej↓ = ωij for all i, j ↑ [n]. It can be verified that any set of n vectors satisfying
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this property form a basis. Since B is a basis, there are unique numbers v1, . . . , vn ↑ K such that

v =
∑

n

i=1
viei. The number vi is said to be the ith component of v with respect to the basis {ei}ni=1

,

and we write v = (v1, . . . , vn) when the basis is understood. We use the same terminology even if

B is not orthonormal.

Given two vector spaces V and W over K, their direct sum V′W is a vector space of tuples

(v, w) with v ↑ V and w ↑ W, with addition and scalar multiplication defined component-wise.

Inner products on V and W induce an inner product on V′W as ↔(v, w), (v→, w→)↓ = ↔v, v→↓+↔w,w→↓

for v, v→ ↑ V and w,w→ ↑ W. The tensor product of V and W is denoted by V ∞ W. The

technical definition of a tensor product is not needed for this study, and we refer the interested

reader to [11, Sec. (I.4)] for details. In practice, it su!ces to look at Kronecker products as they

give a concrete way to compute the tensor product of two finite-dimensional vectors. If {e1, . . . , en}

is a basis of V and {f1, . . . , fm} is a basis of W, then {ei ∞ fj | i ↑ [n], j ↑ [m]} is a basis for

V ∞W. We define the components of vectors in V ∞W with respect to this basis as follows. If

v ↑ V and w ↑ W, then (v ∞ w)ij = viwj are the components of v ∞ w for i ↑ [n] and j ↑ [m].

Inner products on V and W induce an inner product on V∞W as ↔v ∞ w, v→ ∞ w→↓ = ↔v, v→↓ ↔w,w→↓

for v, v→ ↑ V and w,w→ ↑ W. A linear subspace U of a vector space V is a subset of V that

satisfies u+ ϑv ↑ U for all u, v ↑ U and all ϑ ↑ K. It follows that U is itself a vector space under

the addition and scalar multiplication inherited from V. Given a subspace U ↙ V, the quotient

space V/U consists of elements (called cosets) [v] = {v + u | u ↑ U} for v ↑ V, with addition

defined as [v1] + [v2] = [v1+ v2] and scalar multiplication defined as ϑ[v] = [ϑv] for v1, v2, v ↑ V and

ϑ ↑ K. It can be verified that the quotient space is itself a linear vector space under the addition and

scalar multiplication defined above. Given any subset U ↙ V, the orthogonal complement of U

is defined as U↘ = {v ↑ V | ↔u, v↓ = 0 ∝u ↑ U}. If U is a subspace, then U↘ is also a subspace,

and we have V = U +U↘, where A +B = {a+ b | a ↑ A, b ↑ B} is the Minkowski sum of the

sets A,B ↙ V.

A linear map L betwen two vector spaces V and W is a function L: V ↖ W that satisfies

L(u+ v) = L(u) + L(v) and L(ϑv) = ϑL(v) for all u, v ↑ V and ϑ ↑ K. We will denote L(v) as Lv
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when no confusion arises. The adjoint of a linear map L is a function L† : W ↖ V that satisfies

↔w,Lv↓ =
〈
L†w, v

〉
for all v ↑ V and w ↑ W. A linear map L: V ↖ V is said to be Hermitian

or self-adjoint if L† = L. If V has dimension n and W has dimension m, then L can be written

as an m ≃ n matrix by choosing a basis for V and W. When no confusion arises, we will use

the same notation L for the linear map as well as the matrix. In terms of matrices, L† = (L↔)T

is the conjugate transpose of L. A linear map L: V ↖ V is positive semidefinite (PSD) if

↔v,Lv↓ ⇔ 0 for all v ↑ V. For K = C, it can be shown that a PSD map is necessarily Hermitian [24,

Prop. (2.12)]. The kernel of a linear map L is ker(L) = {v ↑ V | Lv = 0}. The kernel is always a

linear subspace of V. The range of a linear map is range(L) = {Lv | v ↑ V}. The image is always

a linear subspace of W. The identity map is a linear map IV : V ↖ V defined as IV(v) = v for

all v ↑ V. When V is clear from the context, we denote IV as I. A linear map L is said to be

an isomorphism if it is bijective. All isomorphisms are invertible, that is, there is a linear map

L≃1 : W ↖ V such that L≃1 ∈L = IV and L ∈L≃1 = IW. A linear map L between two inner product

spaces is said to be an isometry if it preserves inner products (↔Lu,Lv↓ = ↔u, v↓ for all u, v ↑ W).

A linear map U: V ↖ V is said to be unitary if it an isometric isomorphism. This can be shown

to be equivalent to the condition U†U = UU† = I. Consequently, we have U≃1 = U †. Given two

linear maps L(1) : V(1) ↖ W(1) and L(2) : V(2) ↖ W(2), their direct sum L = L(1)′L(2) is the linear

map L: (V(1)′V(2)) ↖ (W(1)′W(2)) defined as L((v(1), v(2))) = (L(1)(v(1)),L(2)(v(2))). In matrix

form, we can write L as the block matrix

L =





L(1) 0

0 L(2)




, (2.1)

where 0 is a matrix of zeros of appropriate size.

A linear functional on a vector space V over K is a linear map L: V ↖ K. Given a vector

space V, the dual space V↔ is the set of all linear functions on V. The Riesz representation theorem
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ensures that for every v ↑ V, there is a unique linear functional Lv ↑ V↔ such that Lv(w) = ↔v, u↓

for all u ↑ V [24, Thm. (3.4)]. In Dirac notation, we write |v↓ for elements of V and ↔v| elements

of V↔. If we write |v↓ as a column vector, ↔v| is the row vector obtained by taking the conjugate

transpose of |v↓. Given v ↑ V and w ↑ W, we will denote |w↓ ↔v| : V ↖ W to be the linear

map |w↓ ↔v| (u) = ↔v, u↓w for u ↑ V. This works particularly well with the Dirac notation, where

|w↓ ↔v| |u↓ = ↔v|u↓ |w↓.

A seminorm on a vector spaceV is a function →·→ : V ↖ R that is (1) absolutely homogeneous

(→ϑv→ = |ϑ| →v→ for all ϑ ↑ K, v ↑ V), and (2) satisfies the triangle inequality (→u+ v→ ↘ →u→+ →v→).

The above properties imply that →0→ = 0 and →v→ ⇔ 0 for all v ↑ V. A norm is a seminorm that

satisfies →v→ = 0 if and only if v = 0. A norm induces a metric on V according to d(u, v) = →u↗ v→.

Every inner product induces a norm according to →v→ =
√
↔v, v↓. Note, however, that there are

norms that are not induced by an inner product.

A Hilbert space H over K is a complete inner product space. Recall that H is said to be

complete if every Cauchy sequence with respect to the norm induced by the inner product converges

to a point in H. All finite-dimensional inner product spaces are complete, and therefore, Hilbert

spaces. Thus, we will use the terminology Hilbert space for an inner product space in this study.

The set of n-dimensional vectors with entries from K is denoted by K
n, while the set of m≃ n

matrices with entries from K is denoted by K
m⇐n. The set of n≃n complex, self-adjoint (Hermitian)

matrices is denoted by Sn. It can be verified that Sn is a real vector space of dimension n2. Every

matrix A ↑ Sn has a spectral decomposition, i.e., we can write A =
∑

n

i=1
φi |φi↓ ↔φi|, where

φ1, . . . ,φn ↑ R are called the eigenvalues of A and |φ1↓ , . . . , |φn↓ are the corresponding eigenvectors

(not necessarily unique). The normalized eigenvectors of an n ≃ n Hermitian matrix form an

orthonormal basis for C
n. For any matrix A ↑ Sn, we denote φ(A) = (φ1(A), . . . ,φn(A)) to be the

vector of eigenvalues of A. Furthermore, we denote φmax(A) and φmin(A) to be the maximum and

minimum eigenvalues of A, respectively. Given a Hermitian matrix A ↑ Sn, we define its support

as the span of eigenvectors corresponding to non-zero eigenvalues. Equivalently, the support of A is

the orthogonal complement of the kernel of A. The singular values of A ↑ K
m⇐n are the eigenvalues
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of
∋
A†A, where we note that A†A is Hermitian for any (possibly rectangular) matrix A. It can be

verified that if A is a Hermitian matrix, then the singular values of A are just the absolute values of

the eigenvalues of A. For any matrix A ↑ K
m⇐n, we denote ↼(A) = (↼1(A), . . . ,↼n(A)) to be the

vector of singular values of A. We denote ↼max(A) and ↼min(A) to be the maximum and minimum

singular values of A, respectively.

Given any Hermitian matrix A and a function f : R ↖ R, we define f(A) =
∑

n

i=1
f(φi) |φi↓ ↔φi|.

The domain of the function f can be restricted to a subset of the real line depending on the scenario.

For example, we can define the square-root of a PSD matrix A ↑ Sn as
∋
A =

∑
n

i=1

∋
φi |φi↓ ↔φi|.

The trace of a matrix A ↑ K
n⇐n is defined as Tr(A) =

∑
n

i=1
↔ei, Aei↓, where {e1, . . . , en} is an

orthonormal basis of K
d. It can be verified that trace is the same irrespective of the choice of

orthonormal basis, and we have Tr(A) =
∑

n

i=1
φi. The rank of A ↑ K

m⇐n is the dimension of

range(A). It can be verified that rank 1 matrices can be written as |w↓ ↔v| for some v ↑ K
n and

w ↑ K
m. We say A ↑ K

n⇐n is full rank if its rank is equal to n. It can be verified that full rank

matrices are invertible.

The Euclidean or standard inner product on K
n is defined as ↔u, v↓ = u†v =

∑
n

i=1
u↔
i
vi, where

u = (u1, . . . , un), v = (v1, . . . , vn) ↑ K
n with respect to some fixed orthonormal basis. The Euclidean

norm on K
n is defined as →v→

2
=

√
↔v, v↓ =

∋
v†v. More generally, for p ↑ [1,⇑), the p-norm on

K
n is defined as →v→

p
= (

∑
n

i=1
|vi|p)1/p, whereas →v→⇒ = maxi↗[n] |vi|. Hölder’s inequality states

that | ↔u, v↓ | ↘ →u→
p
→v→

q
for any p, q ↑ [1,⇑] satisfying 1/p+ 1/q = 1. For the case of p = q = 2,

we obtain the Cauchy-Schwarz inequality | ↔u, v↓ | ↘ →u→
2
→v→

2
.

The Hilbert-Schmidt (HS) inner product on K
n⇐n is defined as ↔A,B↓ = Tr(A†B) =

∑
n

i,j=1
A↔

ij
Bij , where A = (Aij) and B = (Bij) with respect to some fixed orthonormal basis of K

n.

The Hilbert-Schmidt or Frobenius norm on K
n⇐n is defined as →A→

HS
=

√
Tr(A†A). The Schatten

p-norm on K
n⇐n is defined to be →A→

p
= →↼(A)→

p
, where p ↑ [1,⇑] and ↼(A) = (↼1, . . . ,↼n)

denotes the vector of singular values of A. If A is Hermitian, it holds that →A→
p
= →φ(A)→

p
,

where φ(A) = (φ1, . . . ,φn) denote the vector of eigenvalues of A. The Schatten-2 norm is just the

Hilbert-Schmidt norm. Of particular interest is the Schatten-1 norm, also called the trace norm,
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which can be written as →A→
1
= Tr

∋
A†A. Also, the Schatten-⇑ norm coincides with the oper-

ator norm or the spectral norm of A, which is given as →A→⇒ = max⇑v⇑2↑1 →Av→2 = ↼max(A).

All Schatten-p norms are unitarily invariant, i.e.,
∥∥UAU †∥∥

p
= →A→

p
for all unitaries U . For

matrices, we can derive a Hölder’s inequality for Schatten norms. If A,B ↑ K
n⇐n, we have

|Tr(A†B)| ↘ ↔↼(A),↼(B)↓ ↘ →↼(A)→
p
→↼(B)→

q
= →A→

p
→B→

q
for any p, q ↑ [1,⇑] satisfying

1/p + 1/q = 1. The first inequality is a consequence of von Neumann’s trace inequality [72]

and the fact that ↼(A†) = ↼(A), while the second inequality is the usual Hölder’s inequality.

Finally, we make a remark on notation involving inequalities involving vectors and matrices.

For a vector x ↑ R
n, inequalities such as x ⇔ 0 are interpreted component-wise. For matrices

A,B ↑ Sn, the inequality A ⇔ B means A↗B is positive semidefinite. It can be verified that these

definitions define a partial order on R
n and Sn, respectively.

2.2 Quantum states and measurements

In this section, we review some basic definitions and results in quantum information that

are used in our study. We refer the reader to [77] for a comprehensive introduction to quantum

information theory.

A d-dimensional quantum state ↼ ↑ C
d⇐d is a Hermitian, positive semi-definite matrix with

trace 1. A quantum state is said to be pure if it is rank 1. Equivalently, ↽ ↑ C
d⇐d is pure if there

is a vector |ϱ↓ ↑ C
d such that ↽ = |ϱ↓ ↔ϱ|. An observable is mathematically a Hermitian matrix.

Depending on the situation, an observable can describe some physical property of the system such

as energy. Given an observable O ↑ C
d⇐d, its expectation value with respect to the state ↽ is

defined as ↔O↓ = Tr(O↽).

In practice, we do not know the underlying state ↽. Instead, we typically have access to

outcomes obtained by measuring the state ↽. Our goal in this study is to learn or verify properties

of ↽ using these measurement outcomes. By a property of a state, we mean any function of the

state, as for example the expectation value of an observable.

To obtain a measurement outcome, we need to measure the quantum state according to
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a chosen measurement procedure defined by a measurement setting. A measurement setting is

described mathematically by a positive operator-valued measure (POVM), which is an

indexed family of positive semi-definite operators E = {Ei}Mi=1
that sum to identity. We call an

element m ↑ [M ] a label corresponding to the POVM element Em that can be observed upon a

measurement. Here, M denotes the total number of labels for the POVM E. If the underlying state

is ↽, the probability of observing the label m ↑ [M ] upon measuring E is given by Born’s rule as

pE,ε(m) = Tr(Em↽). When the POVM is understood, we denote pE,ε by pε. If there are multiple

POVMs E(1), . . . ,E(L), then the kth element of the ith POVM is denoted by E(i)

k
, and we write

pE(i),ε = p(i)ε when the POVMs are understood.

We denote 1-qubit Pauli observables as X, Y , Z. The eigenstates of X with eigenvalues +1

and ↗1 are denoted by |+↓ , |↗↓ respectively, while the eigenstates of Z with eigenvalues +1 and ↗1

are denoted by |0↓ and |1↓. The eigenbasis of Z↓n in an n-qubit system is called the computational

basis. For an n-qubit Pauli P , the POVM that measures the eigenvalue of P is {(I+P )/2, (I↗P )/2}.

A peculiarity of quantum mechanics is that after a measurement, the quantum state is

disturbed. For this reason, to obtain several measurement outcomes, one needs to prepare many

copies of the state of interest ↽. Ideally, one seeks to prepare many independent and identical copies

of the state ↽, which are then measured one at a time. We refer to assumption that independent

and identical copies of the states are prepared as the iid assumption, in line with the independent

and identically distributed assumption used in classical statistics. While it is hard to satisfy the iid

assumption exactly, in many experiments, the iid assumption is reasonable, at least over short time

scales. Moreover, the iid assumption greatly simplifies the statistical analysis of data, especially for

the purposes of learning or verifying the properties of quantum system. For this reason, we will

work with the iid assumption in this study.

In the situation where we perform multiple measurements, there are broadly three measurement

strategies one can implement: non-adaptive, adaptive, and entangled measurements. The definitions

given below follow [108]. A measurement is said to be non-adaptive if we fix the POVMs a priori,

and each POVM is implemented on a single copy of the state. A measurement is said to be adaptive
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if we measure one copy of the state at a time, but the POVM at any given time can depend on the

past measurement outcomes. Finally, entangled measurements corresponds to jointly measuring

many copies of the state at one time. We remark that one can, in principle, mix and match these

di”erent types of measurements. For example, one can choose to jointly measure two copies of a

state at a given time, and use the previous outcomes to inform the POVM to be implemented in

the next time step.

In this study, we focus on non-adaptive measurements. Thus, when we say a “measurement

protocol”, we mean a non-adaptive measurement protocol, unless stated otherwise. A non-adaptive

measurement protocol is simply a list of POVMs along with the number of times each POVM is

repeated. We formally define this below. Note that we assume all the measurements are performed

independently.

Definition 2.1 (Measurement protocol). A (non-adaptive) measurement protocol M is a list of

pairs, where each pair consists of a POVM along with the number of times that POVM is repeated,

i.e.,

M =
{(

E(i), Ni


L

i=1

(2.2)

Here, the ith POVM E(i) = {E(i)

1
, . . . , E(i)

Mi
} has Mi labels, and it is repeated Ni times. L denotes

the total number of POVMs implemented by the measurement protocol. We assume that all the

POVMs are distinct.

The total number of samples
∑

L

i=1
Ni used by the measurement protocol M is denoted by

N(M) or simply N when M is clear from context.

Given that the underlying state is ↽, we denote the joint probability distribution over the

labels determined by the measurement protocol M as per Born’s rule by the shorthand PM,ε.

Another equivalent way of thinking about a measurement protocol is as a finite sequence

of POVMs, where elements in the sequence may be repeated. The definition of a measurement

protocol given in Eq. (2.2) avoids this repetition by listing the distinct POVMs that were/will be

measured, and saying how many times each POVM was repeated.
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To illustrate the above definition, consider the following example. Suppose that we mea-

sure Pauli X two times and Pauli Z one time on a one-qubit state ↽. The POVM defining X

measurement is E(1) = {|+↓ ↔+| , |↗↓ ↔↗|} (projection onto eigenvectors of X), and similarly, the

POVM defining Z measurement is E(2) = {|0↓ ↔0| , |1↓ ↔1|}. The measurement protocol is then

described by the set M = {(E(1), 2), (E(2), 1)}. The labels of an experiment implementing this

measurement protocol are tuples (or strings) of the form (i, j, k) where i, j ↑ {+,↗} and k ↑ {0, 1}

(since we measure X twice and Z once). Since we assume that the states are prepared inde-

pendently and identically, the joint probability distribution PM,ε is a product distribution, i.e.,

PM,ε((i, j, k)) = Tr(↽ |i↓ ↔i|)Tr(↽ |j↓ ↔j|)Tr(↽ |k↓ ↔k|) for any given label (i, j, k).

The above examples describe performing a fixed set of measurements. Sometimes, however,

it is advantageous to implement a randomized measurement protocol. For example, we can

randomly sample E(1) or E(2) and implement the sampled POVM. We formally define a randomized

measurement protocol below.

Definition 2.2 (Randomized measurement protocol). A randomized measurement protocol

consists of L POVMs E(1), . . . ,E(L), a probability distribution p over [L], and a positive integer

N , wherein one samples the ith POVM with probability pi and measures it, and this procedure is

repeated N times.

Randomized measurement protocols can be described using a single e”ective POVM. The

most general situation is where one stores both the index i of the POVM that was sampled and

the outcome j ↑ [Mi] that was observed upon measuring this POVM. In this case, the e”ective

POVM is given as {piE(i)

j
| j ↑ [Mi], i ↑ [L]}. This situation occurs, for example, in direct fidelity

estimation [33, 26] and classical shadows [54]. Another situation is when Mi = M⇓ for all i ↑ [L]

and one only records outcome observed upon measurement and not the POVM that was sampled.

This situation occurs, for example, in the randomized Pauli measurement protocol discussed in [92].

In this case, the e”ective POVM is given by {
∑

L

i=1
piE

(i)

j
| j ↑ [M⇓]}. Thus, when referring to the

measurement protocol M for a randomized measurement, it is su!cient to specify the e”ective
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POVM along with the number of times this POVM is measured.

Another type of measurement protocol that is important in practice is an informationally

complete measurement protocol. Such measurement protocols contain enough information to

completely reconstruct the state, and thus, are important for quantum state tomography. We

formally define these measurement protocols below.

Definition 2.3 (Informationally complete measurement protocol). A measurement protocol

M = {(E(i), Ni)}Li=1
is said to be informationally complete (IC) if for all states ↽,↼ with ↽ ⇓= ↼,

there is some POVM E(i) for i ↑ [L] and an index k ↑ [Mi] such that Tr(E(i)

k
↽) ⇓= Tr(E(i)

k
↼).

While the above definition might look mathematically unwieldy, it turns out that a mea-

surement protocol is IC if and only if it spans the set of all Hermitian matrices of appropriate

dimension, giving a mathematically simple characterization of IC measurements. Although this

result is known in the literature [88], we include a short proof below. We use the notation

spanM = span{E(i)

k
| k ↑ [Mi], i ↑ [L]} for any measurement protocol M = {(E(i), Ni)}Li=1

in the

proof.

Proposition 2.4. A measurement protocol M = {(E(i), Ni)}Li=1
is informationally complete if and

only if {E(i)

k
| k ↑ [Mi], i ↑ [L]} spans the set of all d≃ d Hermitian matrices.

Proof. Let (spanM)↘ denote the orthogonal complement of spanM.

Suppose that M does not span Sd. Then, we can write Sd = spanM ′ (spanM)↘, where

(spanM)↘ contains at least one non-zero element A. Since I ↑ spanM, we must have ↔I, A↓ =

Tr(A) = 0. Thus, after rescaling if necessary, we can assume that Tr(A) = 0 and →A→⇒ ↘ 1, where

→A→⇒ denotes the Schatten-⇑ norm of A. Then, ↽ = (I + A)/d and ↼ = (I ↗ A)/d are density

matrices that are not equal. However, Tr((E(i)

k
(↽↗ ↼)) = 2Tr(E(i)

k
A)/d = 0 for all k ↑ [Mi] and all

i ↑ [L], so that M is not informationally complete.

Next, suppose that M spans Sd. Then, there is a subset B ↙ {E(i)

k
| k ↑ [Mi], i ↑ [L]}

that is a basis of Sd. Denote the elements of B as W1, . . . ,Wd2 . Consequently, given any two

density matrices ↽,↼, we can write ↽↗ ↼ =
∑

j
ϑjWj for some unique numbers ϑ1, . . . ,ϑd2 ↑ R. If
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↔↽↗ ↼,Wi↓ = Tr((↽↗ ↼)Wi) = 0 for all i, then 0 =
∑

j
ϑj ↔↽↗ ↼,Wj↓ = ↔↽↗ ↼, ↽↗ ↼↓ = →↽↗ ↼→2

HS
.

This implies ↽ = ↼, showing that M is informationally complete.

A special type of informationally completely measurements, called symmetric information-

ally complete (SIC) measurements, are of importance in quantum information [88]. A POVM E

is said to be a SIC-POVM if it is informationally complete, has exactly d2 elements all rank one, and

Tr(EjEk) = (dωjk + 1)/(d2(d+ 1)) for all j, k ↑ [d2], where ωjk denotes the Kronecker delta function.

Since SIC-POVMs are informationally complete, they can be used for quantum tomography [83].

Such measurements protocols are sometimes referred to as “single-setting”, since we only measure a

single POVM.

2.3 Probability theory

In this section, we review some basic concepts in measure-theoretic probability. These concepts

are useful for studying the general statistical problem in Ch. 4. That said, when we apply this

statistical framework to the problem of learning observables, we can do away with most of the

underlying measure-theoretic details.

We start with some basic concepts from measure theory (see [48] for an introduction to the

subject). Given a non-empty set $, a ω-algebra F on $ is defined to be a collection of subsets of

$ that is closed under countable unions and relative complements. That is, given A1, A2, . . . ↑ F,

we have ⇒nAn ↑ F, and given A,B ↑ F, A \B ↑ F. We work with the convention that union of

an empty collection of sets is equal to the empty set ⫅̸. This implies that we always have ⫅̸,$ ↑ F.

We call the pair ($,F) a measurable space, and the elements of F are called F-measurable sets

or simply measurable sets if the ↼-algebra is clear from context. Given any collection A of subsets

of $, the ↼-algebra generated by A is the smallest ↼-algebra on $ containing A, and is denoted

by ↼(A). In probability theory, a special class of ↼-algebras, called the Borel ↼-algebras, plays an

important role. To define a Borel ↼-algebra, we need the idea of a topology on $. Moreover, we will

work with a specific type of topological spaces called Polish spaces in this study. For this reason, we

�����������������������
�����	����������������
����������




26

review some basic concepts from topology.

A topology on a non-empty set $ is a collection ⇀ of subsets of $ that is closed under

arbitrary unions and finite intersections. The pair ($, ⇀) is called a topological space (see [74]

for an introduction to topology and metric spaces). The elements of ⇀ are called open sets, and

a complement of an open set is called a closed set. Given any subset A ↙ $, the interior of A,

denoted intA, is the largest open set contained in A, while the closure of A, denoted clA, is the

smallest closed set containing A. A subset A ↙ $ is compact if for every collection of open sets

whose union contains A, there is a finite subcollection whose union contains A. An important result

in analysis, called the Heine-Borel theorem, states that a set in a Euclidean space is compact i” it is

closed and bounded. A subset $0 ↙ $ is said to be dense in $ if cl$0 = $. A topological space

is said to be separable if it has a countable dense subset. Given a family A of subsets of $, the

topology generated by A is the smallest topology on $ that contains A.

While topological spaces can be very abstract, we will mainly deal with spaces that are

generated by a metric. A metric on $ is a function d : $≃ $ ↖ R that (1) satisfies d(ϖ1,ϖ2) = 0

i” ϖ1 = ϖ2 for all ϖ1,ϖ2 ↑ $, (2) is symmetric (d(ϖ1,ϖ2) = d(ϖ1,ϖ2) for all ϖ1,ϖ2 ↑ $), and (3)

satisfies the triangle inequality (d(ϖ1,ϖ2) ↘ d(ϖ1,ϖ2) +d(ϖ2,ϖ3) for all ϖ1,ϖ2,ϖ3 ↑ $). Using

the above requirements, it can be shown that a metric must always be non-negative. A metric gives

a way to measure distances between points of $. The pair ($,d) is called a metric space. ($,d)

is said to be complete if every Cauchy sequence in $ converges to a point in $. For any r > 0,

the set B(ϖ, r) = {ϖ→ ↑ $ | d(ϖ,ϖ→) < r} is called an open ball of radius r around ϖ ↑ $. The

topology on $ generated by the open balls is called the metric topology, or the topology induced

by the metric d. A topological space ($, ⇀) is said to be metrizable if there is a metric d that

induces the topology ⇀ . A Polish space is a complete separable metrizable topological space.

Polish spaces are important in the study of probability theory since they provide a way to unify

commonly encountered spaces such as discrete spaces (for “discrete probability distributions”) and

Euclidean spaces (for “continuous probability distributions”).

A Borel ↼-algebra on a topological space ($, ⇀) is the ↼-algebra generated by the topology ⇀ .
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We denote the Borel ↼-algebra as B($) = ↼(⇀) when ⇀ is clear from context. The pair ($,B($)) is

called a Borel space. When working with a topological space ($, ⇀) that is a Polish space, we will

refer to the corresponding Borel space ($,B($)) also as a Polish space.

A function f : $1 ↖ $2 between two measurable spaces ($1,F1) and ($2,F2) is said to be

measurable if the preimage of measurable sets are measurable, i.e., f≃1(A) △ {ϖ1 ↑ $1 | f(ϖ1) ↑

A} ↑ F1 for all A ↑ F2. Similarly, a function f between two topological spaces is said to be

continuous if the preimage of opens sets are open. A function is said to be Borel measurable or

Borel if it is a measurable function between two Borel spaces. It follows from the definitions that all

continuous functions are Borel measurable.

A measure m on a measurable space ($,F) is a non-negative function on F that is countably

additive, i.e., for any A1, A2, . . . ↑ F that are mutually disjoint, we have m(⇒nAn) =
∑

n
m(An).

We call the triple ($,F,m) a measure space. A measure is said to be finite if m($) < ⇑, and

it is said to be ↼-finite if there is some sequence of measurable sets A1, A2, . . . ↑ F that satisfies

$ ↙ ⇒nAn and m(An) < ⇑. A Borel measure is a measure defined on a Borel space.

Given a real-valued measurable function f , we denote the Lebesgue integral of f over A ↑ F

with respect to m as

A
fdm. A measurable function f is said to be integrable if


!
|f |dm < ⇑.

A measure m1 is said to be absolutely continuous with respect to another measure m2, denoted

m1 ▽ m2, if m2(A) = 0 implies m1(A) = 0 for all A ↑ F. An important theorem from measure

theory, called the Radon-Nikodym theorem, says that if m1 and m2 are ↼-finite and m1 ▽ m2,

then there is a non-negative integrable function f such that m1(A) =

A
fdm2. Moreover, f is

unique up to a set of m2-measure 0 in the sense that if g is another function that satisfies the above

properties, then m2({f ⇓= g}) = 0. The function f is called the Radon-Nikodym derivative of m1

with respect to m2, and denoted by dm1/dm2.

We are now ready to use these basic definitions to define probability spaces and random

variables. A probability measure P on a measurable space ($,F) is a finite measure that satisfies

P($) = 1. We sometimes refer to a probability measure as a probability distribution or simply

distribution. The triple ($,F,P) is called a probability space. The elements of F are called
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events in the context of probability theory. It follows from the definitions that if (An) is a finite

or countable sequence of events, then P(⇒nAn) ↘
∑

n
P(An). This is called the union bound. A

statement is said to hold almost surely, or a.s. for short, if it holds on an event of probability 1.

If F = B($) is a Borel ↼-algebra on $, then we call ($,B(P),P) a Borel probability space and P a

Borel probability measure. Every probability measure is ↼-finite since it is finite. If m is a ↼-finite

measure on ($,F), called the reference measure, and if P ▽ m, then by the Radon-Nikodym

theorem, there is a non-negative, integrable function p on $ such that P(A) =

A
pdm. The function

p is called the probability density function, or simply probability density, of P with respect to

m. Since P($) = 1, we must have

!
pdm = 1. Observe that instead of specifying the distribution

P, one may as well specify the probability density p to define the distribution P implicitly.

A random variable is a measurable function between two measurable spaces. If X: $1 ↖ $2

is a random variable and P1 is a probability distribution on ($1,F1), we call P2 = X↔P1, defined as

P2(B) = P1(X≃1(B)) for B ↑ F2, as the distribution on ($2,F2) induced by the random variable

X. Thus, when we talk about the distribution of a random variable taking values in $2, there

is some underlying probability space ($1,F1,P1), and we mean the distribution P2 = X↔P1 on

($2,F2). If we only care about the distribution P2, we may omit the underlying space ($1,F1,P1)

from our discussion. If m2 is a ↼-finite reference measure on ($2,F2) and P2 ▽ m2, we refer to the

probability density function dP2/dm2 as the probability density of X. The expected value or the

expectation value of a real-valued random variable X on a probability space ($,F,P) is defined as

the integral E[X] =

!
XdP.

A special class of random variables, the discrete random variables, is of great importance in

statistics and also in our study. First, we recall that the discrete ↼-algebra on $ is the power

set 2! = {A | A ↙ $} of $. Clearly, the discrete ↼-algebra is the largest ↼-algebra one can put on

$. Often, this ↼-algebra is too large for most cases of interest (e.g., when $ = R). However, if $

happens to be a finite or countably infinite set, the discrete ↼-algebra is the most natural choice

of ↼-algebra on $ (which perhaps motivates the terminology “discrete” for this ↼-algebra). In the

same vein, 2! is also a topology on $ called the discrete topology. The ↼-algebra generated by
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a discrete topology is discrete. Observe that if P is any distribution on ($, 2!) and $ is finite or

countable, its action on 2! is completely specified by its action on elements of $. In other words, if

we know P(ϖ) △ P({ϖ}) for all ϖ ↑ $, then we can calculate the probability of any event A ↙ $.

Such distributions are called discrete distributions. With this in mind, a random variable is said

to be discrete if it is a measurable function taking values in ($, 2!), where $ is either a finite or a

countably infinite set. It can be verified that the distribution on $ induced by a discrete random

variable is always a discrete distribution. Furthermore, observe that if m is the counting measure

on ($, 2!) and $ is finite or countable, then P ▽ m for all distributions P on ($, 2!). In this case,

the probability density dP/dm is just the function that maps ϖ ↑ $ to P(ϖ). Thus, when working

with discrete distributions, we sometimes refer to dP/dm as the distribution instead of probability

density. In the discrete case, we call $ the alphabet, and the elements of $ are called symbols.

If $ has d symbols, we can take $ = [d] without loss of generality, by relabelling the symbols if

necessary. The set of probability distributions on [d] is the standard simplex in d dimensions,

defined as #d = {p ↑ R
d | p ⇔ 0,

∑
d

i=1
pi = 1}. We define the support of a distribution p as set

supp p = {i ↑ [d] | pi > 0}.

Finally, we discuss the notion of an f -divergence, which quantifies the distance/dissimilarity

between two distributions. They satisfy many desirable properties, and it can be shown that many

known divergences or metrics are in fact f -divergences. This makes them important in probability

theory. We borrow the following definition from [82, Ch. 7].

Definition 2.5 (f-divergence). Let f : (0,⇑) ↖ R be a convex function with f(1) = 0. Let P

and Q be probability distributions on ($,F) with densities p and q respectively with respect to a

↼-finite reference measure m. Then, the f-divergence between P and Q is defined as

Df (P,Q) =



{q>0}
qf


p

q


dm+ f →(⇑)P({q = 0}), (2.3)

where f →(⇑) = limx⇔0 xf(1/x). In this definition, we use the convention that 0 ≃ ⇑ = 0, and

f(0) = limx⇔0 f(x).
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Note that a reference measure m satisfying P,Q ▽ m always exists (e.g., by taking m =

(P + Q)/2). Importantly, the f -divergence between P and Q does not depend on the choice of

the reference measure [82, Rem. 7.2]. Now, observe that if P ▽ Q, then P({q = 0}) = 0 since

Q({q = 0}) = 0. As a result, for P ▽ Q, we have

Df (P,Q) =



{q>0}
qf


p

q


dm =



!

f


dP

dQ


dQ. (2.4)

We refer the reader to [82, Ch. 7] for a list of properties satisfied by f -divergences.

An important special case is f(x) = x log(x). This gives rise to the well-known Kullback-Leibler

(KL) divergence. If P,Q are two distributions, then

KL(P→Q) =



!

log


dP

dQ


dP =



!

p log


p

q


dm (2.5)

if P ▽ Q and ⇑ otherwise.

2.4 Statistics

Estimating parameters is an important task in physics, where one might wish to learn

parameters of a physical model from experimental data. The problem of estimating parameters

using observed data is an important topic in statistics, and has garnered a lot of attention in the

recent past due to interest in machine learning. In this section, we will define what we mathematically

mean by estimation, and also introduce concepts that are important in our study.

Suppose that we have an underlying probability space ($,F,Ptrue), and we have access to

outcomes in $ sampled according to the distribution Ptrue. The distribution Ptrue is not known to us,

but we are given the promise that Ptrue lies in a known set of probability distributions P0. We are

given a function p : P0 ↖ % taking values in some set %, and the quantity that we wish to estimate

is p(Ptrue). In statistics, the function p is called, perhaps confusingly, a parameter (hence the symbol

p). To avoid potential confusion, we will not refer to p as a parameter in this study. To illustrate
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the meaning of p, consider the following examples. Say P0 is the set of Gaussian distributions on

the real line, where each Pµ,ϑ2 ↑ P0 is parametrized by the mean µ and variance ↼2. Then we can

define p(Pµ,ϑ2) = (µ,↼2) to be the function that maps the distribution to its parameters. More

generally, we can suppose that each distribution Px ↑ P0 is parameterized (not necessarily uniquely)

by some vector x ↑ R
d. Then, we can define p(Px) = f(x) to be some function of the parameter x

characterizing the distribution. This scenario will be important in our study. We remark that the

definition of p covers more general situations, beyond the scenario where distributions in P0 are

parametrized by vectors in R
d. For example, if P0 is the set of all distributions on the real line

with finite mean, we can define p(P) to be the mean of P ↑ P0.

The typical goal in estimation is to learn the value of p(Ptrue). Since we only have access

to the outcomes in $ sampled according to Ptrue, and we don’t know the distribution Ptrue itself,

we need to use these outcomes to learn the value of p(Ptrue). In the remainder of this section, we

assume that % is a metric space with the metric d, endowed with the Borel ↼-algebra. A point

estimator for p : P0 ↖ % is a measurable function p : $ ↖ %. The idea here is that given an

outcome ϖ ↑ $, sampled according to Ptrue ↑ P0, the value p(ϖ) gives an estimate of the true value

p(Ptrue). If % ↙ R
d, then the quantity p(Ptrue)↗ Etrue[p] is called the bias of p. The estimator p is

said to be unbiased if Etrue[p] = p(Ptrue) for all Ptrue ↑ P0. Point estimators are frequently used

for estimation. For example, given n independent and identically distributed samples X1, . . . , Xn of

a random variable X, p =
∑

n

i=1
Xi/n is an unbiased point estimator of the mean of X.

In practice, due to only having access to a finite number of samples, there is always some error

in estimating the true value. Thus, a point estimate by itself is not very useful, as we need to know, in

addition, what the estimation error is. This leads us to the notion of a confidence set or a confidence

region. A confidence set assignment for a confidence level of 1↗ ω ↑ [0, 1] is a set-valued function

C from $ to subsets of %, such that {p(Ptrue) ↑ C} ↑ F and Ptrue(p(Ptrue) ↑ C) > 1 ↗ ω for all

Ptrue ↑ P0. Given an observation ϖ ↑ $, the set C(ϖ) is called a confidence set or a confidence

region. The definition of a confidence set guarantees that no matter what the true distribution

Ptrue is, the true value p(Ptrue) lies in the confidence set with high probability. Thus, instead of
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a point estimate, we output a region that contains the quantity of interest with high probability.

We colloquially refer to any method that constructs a confidence set assignment as an estimation

method/protocol/procedure.

In this study, we are mainly interested in two special cases, which we describe below. First,

consider the case when the quantity to be estimated is real-valued. In this case, we construct a

confidence interval assignment C, such that C(ϖ) is an interval for all ϖ ↑ $. If one has

a point estimator p for p, and there is some ε > 0 (possibly dependent on the data) such that

P(|p↗ p(P)| ↘ ε) > 1↗ ω for all P ↑ P0, then C = [p↗ ε,p+ ε] defines a confidence interval for p.

For any observation ϖ ↑ $, the interval C(ϖ) = [p(ϖ)↗ ε(ϖ),p(ϖ) + ε(ϖ)] is called a confidence

interval. The second case of interest is estimating a vector-valued quantity with respect to l⇒-norm.

Thus, we have % ↙ R
d and d(x, y) = →x↗ y→⇒. As before, if p is a point estimator for p, and there

is some ε > 0 (possibly dependent on data) such that P(
∥∥p↗ p(P)

∥∥
⇒ ↘ ε) > 1↗ ω for all P ↑ P0,

then C = B(p, ε) is a confidence set assignment, where B(x, r) = {y ↑ % | d(x, y) ↘ r} is the closed

ball of radius r > 0 centered around x ↑ %. This can be interpreted as simultaneously estimating

all the components of p(Ptrue) (which are real numbers) to within error ε with high probability.

In general, the error ε can depend on the observed data. This is often the case when

using heuristics to compute the estimation error. For example, experiments in physics sometimes

quote a standard deviation or compute bootstrap intervals, both of which compute errors from

observed data. These methods are heuristic in the sense that the true value may not lie inside the

computed interval/set with high probability, and thus, they do not give confidence set assignments

in general. When the estimation error can be bounded by a constant, we call the confidence set

assignment minimax. Formally, we say that C is ⇁-minimax if supϖ↗! diamC(ϖ) ↘ 2⇁, where

diamA = sup{d(x, y) | x, y ↑ A} is the diameter of the set A ↙ %. In particular, if the diameter

does not depend on the data, then the estimation procedure is minimax. For the case when

C = [p ↗ ε,p + ε], we have diamC(ϖ) = 2ε(ϖ). Thus, if ε does not depend on the data, the

estimation procedure is ε-minimax. A similar reasoning holds for the case when C = B(p, ε).

Minimax confidence set assignments, or minimax methods, give worst-case error bounds,
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because the same error is returned for all data points. Nevertheless, minimax methods have their

advantages. For example, since the error is independent of the data, it can be computed before

the start of an experiment. This can be particularly helpful in quantum information, where one

can determine what measurements to perform before starting an experiment so as to minimize

the estimation error. Another advantage is that we can compute the sample complexity for the

estimation method, which is the number of samples needed to estimate the quantity of interest to

a fixed error ε > 0 with probability greater than 1↗ ω. It is helpful to know a priori the sample

complexity of estimation methods in quantum information. This is because the dimension of a

quantum system comprised of n qubits scales exponentially as 2n, and thus, it is useful to know if the

chosen estimation method is implementable for large system sizes. We note that many estimation

methods proposed in the quantum information literature are minimax methods.

2.5 Convex analysis and optimization

Let V be a finite dimensional vector space. A set A ↙ V is said to be a!ne if for all

x, y ↑ A and all φ ↑ R, we have φx + (1 ↗ φ)y ↑ A. It can be shown that an a!ne set is

the translation of a linear subspace in the sense that there is a linear subspace U ↙ V such

that A = U + a for all a ↑ A, where U + a = {u + a | u ↑ U}. The a!ne hull of a set

K ↙ V, denoted a”K, is the smallest a!ne subset of V containing K. It can be shown that

a”K = {
∑

n

i=1
φivi | n ↑ N,φ1, . . . ,φn ↑ R,

∑
n

i=1
φi = 1, v1, . . . , vn ↑ K}.

A set C ↙ R
d is said to be convex if for all x, y ↑ C and φ ↑ [0, 1], we have φx+(1↗φ)y ↑ C.

All a!ne sets are convex, but the converse need not be true. The convex hull of a set K ↙ V,

denoted convK, is the smallest convex subset of V containing K. It can be shown that convK =

{
∑

n

i=1
φivi | n ↑ N,φ1, . . . ,φn ↑ [0, 1],

∑
n

i=1
φi = 1, v1, . . . , vn ↑ K}.

An important notion in finite-dimensional convex analysis is the notion of a relative interior.

To motivate the definition, consider the d-dimensional standard simplex #d = {x ↑ R
d | x ⇔

0,
∑

d

i=1
xi = 1}. It can be shown that the interior of #d in R

d is empty (think of a simplex

in 3 dimensions for visualization). However, it still makes sense to look at the interior of #d
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with respect to the a!ne subspace containing #d, and this is exactly the notion of relative

interior. Formally, if K ↙ R
d is any set, then we define the relative interior of K as the set

relintK = {x ↑ K | (̸⇁ > 0) B(x, ⇁) ∩ a”K ↙ K}, where B(x, ⇁) is the l2-ball of radius ⇁ around

x. Topologically, one can think of the relative interior of K as the interior of K with respect to the

subspace topology induced by a”K. K is said to be relatively open if K = relintK. It can be

shown that relint#d = {x ↑ K | x > 0,
∑

d

i=1
xi = 1}, which we call the relatively open simplex.

Importantly, if C ↙ R
d is a non-empty convex set, then relintC ⇓= ⫅̸ [8, Fact 6.14].

A function A: V ↖ W from a vector space V to a vector space W is said to be an a!ne

function if for all x, y ↑ V and φ ↑ R, we have A(φx+ (1↗ φ)y) = φA(x) + (1↗ φ)A(y). It can

be shown that an a!ne function is just the translation of a linear function, that is, there is some

linear map L: V ↖ W and a vector w ↑ W such that A(x) = L(x) +w for all x ↑ V. An extended

real-valued function f : C ↖ R defined on a convex set C is said to be a convex function if for all

x, y ↑ C and φ ↑ [0, 1], we have f(φx+ (1↗ φ)y) ↘ φf(x) + (1↗ φ)f(y). A function f is said to be

concave if ↗f is convex, while it is said to be log-concave if log(f) is concave. Every concave

function is log-concave but the converse need not be true. A real-valued a!ne function is both

convex and concave.

A function f : K ↖ R defined on a set K ↙ R
d is said to be a proper if f never takes the

value ↗⇑, and there is some point K at which f is finite. A function f : K ↖ R is said to be lower

semi-continuous or lsc at a point x⇓ ↑ K if lim infx↖x↑ f(x) ⇔ f(x⇓). A function f : K ↖ R is

said to be upper semi-continuous or usc at x⇓ ↑ K if lim supx↖x↑ f(x) ↘ f(x⇓). f is said to

be lsc/usc if it is lsc/usc at every point in K. A function f : K ↖ R is said to be coercive if for

every sequence (xn) in K with →xn→ ↖ ⇑, we have f(xn) ↖ ⇑. It is well-known that if K is a

closed convex set, and f is a proper, lsc, convex, coercive function on K, then f has a minimizer

over K [8, Thm. 11.15].
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Given a set K, its characteristic function is defined in convex analysis as

χK(x) =






0 if x ↑ K,

⇑ otherwise.

(2.6)

We note that the definition of a characteristic (or indicator) function in convex analysis is di”erent

from that used in probability theory and representation theory. Observe that χK just encodes the

set K as a function. It can be verified that if K ↙ R
d is a non-empty convex set, then χK : R

d ↖ R

is a proper convex function. If K is a closed set, then χK is lower semi-continuous. Another

important function is the support function of a set. Given K ↙ R
d, its support function is defined

as

SK(x) = sup{↔x, y↓ | y ↑ S}. (2.7)

It can be verified that SK is always a convex function, irrespective of whether or not K is convex.

If K is a closed convex set, then SK is lsc, and if K is a bounded convex set, then SK does not

take the value ⇑. The characteristic function and the support function of a set are dual to each

other in the sense defined below.

Definition 2.6 (Convex conjugate). The convex conjugate or the Legendre-Fenchel transform

of a function f : X ↖ R defined on X ↙ R
d is defined as

f↔(y) = sup
x↗Rd

(↔y, x↓ ↗ f(x)) (2.8)

for y ↑ R
d.

Convex conjugate generalizes the notion of Legendre transform that is frequently used in

physics, especially thermodynamics and classical mechanics. It can be shown that f↔ is a convex

function even when f is not. If f is a proper lsc convex function, then f↔ is also a proper lsc convex

function and we have f↔↔ = f [8, Cor. (13.38)]. One can verify that if K is a non-empty closed

convex set, then SK = χ↔
K and χK = S↔

K. Thus, for a closed convex set, its support function
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encodes the set as a function, just as the characteristic function does.

Finally, we define another useful transformation that will appear later in our study. Given

a proper function f : R
d ↖ R, its perspective is the function pf : R

d ≃ (0,⇑) ↖ R defined as

pf (x, t) = tf(x/t). It can be shown that if f is a convex function, then pf is also a (jointly) convex

function.

We now turn our attention from convex analysis to convex optimization. The discussion below

follows the exposition in [17]. Consider the following optimization problem in the so-called standard

form:

(P) min
x↗X

f0(x)

s.t. fi(x) ↘ 0, i ↑ [n]

hj(x) = 0, j ↑ [m].

(2.9)

The function f0 is called the objective function. The functions f1, . . . , fn define inequality constraints,

while the functions h1, . . . , hm define equality constraints. X ↙ R
d is a set over which all of these

functions are well-defined. The optimization problem written above is called the primal problem,

in contrast with its dual problem we will define below. If the functions f0, f1, . . . , fn are convex,

h1, . . . , hm are a!ne, and the set X is convex, the above problem is called a convex optimization

problem. This is because it amounts to minimizing the convex function f0 over a convex set

determined by the constraints. The optimal value p↔ of (P) is called the primal optimal value.

An important property of convex functions is that all local minima of a convex function are

also global minima. Thus, it su!ces to compute the local minima of convex functions. Usually,

this is done by looking at the points where the gradient of f0 is zero, but this does not account

for the constraints in the optimization problem. To remedy this, one defines a function called

the Lagrangian that explicitly depends on the functions f1, . . . , fn and h1, . . . , hm defining the

constraints. The Lagrangian for the primal problem (P) is defined as

L(x;φ, ν) = f0(x) +
n

i=1

φifi +
m

j=1

νjhj . (2.10)
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The variable x ↑ R
d is called the primal variable, while the variables φ ↑ R

n and ν ↑ R
n are called

dual variables. The (Lagrange) dual function for the problem (P) is defined as

h(φ, ν) = min
x↗X

L(x;φ, ν). (2.11)

The dual function is a concave function of (φ, ν), even if the primal optimization problem is not

convex. Importantly, one can show that h(φ, ν) ↘ p↔ for all φ ⇔ 0 and ν ↑ R
m. Using this

observation, we define the (Lagrange) dual problem of the primal problem as

(D) max
ϱ,ς

h(φ, ν)

φ ⇔ 0.

(2.12)

The optimal value d↔ of (D) is called the dual optimal value. Since h(φ, ν) ↘ p↔ for all φ ⇔ 0 and

ν, it follows that d↔ ↘ p↔. This is called weak duality. The di”erence p↔ ↗ d↔ is called the duality

gap. When d↔ = p↔, or equivalently, when the duality gap is zero, we say that strong duality

holds.

We now describe first-order optimality conditions, called Karush-Kuhn-Tucker (KKT)

conditions. Suppose that f0, . . . , fn and h1, . . . , hm are di”erentiable on an open set containng X.

Then, the points x↔ ↑ X and φ↔ ↑ R
n, ν↔ ↑ R

m are said to satisfy the KKT conditions if the

following hold:

(1) (Primal feasibility) fi(x↔) ↘ 0 for i ↑ [n] and hj(x↔) = 0 for j ↑ [m].

(2) (Dual feasiblity) φ↔ ⇔ 0.

(3) (Complementary slackness) φ↔
i
fi(x↔) = 0 for all i ↑ [n].

(4) (Stationarity) The gradient of the Lagrangian vanishes at (x↔;φ↔, ν↔), i.e.,

∀ f0(x
↔) +

n

i=1

φ↔
i ∀ fi(x

↔) +
m

j=1

ν↔j ∀hj(x
↔) = 0. (2.13)
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It can be shown that if x↔ ↑ X and φ↔ ↑ R
n
+ and ν↔ ↑ R

m are primal and dual optimal points with

zero duality gap, then (x↔;φ↔, ν↔) necessarily satisfy the KKT conditions. The converse need not

hold. That is, KKT conditions are, in general, not su!cient to ensure optimality.

However, if the primal problem (P) is convex, then it can be shown that KKT conditions are

su!cient. Thus, for a convex optimization problem, KKT conditions are necessary and su!cient if

strong duality holds. A condition that guarantees strong duality for convex problems is Slater’s

condition. Slater’s condition says that if the primal problem (P) is convex and there is at least

one feasible point x⇓ ↑ relintX satisfying fi(x⇓) < 0 for all i ↑ [n], then strong duality holds. Thus,

if we can show that Slater’s condition holds for a convex problem, we can use KKT conditions to

find primal and dual optimal points.
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Chapter 3

Classical and quantum distance measures

We begin our study by defining some distance measures for classical probability distributions

and quantum states that are relevant to our study. When we say “distance measure”, we mean some

function that says how close or similar two probability distributions/quantum states are. Given a

measurement protocol and a quantum state, one obtains classical probability distributions for the

observed outcomes through the Born’s rule. We call the distance measure one can define between

two quantum states through such classical probability distributions as a classical distance measure

on quantum states. A quantum distance measure can be obtained by optimizing the classical

distance measure over all measurement protocols.

The main distance measure of interest in our study is the average Bhattacharyya distance

between two quantum states determined by a measurement protocol. We will study the relation of

this measure to its quantum counterpart, (half) negative log-fidelity, as well as other well-studied

classical and quantum distance measures. Many of the results we present in this chapter review

known results in the literature, though possibly in a di”erent form. Two results that we would like

to highlight in this chapter, which may find applications elsewhere, are (1) a closed-form expression

for the convex conjugate of Bhattacharyya distance for a special case of interest (Prop. 3.9), and (2)

a continuity bound for quantum fidelity (Prop. 3.17).
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3.1 Bhattacharyya distance and quantum fidelity

We start the discussion with the familiar notion of Bhattacharyya coe!cient between two

classical probability distributions [12].

Definition 3.1 (Bhattacharyya coe!cient and classical fidelity). The Bhattacharyya

coe!cient (or Hellinger a!nity) between two probability distributions p and q over M symbols is

defined as

BC(p, q) =
M

i=1

∋
piqi. (3.1)

The classical fidelity between p and q is defined as

FC(p, q) = (B(p, q))2. (3.2)

The Bhattacharyya coe!cient is the classical counterpart of square-root fidelity [36]. It

is a number between 0 and 1, equal to 1 i” p = q, and equal to 0 i” p and q have disjoint

support. Furthermore, it is a jointly concave function of its arguments [106, Cor. 3.26]. While the

Bhattacharyya coe!cient itself is not a metric, one can define di”erent metrics using it. In our

study, the closely related notion of Bhattacharyya distance [12, 63] is important.

Definition 3.2 (Bhattacharyya distance). The Bhattacharyya distance between two proba-

bility distributions p and q is defined as

BD(p, q) = ↗ log(BC(p, q)). (3.3)

Note that the Bhattacharyya distance is not a metric. However, it has some useful properties,

which we list below.
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Proposition 3.3 (Properties of Bhattacharyya distance). 1. For any distributions p, q, we

have 0 ↘ BD(p, q) ↘ ⇑, with BD(p, q) = 0 i” p = q and BD(p, q) = ⇑ i” p and q have disjoint

support.

2. BD is a proper jointly convex function.

3. BD is additive for product distributions. That is, given p, q ↑ #M and p→, q→ ↑ #N , we have

BD(p∞ p→, q ∞ q→) = BD(p, q) + BD(q, q→).

Proof. 1. Follows from the definition of BD and properties of BC.

2. Since BC is concave, and hence log-concave, BD is convex. It is proper because BD ⇔ 0

and BD(p, p) = 0 for any distribution p.

3. Observe that

BC(p∞ p→, q ∞ q→) =


i

∋
piqi



j

√
p→
j
q→
j
= BC(p, q)BC(p→, q→). (3.4)

The additivity of BD follows by taking negative logarithm on both sides of the above equation.

Since independent random variables give rise to product distributions on the large (product)

space over which all the random variables are defined, the Bhattacharyya distance gives us additivity

for distributions obtained from independent measurements. The Bhattacharyya coe!cient, on the

other hand, is multiplicative. This motivates us the define the following classical distance measures

between two quantum states determined by a measurement protocol.

Definition 3.4 (Average Bhattacharyya distance). Given a measurement protocol M =

{(E(i), Ni)}Li=1
, the average Bhattacharyya distance between two quantum states ↽ and ↼

determined by M is defined as

BDM(↽,↼) =
L

i=1

Ni

N
BD(p(i)ε , p(i)ϑ ), (3.5)
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where p(i)ε is the probability for the ith POVM with respect to the state ↽ given by Born’s rule, and

N =
∑

L

i=1
Ni is the total number of samples.

Similarly, we define the geometric-average Bhattacharyya coe!cient between ↽ and ↼

determined by M as

BCM(↽,↼) =
L

i=1

(
BC(p(i)ε , p(i)ϑ )


Ni/N

. (3.6)

We define the geometric-average classical fidelity determined by M as the square of

the geometric-average Bhattacharyya coe!cient, i.e., FCM(↽,↼) = BC2

M(↽,↼) for ↽,↼ ↑ X. Thus,

the statements concerning the Bhattacharyya coe!cient can be translated to classical fidelity and

vice-versa. As for the case with classical probability distributions, the average Bhattacharyya

distance and geometric-average Bhattacharyya coe!cient do not define a metric on the set of

quantum states. Nevertheless, they are closely related to distance measures on quantum states

that are pseudometrics. Thm. 7.13 shows that the average Bhattacharyya distance determines the

optimal performance one can get for estimating expectation values of observables using outcomes

of the measurement protocol M, which underlines the importance of this distance measure. This

motivates us to study its properties and its relation to other distance measures commonly used in

the quantum information literature.

We begin by studying the quantum counterparts of BCM and BDM. To that end, we recall

the definition of fidelity between two quantum states.

Definition 3.5 (Fidelity). The fidelity between the quantum states ↽ and ↼ is defined as

F (↽,↼) =


Tr(

√∋
↽↼

∋
↽)


2

. (3.7)

We denote the square-root fidelity as
∋
F and log fidelity as logF . We review some basic

properties of fidelity that are well-known in the literature. See [68, 106, 107] for other properties.
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Proposition 3.6 (Properties of fidelity). Let ↽,↼ be two quantum states. The following

statements hold.

1. F (↽,↼) =
∥∥∋↽

∋
↼
∥∥2
1
.

2. F (↽,↼) lies between 0 and 1. It is equal to 1 i” ↽ = ↼ and equal to 0 i” Tr(↽↼) = 0.

3. F (↽,↼) = F (↼, ↽).

4.
∋
F is jointly concave, while F is jointly log-concave.

5. If ↽ or ↼ is pure, then F (↽,↼) = Tr(↽↼).

6. If ↽ and ↼ commute, then F (↽,↼) = FC(φ(↽),φ(↼)), where φ(↽),φ(↼) denote the vector of

eigenvalues of ↽,↼ respectively.

Proof. 1. Follows from definitions.

2. By the Fuchs-van de Graaf inequality [36] (see Eq. (3.35)), we have F (↽,↼) = 1 i”

→↽↗ ↼→
1
= 0 i” ↽ = ↼. On the other hand, F (↽,↼) = 0 i”

∋
↽
∋
↼ = 0 i” ↽↼ = 0 i” Tr(↽↼) = 0.

3. This follows from Uhlmann’s theorem [102], [77, Thm. 9.4].

4. [106, Cor. 3.26] shows that
∋
F is concave, from which it follows that logF is concave.

5. If ↽ = |ϱ↓ ↔ϱ|, then ∋
↽↼

∋
↽ = ↔ϱ|↼|ϱ↓ |ϱ↓ ↔ϱ| = Tr(↽↼)↽. It follows that F (↽,↼) = Tr(↽↼).

6. If ↽ and ↼ commute, then
∋
↽↼

∋
↽ = ↽↼ and

∋
↽↼ =

∋
↽
∋
↼. The latter claim can be verified

by squaring both sides and using uniqueness of matrix square-root. Then, F (↽,↼) = (Tr(
∋
↽
∋
↼))2.

Since ↽ and ↼ commute, they can be diagonalized in a common orthonormal basis. Evaluating the

trace in this basis gives the desired result.

We saw in Prop. 3.6 that when ↽ and ↼ commute, the fidelity between ↽ and ↼ coincides

with the classical fidelity between the spectrums of ↽ and ↼. When ↽ and ↼ commute, they can

be simultaneously diagonalized, and therefore, φ(↽) and φ(↼) are just the probabilities observed

upon measuring ↽ and ↼ in their common eigenbasis. Thus, we have shown that when ↽ and ↼

commute, the fidelity between them can be realized as the classical fidelity between the outcome
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probabilities for a particular measurement. Now, the question arises whether this observation can be

generalized to the case when ↽ and ↼ don’t commute. This question was answered in the a!rmative

by [35, 34], who showed that the fidelity is the minimum of the classical fidelity between the outcome

probabilities over all measurements, and that there is some POVM that achieves this minimum. We

can use this observation to give the quantum counterparts of average Bhattacharyya distance and

geometric-average Bhattacharyya coe!cient.

Proposition 3.7. If ↽ and ↼ are two quantum states, then the following hold.

1.
∋
F (↽,↼) = min

M
BCM(↽,↼). (3.8)

2.

F (↽,↼) = min
M

FCM(↽,↼). (3.9)

3.

↗1

2
logF (↽,↼) = max

M
BDM(↽,↼). (3.10)

There is a measurement protocol that achieves the minimum in all the above equations.

Proof. 1. From [35, 34], we know that
∋
F (↽,↼) = minE BC(pE,ε, pE,ϑ), where the minimization is

over all POVMs. In particular, BC(pE,ε, pE,ϑ) ⇔
∋
F (↽,↼) for every POVM E. It then follows from

the definition of BCM that BCM(↽,↼) ⇔
∋
F (↽,↼) for any measurement protocol. Since there is a

POVM E↔ such that
∋
F (↽,↼) = BC(pE↓,ε, pE↓,ϑ) [34], the measurement protocol M↔ = {(E↔, 1)}

achieves the minimum in Eq. (3.8).

2. Since FCM is the square of BCM and BCM is non-negative, the result follows by squaring

both sides of Eq. (3.8).

3. Since BDM is the negative logarithm of BCM, and ↗ log(x) is a strictly decreasing function,

we obtain Eq. (3.10) from Eq. (3.8). Note that both sides of Eq. (3.10) can be infinity.
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Next, we list some basic properties of average Bhattacharyya distance and geometric-average

Bhattacharyya coe!cient following Prop. 3.6.

Proposition 3.8 (Properties of average Bhattacharyya distance). Let ↽,↼ be quantum states,

and let M be a measurement protocol. Then, the following statements hold.

1. BCM(↽,↼) is bounded between 0 and 1. ↽ = ↼ implies BCM(↽,↼) = 1, while BCM(↽,↼) = 0

implies Tr(↽↼) = 0.

2. BDM(↽,↼) is bounded between 0 and ⇑. ↽ = ↼ implies BCM(↽,↼) = 0, while BDM(↽,↼) = ⇑

implies Tr(↽↼) = 0.

3. BDM(↽,↼) = BDM(↼, ↽) and BCM(↽,↼) = BCM(↼, ↽).

4. BDM is a proper convex function, while BCM is a log-concave function.

Proof. 1. BCM is the geometric mean of numbers bounded between 0 and 1, and hence also bounded

between 0 and 1. Direct computation shows that ↽ = ↼ implies BCM(↽,↼). If BCM(↽,↼) = 0, then

by Prop. 3.7, we have F (↽,↼) = 0. By Prop. 3.6, this implies Tr(↽↼) = 0.

2. Follows from (1).

3. Follows from the definitions.

4. Follows from the definitions and Prop. 3.3.

The converse of Prop. 3.8.1 and Prop. 3.8.2 does not hold in general. It can be shown, however,

that if M is informationally complete, then BCM(↽,↼) = 1 implies ↽ = ↼. On the other hand,

informational completeness is not su!cient to ensure the claim that Tr(↽↼) = 0 =∃ BCM(↽,↼) = 0.

To see this, take ↽ = |0↓ ↔0| and ↼ = |1↓ ↔1| for a 1-qubit system. If M corresponds to randomly

sampling from {X,Y, Z} and then measuring it, it can be checked that BCM(↽,↼) ⇓= 0, even though

M is informationally complete.

Before ending this section, we note down some properties of the convex conjugate of the

Bhattacharyya distance. We use the following notations. For any vector u ↑ R
M , we write
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umax = maxi ui and umin = mini ui. We denote argmaxu = {i ↑ [M ] | ui = umax} and argminu =

{j ↑ [M ] | uj = umin}.

Proposition 3.9 (Convex conjugate of Bhattacharyya distance). The convex conjugate

BD↔ : R
M ≃ R

M ↖ R of Bhattacharyya distance satisfies the following properties.

1. For u ↑ R
M , denoting & = umax ↗ umin, we have

BD↔(u,↗u) =






√
1+2”2≃

↙
1+4”2

2
+ 1

2
log

(↙
1+4”2≃1

2”2


if & > 0

0 if & = 0.

(3.11)

Furthermore, BD↔(u,↗u) ⇔ 0 and BD↔(u,↗u) is a convex function of u ↑ R
M .

2. For all u, v ↑ R
M , we have BD↔(u, v) = BD↔(v, u).

3. For u, v ↑ R
M , we have

1

2


max

i↗argmax(u≃v)

(u+ v)i + max
j↗argmin(u≃v)

(u+ v)j


+ BD↔


(u↗ v)

2
,↗(u↗ v)

2



↘ BD↔(u, v)

↘ (u+ v)max + BD↔

(u↗ v)

2
,↗(u↗ v)

2


. (3.12)

4. For all p, q ↑ #M and all u, v ↑ R
M , we have BD(p, q) + BD↔(u, v) ⇔ ↔u, p↓+ ↔v, q↓.

Proof. 1. Since BD is only defined on the set of probability distributions, the expression for BD↔

according to Def. 2.6 becomes

BD↔(u,↗u) = sup
p,q↗#M

(↔u, p↓ ↗ ↔u, q↓+ log(BC(p, q)))

=
1

2
sup

p,q↗#M

(2 ↔u, p↓ ↗ 2 ↔u, q↓+ log(FC(p, q))), (3.13)

where we used the fact that FC = BC2 to obtain the second equality. Denote x↗a = (x1↗a, . . . , xM↗

a) for a ↑ R and x ↑ R
M . Then, for all distributions p, q, we have ↔u, p↗ q↓ = ↔u↗ umin, p↗ q↓.
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Now, denote I = {i ↑ [M ] | (pi ↗ qi) > 0. Since 0 ↘ ui ↗ umin ↘ & for all i, we have

↔u↗ umin, p↗ q↓ ↘
∑

i↗I(ui ↗ umin)(pi ↗ qi) ↘ &
∑

i↗I(pi ↗ qi). Since
∑

i
(pi ↗ qi) = 0 and

∑
i↗I(pi ↗ qi) ↗

∑
i↗[M ]\I(pi ↗ qi) = →p↗ q→

1
, we have

∑
i↗I(pi ↗ qi) = →p↗ q→

1
/2. Thus, we

obtain ↔u↗ umin, p↗ q↓ ↘ & →p↗ q→
1
/2. Furthermore, by Fuchs-van de Graaf inequality [36], we

have →p↗ q→
1
/2 ↘

√
1↗ FC(p, q). Thus, we obtain the inequality

BD↔(u,↗u) ↘ 1

2
sup

p,q↗#M

(2&
√
1↗ FC(p, q) + log(FC(p, q)))

↘ 1

2
sup

x↗[0,1]
(2&

∋
1↗ x+ log(x)),

(3.14)

where the last inequality follows from the fact that FC(p, q) ↑ [0, 1] for all p, q ↑ #M . If & = 0, then

the maximum is achieved at x = 1, and the maximum value is equal to 0. This can be achieved in

Eq. (3.13) by choosing p, q ↑ #M with p = q, and therefore, BD↔(u,↗u) = 0 in this case. Thus, we

assume that & > 0. The function f(x) = 2&
∋
1↗ x+ log(x) takes the value ↗⇑ at x = 0 and the

value 0 at x = 1. The derivative of f is given by f →(x) = ↗&/
∋
1↗ x+ 1/x, so that f →(1) = ↗⇑.

Thus, the maximum cannot occur at either x = 0 or x = 1. Since f is a strictly concave function, it

has a unique maximum in (0, 1), which can be obtained by setting its derivative to 0. Rearranging

f →(x) = 0, we obtain

&2x2 + x↗ 1 = 0. (3.15)

After discarding the negative solution, we obtain

x↔ =
↗1 +

∋
1 + 4&2

2&2
. (3.16)

It can be verified that x↔ ↑ (0, 1). Now, choose p↔, q↔ ↑ #M as follows. Fix i ↑ argmax(u) and

j ↑ argmin(u), and take p↔
i
= (1 +

∋
1↗ x↔)/2, p↔

j
= (1 ↗

∋
1↗ x↔)/2, p↔

k
= 0 for k ⇓= i, j, and

q↔
i
= (1 ↗

∋
1↗ x↔)/2, q↔

j
= (1 +

∋
1↗ x↔)/2, q↔

k
= 0 for k ⇓= i, j. For this choice of p↔, q↔, we

have ↔u, p↔ ↗ q↔↓ = &
∋
1↗ x↔ and FC(p↔, q↔) = x↔. Thus, substituting p↔, q↔ in the objective of

Eq. (3.13) gives (2&
∋
1↗ x↔ + log(x↔))/2, ensuring that p↔, q↔ attains the maximum in Eq. (3.13).
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It also follows that BD↔(u,↗u) ⇔ 0. Since BD↔(u, v) is a convex function of (u, v) and u ¬↖ (u,↗u)

is a linear function of u, BD↔(u,↗u) is a convex function of u.

2. Follows from the fact that BD(p, q) = BD(q, p) for all p, q ↑ #M .

3. Observe that we can write

BD↔(u, v) = sup
p,q↗#M


(u+ v)

2
, p+ q


+


(u↗ v)

2
, p↗ q


+ log(BC(p, q))


. (3.17)

Since sup(f+g) ↘ sup f+sup g for any real-valued functions f and g, and supp,q↗#M
↔(u+ v), (p+ q)/2↓ =

(u+ v)max, we obtain

BD↔(u, v) ↘ (u+ v)max + BD↔

(u↗ v)

2
,↗(u↗ v)

2


. (3.18)

On the other hand, when & = ((u↗ v)max ↗ (u↗ v)min)/2 > 0, the choice of p↔, q↔ in the proof of

Prop. 3.9.1 corresponding to the input ((u↗ v)/2,↗(u↗ v)/2) gives the lower bound

(u+ v)i + (u+ v)j
2

+ BD↔

(u↗ v)

2
,↗(u↗ v)

2


↘ BD↔(u, v) (3.19)

for all i ↑ argmax(u ↗ v) and j ↑ argmin(u ↗ v). When & = 0, we can take p↔
i
= p↔

j
= 1/2 and

q↔
i
= q↔

j
= 1/2 for any i ↑ argmax(u↗ v) and j ↑ argmin(u↗ v).

4. This follows from the definition of convex conjugate. It is called the Fenchel-Young

inequality [8, Prop. 13.15] in the general scenario.

The convex conjugate of Bhattacharyya distance will be used later in our study. We note

that the above results can be generalized to obtain the convex conjugate of ↗(1/2) logF (↽,↼).

Here, the vectors u, v are replaced by observables O1,O2, and for an observable O, we define

& = φmax(O)↗ φmin(O) to be the di”erence between its maximum and minimum eigenvalues. This

can be shown by following the proof above, and using ideas from the proof of Lem. 7.14 to replace

the l1-norm with the Schatten-1 norm and classical fidelity with quantum fidelity. We leave the
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details as an exercise to the interested reader. We move on to studying other distance measures and

their relation to the average Bhattacharyya distance.

3.2 Other distance measures

We study a few classical distance measures on states that are used in quantum information.

We start be reviewing some definitions from classical statistics.

Definition 3.10 (Metrics on probability distributions). Let p and q be two probability

distributions over M symbols.

(1) The total variation distance (TVD) between p and q is defined as

→p↗ q→
TV

= sup
A∝[M ]




i↗A
pi ↗



i↗A
qi

 =
1

2
→p↗ q→

1
. (3.20)

(2) The Hellinger distance between p and q is defined as

HD(p, q) =
√

1↗ BC(p, q) =
1∋
2
→∋p↗∋

q→
2
. (3.21)

(3) The classical sine distance between p and q is defined as

SDC(p, q) =
√
1↗ FC(p, q). (3.22)

All the above distance measures are metrics on the set of probability distributions on a fixed

number of symbols. [39] proved that the sine distance, defined in Eq. (3.31), is a metric on quantum

states. That the classical sine distance is a metric on probability distributions follows from this

result.

Motivated by the discussion in the previous section, we define these distance measures on

quantum states, as determined by a measurement protocol. Unlike the previous section, where
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we only studied the average Bhattacharyya distance, we will look at both average and worst-case

distance measures in this section.

Definition 3.11. Let ↽ and ↼ be two quantum states and let M = {(E(i), Ni)}Li=1
be a measurement

protocol with total number of samples N =
∑

L

i=1
Ni.

(1) The average total variation distance between ↽ and ↼ determined by M is defined as

→↽↗ ↼→M,avg
=

L

i=1

Ni

N

∥∥∥p(i)ε ↗ p(i)ϑ

∥∥∥
TV

, (3.23)

while the maximum total variation distance is defined as

→↽↗ ↼→M,max
= max

i↗[L]

∥∥∥p(i)ε ↗ p(i)ϑ

∥∥∥
TV

, (3.24)

(2) The average Hellinger distance between ↽ and ↼ determied by M is defined as

HDM,avg(↽, ↽) =
L

i=1

Ni

N

√
1↗ BC(p(i)ε , p(i)ϑ ), (3.25)

while the maximum Hellinger distance is defined as

HDM,max(↽, ↽) = max
i↗[L]

√
1↗ BC(p(i)ε , p(i)ϑ ), (3.26)

(3) The average classical sine distance between ↽ and ↼ determined by M is defined as

SDCM,avg(↽,↼) =
L

i=1

Ni

N

√
1↗ FC(p(i)ε , p(i)ϑ ), (3.27)

while the maximum classical sine distance is defined as

SDCM,max(↽,↼) = max
i↗[L]

√
1↗ FC(p(i)ε , p(i)ϑ ). (3.28)
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The average and maximum total variation distance between quantum states has been studied

in the quantum information literature (see, for example, [70, 71]). While the distance measures

defined above are not metrics on the set of quantum states in general, they are pseudometrics. A

pseudometric on X is a function d : X ≃X ↖ R that is non-negative, satisfies d(x, x) = 0 for

all x ↑ X, is symmetric, and satisfies the triangle inequality. Observe that d is a metric if for all

x, y ↑ X, d(x, y) = 0 implies x = y.

Proposition 3.12. The functions d1(↽,↼) = →↽↗ ↼→M,avg
, d2(↽,↼) = →↽↗ ↼→M,max

, d3 =

HDM,avg(↽,↼), d4(↽,↼) = HDM,max(↽,↼), d5 = SDCM,avg(↽,↼), and d6(↽,↼) = SDCM,max(↽,↼)

are pseudometrics on the set of quantum states. Furthermore, if M is informationally complete,

then d1, . . . ,d6 are metrics.

Proof. It can be directly verified from respective definitions that d1, . . . ,d6 are non-negative,

symmetric, and vanish when both input arguments are equal. It remains to prove the triangle

inequality.

Since TVD, Hellinger distance and the classical sine distance are metrics on the set of

probability distributions, they satisfy the triangle inequality. It immediately follows that the average

distance measures d1,d3,d5 satisfy the triangle inequality. To see that the maximum distance

measures d2,d4,d6 also satisfy the triangle inequality, we use the fact that maxi(ui + vi) ↘

maxi ui +maxi vi for any real vectors u, v. Therefore, d1, . . . ,d6 are pseudometrics.

If M is informationally complete, then for any ↽ ⇓= ↼, there is some i ↑ [L] and k ↑ [Mi] such

that p(i)ε (k) ⇓= p(i)ϑ (k). Thus,
∥∥∥p(i)ε ↗ p(i)ϑ

∥∥∥
TV

> 0, HD(p(i)ε , p(i)ϑ ) > 0, and SDC(p(i)ε , p(i)ϑ ) > 0, since

TVD, Hellinger distance, and the sine distance are metrics on the set of probability distributions on

[Mi]. It follows that d1, . . . ,d6 > 0, showing that they are metrics on X.

Finally, we define the quantum counterparts of these distance measures.

Definition 3.13. Let ↽ and ↼ be two d-dimensional quantum states.
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(1) The trace distance between ↽ and ↼ is defined as

→↽↗ ↼→
tr
=

1

2
→↽↗ ↼→

1
. (3.29)

(2) The Bures distance between ↽ and ↼ is defined as

DBur(↽,↼) =
√

2↗ 2
∋
F (↽,↼). (3.30)

(3) The sine distance between ↽ and ↼ is defined as

SD(↽,↼) =
√
1↗ F (↽,↼). (3.31)

These quantum distance measures are metrics on the set of quantum states [68]. We show

that these quantum distance measures can be obtained by optimizing the corresponding classical

distance measures over all measurement protocols.

Proposition 3.14. For any two states ↽,↼ ↑ X, we have

→↽↗ ↼→
tr
= max

M
→↽↗ ↼→M,avg

= max
M

→↽↗ ↼→M,max
, (3.32)

DBur(↽,↼) =
∋
2max

M
HDM,avg(↽,↼) =

∋
2max

M
HDM,max(↽,↼), (3.33)

and

SD(↽,↼) = max
M

SDCM,avg(↽,↼) = max
M

SDCM,max(↽,↼). (3.34)

Proof. From [107, Lem. 9.1.1], [50, 36], we know that →↽↗ ↼→
tr
= maxE →pE,ε ↗ pE,ϑ→TV

, where the

maximization is over all POVMs. In particular, →pE,ε ↗ pE,ϑ→TV
↘ →↽↗ ↼→

tr
for every POVM E.

Then, from the definition of average and maximum TVD, we have that →↽↗ ↼→M,avg
↘ →↽↗ ↼→

tr
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and →↽↗ ↼→M,max
↘ →↽↗ ↼→

tr
. Since there is a two-outcome POVM E↔ such that →↽↗ ↼→

tr
=

→pE↓,ε ↗ pE↓,ϑ→TV
[107, Lem. 9.1.1], [50], the measurement protocol M↔ = {(E↔, 1)} achieves the

maximum in Eq. (3.32).

From Eq. (3.8), we know that for all i ↑ [L], BC(p(i)ε , p(i)ϑ ) ⇔
∋
F (↽,↼). Therefore, HDM,avg(↽,↼) ↘

HDM,max(↽,↼) ↘
√
1↗

∋
F (↽,↼) = DBur(↽,↼)/

∋
2. Since there is a measurement protocol M↔ for

which BCM↓(↽,↼) =
∋
F (↽,↼) (Prop. 3.7), Eq. (3.33) holds. The same arguments show that

Eq. (3.34) also holds.

3.3 Relation of Bhattacharyya distance with other distance measures

In this section, we derive some inequalities between the geometric-average Bhattacharyya

coe!cient and the other classical distance measures introduced in the previous section. Most of

these inequalities are straightforward generalizations of well-known inequalities in the literature.

We first note down the well-known Fuchs-van de Graaf inequality.

Proposition 3.15 (Fuchs-van de Graaf inequality [36]). For all quantum states ↽,↼, we have

1↗
∋
F (↽,↼) ↘ →↽↗ ↼→

tr
↘

√
1↗ F (↽,↼). (3.35)

Specializing to classical distributions, for all p, q ↑ #M , we have

1↗ BC(p, q) ↘ →p↗ q→
TV

↘
√
1↗ FC(p, q). (3.36)

Now, we generalize the Fuchs-van de Graaf inequality to the classical distance measures

defined in the previous sections. Since these classical distance measures are just distance measures

on the probability distributions associated with a measurement protocol, we only need the classical

version of Fuchs-van de Graaf inequality noted in Eq. (3.36) for proving the proposition below.

Proposition 3.16. Let ↽ and ↼ be any quantum states, and let M be any measurement protocol.
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Then, we have

(HDM,avg(↽,↼))
2 ↘ 1↗ BCM(↽,↼) ↘ (HDM,max(↽,↼))

2

↘ →↽↗ ↼→M,max
↘ SDCM,max(↽,↼) ↘

∋
2 HDM,max(↽,↼)

(3.37)

and

(HDM,avg(↽,↼))
2 ↘ →↽↗ ↼→M,avg

↘ SDCM,avg(↽,↼)

↘
√
1↗ FCM(↽,↼) ↘

∋
2
√
1↗ BCM(↽,↼).

(3.38)

Proof. Let M = {(E(i), Ni)}Li=1
be the given measurement protocol. For i ↑ [L], denote φi = Ni/N ,

where N =
∑

L

i=1
Ni the total number of samples. We have φ1, . . . ,φL ⇔ 0 and

∑
L

i=1
φi = 1. Define

xi = FC(p(i)ε , p(i)ϑ ) and yi = →p(i)ε ↗ p(i)ϑ →TV for i ↑ [L]. Then, by Fuchs-van de Graaf inequality

(Eq. (3.36)), 1↗∋
xi ↘ yi ↘

∋
1↗ xi for all i ↑ [L]. Observe that

BCM(↽,↼) =
L

i=1

∋
xi

ϱi FCM(↽,↼) =
L

i=1

xϱi
i

→↽↗ ↼→M,avg
=

L

i=1

φiyi →↽↗ ↼→M,max
= max

i↗[L]
yi

HDM,avg(↽,↼) =
L

i=1

φi

√
1↗

∋
xi HDM,max(↽,↼) = max

i↗[L]

√
1↗

∋
xi

SDCM,avg(↽,↼) =
L

i=1

φi

∋
1↗ xi SDCM,max(↽,↼) = max

i↗[L]

∋
1↗ xi.

(3.39)

We first prove each inequality in the chain of inequalities of Eq. (3.37). The proofs are in the

following list, where each item is titled by the inequality to be proven.

(1) (HDM,avg(↽,↼))2 ↘ 1↗ BCM(↽,↼):



i

φi

√
1↗

∋
xi ↘



i

φi(1↗
∋
xi) =


1↗



i

φi

∋
xi ↘


1↗



i

∋
xi

ϱi , (3.40)

where we obtained the first inequality by concavity of the square-root function, and used

the AM-GM inequality


L

i=1

∋
xi

ϱi ↘
∑

L

i=1
φi

∋
xi for the last inequality.

(2) 1↗ BCM(↽,↼) ↘ (HDM,max(↽,↼))2: Note that


i
xϱi
i

⇔ mini xi. Then, since xi ⇔ 0 for all
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i, we have


1↗



i

∋
xi

ϱi ↘


1↗
√
min
i

xi =
√
1↗min

i

∋
xi =

√
max

i

(1↗
∋
xi) = max

i

√
1↗

∋
xi.

(3.41)

(3) (HDM,max(↽,↼))2 ↘ →↽↗ ↼→M,max
:


max

i

√
1↗

∋
xi


2

= max
i

√
1↗

∋
xi


2

↘ max
i

yi, (3.42)

where the last inequality follows from Fuchs-van de Graaf inequality.

(4) →↽↗ ↼→M,max
↘ SDCM,max(↽,↼):

max
i

yi ↘ max
i

∋
1↗ xi (3.43)

by Fuchs-van de Graaf inequality.

(5) SDCM,max(↽,↼) ↘
∋
2 HDM,max(↽,↼) (as well as SDCM,avg(↽,↼) ↘

∋
2 HDM,avg(↽,↼)): For

all i ↑ [L], we have

∋
1↗ xi =

√
1 +

∋
xi

√
1↗

∋
xi ↘

∋
2
√

1↗
∋
xi, (3.44)

where we used the fact that xi ↑ [0, 1]. Taking the maximum (or average) gives the desired

inequality.

We first prove each inequality in the chain of inequalities of Eq. (3.38). As before, the proofs

are in the following list, where each item is titled by the inequality to be proven.

(1) (HDM,avg(↽,↼))2 ↘ →↽↗ ↼→M,avg
: By convexity of the square function a ¬↖ a2 and Fuchs-van
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de Graaf inequality, we have




i

φi

√
1↗

∋
xi

)
2

↘


i

φi

√
1↗

∋
xi


2

↘


i

φiyi. (3.45)

(2) →↽↗ ↼→M,avg
↘ SDCM,avg(↽,↼): By Fuchs-van de Graaf inequality, we have



i

φiyi ↘


i

φi

∋
1↗ xi. (3.46)

(3) SDCM,avg(↽,↼) ↘
√

1↗ FCM(↽,↼):



i

φi

∋
1↗ xi ↘



i

φi(1↗ xi) =


1↗



i

φixi ↘

1↗



i

xϱi
i
, (3.47)

where we used AM-GM inequality to obtain the last inequality.

(4)
√

1↗ FCM(↽,↼) ↘
∋
2
√
1↗ BCM(↽,↼): Writing x = FCM(↽,↼) and noting that x ↑ [0, 1],

we have
∋
1↗ x =

√
1 +

∋
x
√
1↗

∋
x ↘

∋
2
√
1↗

∋
x.

We can use the definition BDM(↽,↼) = ↗ log BCM(↽,↼) to derive inequalities for the average

Bhattacharyya distance from the above relations.

We end this chapter by giving a continuity bound for quantum fidelity. It is known that the

fidelity is a continuous function. A continuity bound quantifies how close the fidelity between two

pairs of states (↽,↼) and (↽→,↼→) must be in terms of a distance between these states.

Proposition 3.17 (Continuity bound for fidelity). For all quantum states ↽,↼, ↽→,↼→, we have

F (↽,↼)↗ F (↽→,↼→)
 ↘ 2

(
SD(↽, ↽→) + SD(↼,↼→)

)

↘ 2
(
DBur(↽, ↽

→) + DBur(↼,↼
→)
)

↘ 4
√
→↽↗ ↽→→

tr
+ →↼ ↗ ↼→→

tr
. (3.48)

Proof. To obtain Eq. (3.48), we prove the following chain of inequalities.
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(1) |F (↽,↼) ↗ F (↽→,↼→)| ↘ 2(SD(↽, ↽→) + SD(↼,↼→)): Note that |F (↽,↼) ↗ F (↽→,↼→)| = |(1 ↗

F (↽,↼))↗ (1↗ F (↽→,↼→))|. Also note that for all 0 ↘ x, y ↘ 1, we have

|x↗ y| ↘ |
∋
x↗∋

y||
∋
x+

∋
y| ↘ 2|

∋
x↗∋

y|. (3.49)

Then, taking x = 1↗ F (↽,↼) and y = 1↗ F (↽→,↼→) in this equation, we obtain

|F (↽,↼)↗ F (↽→,↼→)| ↘ 2|SD(↽,↼)↗ SD(↽→,↼→)|. (3.50)

Since the sine distance is a metric, we can use the triangle inequality and the reverse triangle

inequality to obtain

SD(↽,↼)↗ SD(↽→,↼→)
 ↘

SD(↽,↼)↗ SD(↽→,↼)
+

SD(↽→,↼)↗ SD(↽→,↼→)


↘ SD(↽, ↽→) + SD(↼,↼→).

(3.51)

(2) SD(↽, ↽→) ↘ DBur(↽, ↽→) for all states ↽, ↽→: Writing x = F (↽, ↽→), we have SD(↽, ↽→) =

∋
1↗ x =

√
1 +

∋
x
√

1↗
∋
x ↘

∋
2
√
1↗

∋
x = DBur(↽, ↽→), where we used the fact that

x ↑ [0, 1]. We similarly obtain SD(↼,↼→) ↘ DBur(↼,↼→), from which SD(↽, ↽→) + SD(↼,↼→) ↘

DBur(↽, ↽→) + DBur(↼,↼→) follows.

(3) DBur(↽, ↽→) + DBur(↼,↼→) ↘ 2(
√
→↽↗ ↽→→

tr
+ →↼ ↗ ↼→→

tr
): First, we obtain

DBur(↽, ↽
→) + DBur(↼,↼

→) ↘
∋
2

√
→↽↗ ↽→→

tr
+
√
→↼ ↗ ↼→→

tr


(3.52)

using Fuchs-van de Graaf inequality (Eq. (3.35)). Then, the desired inequality follows from

concavity of the square-root.

Note that similar ideas can also be used to give continuity bounds for square-root fidelity.

These bounds can also be specialized to classical probability distributions to get continuity bounds

for the Bhattacharyya coe!cient. Note, however, that the Bhattacharyya distance is not continuous
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on the set of classical probability distributions on a fixed alphabet.
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Chapter 4

Statistical problem

We begin by describing the mathematical problem studied by Juditsky & Nemirovski [62] in

Sec. 4.1. We then discuss the results of [62], including their estimation procedure and theoretical

guarantees in Sec. 4.2. In Sec. 4.3, we discuss some drawbacks with the estimation procedure

of [62], and subsequently, propose a simplified estimation procedure. We show that our estimation

procedure satisfies all the theoretical guarantees of [62], and derive some additional results.

4.1 Mathematical formulation

Suppose that we have a set of “states” X ↙ R
D, which is assumed to be a compact and

convex set. We imagine that there is some state xtrue ↑ X that is the “true state” of the system,

but is unknown to us. We are given some vector g ↑ R
D, and our goal is to estimate the linear form

↔g, xtrue↓ = gTxtrue. For intuition, one imagine the state xtrue to be the quantum state ↽ and the

vector g to be the observable O.

Now, the question arises as to what data we have available for estimating this linear form. We

suppose that we have access to a single outcome of a random variable determined by xtrue, chosen

from a family of random variables described below. This random variable can be defined a over a

joint space that contains all the data from the experiment, and therefore, a single random variable

is su!cient to develop the general theory. The details of how data from many random variables can

be incorporated into a single random variable is discussed at the end of this section.

Consider a family of random variables Zµ, parameterized by µ ↑ M for some subset M ↙ R
M .
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Each Zµ take values in a Polish space ($,B($)), equipped with a ↼-finite measure m that is not

identically zero. Zµ is assumed to have the probability density pµ with respect to the reference

measurem. Mathematically, pµ is a non-negative,B($)-measurable function satisfying

!
pµdm = 1,

so that

Pµ(B) =



B

pµdm (4.1)

for B ↑ B($) defines a probability distribution on ($,B($)). [62] call the mapping D(µ) = pµ,

from parameter µ ↑ M to the density function pµ, a parametric density family. The state

xtrue ↑ X determines the random variable ZA(xtrue)
through an a!ne function A: R

d ↖ R
M satisfying

A(X) ↙ M, and we are given one outcome of this random variable for the purpose of estimation.

We will denote the a!ne map as A: X ↖ M to avoid writing A(X) ↙ M repeatedly. The reason

we use A(xtrue) instead of xtrue as the parameter is to model situations where we don’t have or

need the full knowledge of xtrue. For example, if we want to estimate the expectation value of an

observable, it su!ces to perform measurements that are informative enough to learn the observable

but not perform full quantum tomography.

Our goal is to construct an estimator that uses an outcome of ZA(xtrue)
to estimate ↔g, xtrue↓.

We define an estimator to be any real-valued Borel measurable function on ($,B($)). In practice,

working with arbitrary measurable functions is challenging, from a theoretical as well as compu-

tational point of view. For this reason, [62] restrict their attention choosing an estimator from a

set F that satisfies two properties: (1) it is a finite-dimensional vector space of Borel measurable

functions on ($,B($)), and (2) it contains all the constant functions. Any estimator from the set

F is called an a!ne estimator. We note at this point that the functions in F need not be a!ne

functions, as $ might not even have a linear structure. Nevertheless, this terminology is motivated

by the later observation that for many problems of interest, the estimators in F turn out to be

a!ne functions. In fact, we will see in the quantum case (Sec. 5.3.2), where $ generally does not

have a linear structure, that it is still possible to express our estimator as an a!ne function.

To be able to choose an appropriate estimator in F given outcomes from pA(xtrue)
, we need to
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make sure that the set of a!ne estimators F “interacts well” with the parametric density family D.

[62] formalize this idea by defining a good pair of parametric density family and a!ne estimators.

Definition 4.1 (Good pair). We call a pair (D,F) of parametric density family D and finite-

dimensional space F of Borel functions on $ a good pair if the following conditions hold.

(1) M is a relatively open convex set in R
m.

(2) Whenever µ ↑ M, we have pµ(ϖ) > 0 for all ϖ ↑ $.

(3) Whenever µ, ν ↑ M, g(ϖ) = log(pµ(ϖ)/pς(ϖ)) ↑ F.

(4) Whenever g ↑ F, the function

Fĝ(µ) = log



!

exp (g(ϖ)) pµ(ϖ)dm


(4.2)

is well-defined and concave in µ ↑ M.

Note that the second condition that pµ > 0 is essential, for otherwise log(pµ) is ill-defined.

We will discuss the implications of this assumption later, and also show that it does not restrict the

power of our results in the quantum case.

We are now in a position to introduce the main objective of this section, which is to find an

estimator that minimizes the estimation error. For this purpose, we need to formalize what we

mean by estimation error of an estimator, since the error generally depends on the method used

in the statistical analysis (for example, a specific concentration inequality). To circumvent such

ambiguities, we focus on the smallest possible error of the estimator that one can achieve using any

statistical method.

Definition 4.2 (ω-risk of an estimator). Given a confidence level 1↗ ω ↑ (0, 1), the ω-risk of an

estimator g is defined as

R(g, ω) = inf

{
ε | inf

x↗X
PA(x) (|g ↗ ↔g, x↓ | ↘ ε) > 1↗ ω

}
. (4.3)
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We refer to the ω-risk as risk when the confidence level is clear from context.

Since the error R(g, ω) does not depend on the state or the data, it is minimax in the sense

we defined in the preliminaries. Since we want the smallest possible error that any estimator can

achieve, we can minimize the ω-risk over all estimators, which leads us to the following definition.

Definition 4.3 (Minimax optimal risk). Given a confidence level 1↗ ω ↑ (0, 1), the minimax

optimal risk is defined as

R↔(ω) = inf
ĝ

R(g, ω), (4.4)

where the infimum is over all measurable functions g on ($,B($)).

The term “minimax” alludes to the fact that we are looking for the best performance

(“minimum over all estimators”) in the worst case scenario (“no matter the state x”).

Now, we study the situation where we estimate ↔g, xtrue↓ using the outcomes of L independent

random variables Z(1)

A(1)(xtrue)
, . . . ,Z(L)

A(L)(xtrue)
. As before, we suppose that for i ↑ [L], we have a

Polish space ($(i),B($(i))), equipped with a ↼-finite measure m(i). For each i ↑ [L], we also have

a set of parameters M(i), and we have a family of random variables {Z(i)

µi | µi ↑ M(i)} that takes

values in $(i). The random variable Z(i)

µi has probability density p(i)µi with respect to the reference

measure m(i). We call the mapping D(i)(µi) = p(i)µi as the ith parametric density family. For each

i ↑ [L], we are given a!ne mappings A(i) : X ↖ M(i) that map the state xtrue to the corresponding

parameter in M(i).

We suppose that we get one outcome each from the random variables Z(1)

A(1)(xtrue)
, . . . ,Z(L)

A(L)(xtrue)

for estimation. We need an estimator to process the outcome of the random variable Z(i)

A(i)(xtrue)
. For

this purpose, we suppose that we have a set of estimators F(i), which is a finite-dimensional linear

vector space of measurable functions on ($(i),B($(i))) that contains constant functions. As before,

any function in F(i) is called an a!ne estimator, and we use it to process the outcome obtained

from Z(i)

A(i)(xtrue)
. For this to work well, we assume that (D(i),F(i)) is a good pair (see Def. 4.1).

At this point, we have L good pairs of parametric density families and set of a!ne estimators.

For the theory developed for a single random variable to hold for many random variables, we need a
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way to combine these L good pairs into one “large” good pair. This would enable us, in particular,

to combine the L a!ne estimators into a single a!ne estimator for ↔g, xtrue↓. [62] show how such a

construction can be done, which leads us to our next definition.

Definition 4.4 (Direct product of good pairs). Considering the following quantities for i ↑ [L].

Let ($(i),’(i)) be a Polish space endowed with a Borel ↼-finite measure m(i). Let D(i)(µi) = p(i)µi be

the parametric density family for µi ↑ M(i). Let F(i) be a finite-dimensional linear space of Borel

functions on $(i) containing constants, such that the pair (D(i),F(i)) is good. Then, the direct

product of these good pairs, (D,F) =
⊗

L

i=1
(D(i),F(i)), is defined as follows.

(1) The large space is the Cartesian product $ = $(1)≃· · ·≃$(L), endowed with the product Borel

↼-algebra B($) = B($(1))∞ · · ·∞B($(L)) and the product measure m = m(1)≃ · · ·≃m(L).

(2) The set of parameters is M = M(1) ≃ · · · ≃M(L), and the associated parametric density

family is D(µ) = pµ △


L

i=1
p(i)µi for µ = (µ1, . . . , µL) ↑ M.

(3) The linear space F comprises of all functions g defined as g(ϖ1,ϖ2, . . . ,ϖL) =
∑

L

i=1
g(i)(ϖi),

where g(i) ↑ F(i) and ϖi ↑ $(i) for i ↑ [L].

In the above definition, we used the fact that the Borel ↼-algebra on $ is the product of Borel

↼-algebras on $(i), since each $(i) is a Polish space [64, Lem. 1.2]. The first and the second conditions

are chosen so that the random variables Z(1)

A(1)(xtrue)
, . . . ,Z(L)

A(i)(xtrue)
are independent. We choose the

a!ne mapping A: X ↖ M to be the direct sum A = ′L

i=1
A(i) of A(1), . . . ,A(L). The third condition

is chosen such that the pair (D,F) satisfies the conditions of Def. 4.1, and is therefore itself a

good pair. Thus, we have a good pair ($,F), and consequently, the theory developed for a single

random variable also applies to this case. For this reason, we will focus on explaining constructing

estimation procedures for the case of a single random variable.

Before we present the estimation procedure of [62], we present a general definition of the

Bhattacharyya coe!cient. The Bhattacharyya coe!cient will be particularly important in the

estimation procedure we develop in Sec. 4.3.
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Definition 4.5 (Bhattacharyya coe!cient). Given probability densities pµ, pς with respect to

the reference measure m on ($,B($)), the Bhattacharyya coe!cient between the probability

distributions Pµ and Pς is defined as

BC(µ, ν) =



!

∋
pµpς dm. (4.5)

The Bhattacharyya distance between Pµ and Pς is defined as

BD(µ, ν) = ↗ log(BC(µ, ν)). (4.6)

Since the Bhattacharyya coe!cient and the Bhattacharyya distance are defined between

probability distributions, we should technically write BC(Pµ,Pς) and BD(Pµ,Pς). We shorten this

to BC(µ, ν) and BD(µ, ν) in Eq. (4.5) and Eq. (4.6) to avoid cumbersome notation in Sec. 4.3.

Observe that if $ is a finite set with discrete ↼-algebra, m is the counting measure, and M is

the standard simplex, then pµ = µ is a discrete probability distribution for µ ↑ M, and we have

BC(µ, ν) =
∑

i

∋
µiνi. This coincides with the definition for Bhattacharyya coe!cient for discrete

distributions that we saw in Def. 3.1. Moreover, we have the multiplicative (additive) property for

Bhattacharyya coe!cient (distance) for product distributions, as in the discrete case.

Lemma 4.6. Suppose that for i ↑ [L], we have Ni independent copies of a random variable Zµi taking

values in a Polish space ($(i),B($(i)), having density p(i)µi with respect to a ↼-finite reference measure

m(i), and µi ↑ M(i). Then, for $ =


L

i=1
($(i))Ni , m =


L

i=1
m(i), and µ, ν ↑ M =


L

i=1
(M(i))Ni ,

the Bhattacharyya coe!cient between the distributions Pµ and Pς on ($,B($)) with densities

pµ =


L

i=1
pµi and pς =


L

i=1
pςi with respect to m satisfies

BC(µ, ν) =
L

i=1

(BC(µi, νi))
Ni , (4.7)
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and the Bhattacharyya distance satisfies

BD(µ, ν) =
L

i=1

NiBD(µi, νi). (4.8)

Proof. Since ($(i),B($(i))) is a Polish space for each i ↑ [L], B($) = ∞L

i=1
(B($(i)))↓Ni [64,

Lem. 1.2]. Then, by Fubini-Tonelli’s theorem [64, Thm. 1.27], we have

BC(µ, ν) =



!

pµdm =
L

i=1



!(i)
p(i)µi

dm(i)


Ni

=
L

i=1

(BC(µi, νi))
Ni . (4.9)

Eq. (4.8) follows from the definition of Bhattacharyya distance and Eq. (4.7).

4.2 Juditsky and Nemirovski’s estimation procedure

The main result of Juditsky & Nemirovski [62] is a procedure to construct an a!ne estimator

whose error is within a small factor of the minimax optimal risk. As a result, their estimation

procedure cannot be improved upon by any method by more than a small constant factor under the

mathematical setting described in Sec. 4.1.

[62] propose the following procedure to construct an estimator for ↔g, xtrue↓ using an outcome

of a single random variable.

Box 1: Juditsky & Nemirovski’s estimation procedure [62]

(1) For r ⇔ 0, define the function (r : (X ≃X)≃ (F ≃ (0,⇑)) ↖ R as

(r(x, y; ς,ϑ) = ↔g, x↓ ↗ ↔g, y↓ + ϑ

[
log



!

exp(↗ς/ϑ)pA(x)dm



+ log



!

exp(ς/ϑ)pA(y)dm

]
+ 2ϑr. (4.10)
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(2) Denote the saddle-point value of (r by 2(↔(r):

(↔(r) =
1

2
sup

x,y↗X
inf

φ↗F,↼>0

(r(x, y;ς,ϑ) =
1

2
inf

φ↗F,↼>0

max
x,y↗X

(r(x, y;ς,ϑ). (4.11)

(3) Given a confidence level 1↗ ω ↑ (0.75, 1) and a positive number ⇁inf > 0, find ς↔ ↑ F

and ϑ↔ > 0 such that

max
x,y↗X

(log(2/ω)(x, y;ς↔,ϑ↔) ↘ 2(↔(log(2/ω)) + ⇁inf. (4.12)

This is achieved by minimizing the convex function

(log(2/ω)(ς,ϑ) = max
x,y↗X

(log(2/ω)(x, y;ς,ϑ). (4.13)

(4) The estimator g↔ ↑ F is then defined as

g↔ = ς↔ + c (4.14)

where the constant c is obtained by solving the optimization problem

c =
1

2
max
x↗X

[
↔g, x↓+ ϑ↔ log



!

exp (↗ς↔/ϑ↔) pA(x)dm

]

↗ 1

2
max
y↗X

[
↗↔g, y↓+ ϑ↔ log



!

exp (ς↔/ϑ↔) pA(y)dm

]
. (4.15)

Given an observation ϖ ↑ $ of ZA(xtrue)
, the estimate for ↔g, xtrue↓ is given by g↔(ϖ) with an

additive error of (↔(log(2/ω))+2⇁inf for a confidence level of 1↗ω. The number ⇁inf > 0 is introduced

because there may not exist points ϑ↔ > 0 and ς↔ ↑ F achieving the minimum in Eq. (4.11). Note

that computing the estimator g↔ requires one to perform optimization and can be computationally

costly. However, once the estimator has been computed, the estimates can be obtained using g↔

e!ciently, assuming that ς↔(ϖ) is easy to compute for all ϖ ↑ $.
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[62] prove the following results concerning the estimation procedure in Box 1. For all the

results discussed below, we assume that the mathematical premise of Sec. 4.1 holds. In particular,

(D,M) is a good pair (Def. 4.1).

Proposition 4.7. 1. The function (r defined in Eq. (4.10) is continuous and concave in (x, y) ↑

X ≃X, and continuous and convex in (ς,ϑ) ↑ F ≃ (0,⇑).

2. (r has a well-defined saddle-point value, 2(↔(r), that satisfies (↔(r) ⇔ 0.

3. The estimator g↔ constructed in Eq. (4.14) satisfies

PA(xtrue)
(|g↔ ↗ ↔g, xtrue↓ | ↘ (↔(log(2/ω)) + 2⇁inf) > 1↗ ω (4.16)

for all xtrue ↑ X and 1↗ ω ↑ (0.75, 1).

The main result of [62] is that the estimator g↔ is minimax optimal up to a small constant

factor in the sense noted below.

Theorem 4.8 (Lem. 3.2, [62]). For ω ↑ (0, 0.25), the estimation error (↔(log(2/ω)) satisfies

(↔(log(2/ω)) ↘
2 log(2/ω)

log(1/(4ω))
R↔(ω), (4.17)

where R↔(ω) is the minimax optimal risk defined in Eq. (4.4).

Thm. 4.8 guarantees that (↔(log(2/ω)), which is the estimation error of g↔, is within a

multiplicative factor of 2 log(2/ω)/ log(1/(4ω)) of the smallest possible error, given the mathematical

premise of Sec. 4.1. Finally, we note a useful expression for (↔(r) given by [62].

Proposition 4.9 (Prop. 3.1, [62]). The saddle-point value of the function (r in Eq. (4.10) can

be expressed as

2(↔(r) = max
x,y↗X

{↔g, x↓ ↗ ↔g, y↓ | BC(A(x),A(y)) ⇔ exp(↗r)} . (4.18)
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Moreover, the Bhattacharyya coe!cient BC(µ, ν) is a continuous and log-concave function of

(µ, ν) ↑ M ≃M.

Since the Bhattacharyya coe!cient is a log-concave function, the optimization defining (↔ in

Eq. (4.18) is convex, as we can take logarithm on both sides of the constraint. In the next section,

we discuss some drawbacks of the estimation procedure given in Box 1, and subsequently, we propose

a di”erent estimation procedure with the same guarantees as [62].

4.3 Simplified estimation procedure

In this section, we present a slightly modified version of the estimation procedure devel-

oped in [89], and prove that it satisfies the same guarantees as the estimation procedure of [62].

Subsequently, we present some new results concerning this estimation procedure.

We begin by presenting the motivation for developing a di”erent estimation procedure instead

of using the procedure given in Box 1.

(1) The space of a!ne estimators F can be high-dimensional, especially when we have many

outcomes from di”erent random variables. This can make the minimization

inf↼>0,φ↗F (log(2/ω)(ς,ϑ) in Box 1 costly to implement.

(2) When X is high-dimensional, the computation of the function

(log(2/ω)(ς,ϑ) = maxx,y↗X (log(2/ω)(x, y;ς,ϑ) can be costly, since for each ς,ϑ, one needs

to maximize (log(2/ω)(x, y;ς,ϑ) over X ≃X.

(3) Since (log(2/ω)(ς,ϑ) = maxx,y↗X (log(2/ω)(x, y;ς,ϑ) is itself a maximum of the function

(log(2/ω)(x, y;ς,ϑ), gradient based methods can be di!cult to use for performing the

minimization min↼>0,φ↗F (log(2/ω)(ς,ϑ) over ς ↑ F and ϑ > 0, even when the function

(log(2/ω)(x, y;ς,ϑ) is smooth in ς and ϑ. While subgradient methods can be used, they

typically a take longer time to converge than gradient based methods.

(4) The estimator constructed in Eq. (4.14) is hard to study analytically because it depends
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on ς↔ which is defined implicitly through optimization, and the constant c is computed by

solving a di”erent optimization problem.

Our approach to constructing the estimation essentially amounts to solving the saddle point

problem in Eq. (4.11) by first minimizing over ς ↑ F, then maximizing over x, y ↑ X, and finally,

minimizing over ϑ > 0. This is motivated by the observation that the minimization over ς can be

calculated analytically. Thus, we circumvent the optimization over ς, which eliminates a costly part

of computation compared to the estimation procedure of [62]. Moreover, the estimator we construct

is more amenable to analytical treatment. We present our estimation procedure below, assuming

the premise of Sec. 4.1.

Box 2: Estimation procedure proposed in [89]

(1) For r ⇔ 0, define the function (→
r : (X ≃X)≃ R+ ↖ R as

(→
r(x, y;ϑ) = 2ϑr + ↔g, x↓ ↗ ↔g, y↓+ 2ϑ log(BC(A(x),A(y))), (4.19)

and denote

(→
↔(r) =

1

2
min
↼′0

max
x,y↗X

(→
r(x, y;ϑ). (4.20)

(2) Given a confidence level 1↗ ω ↑ (0, 1), find ϑ↔ ⇔ 0 attaining the minimum in

2(→
↔(log(2/ω)) = min

↼′0

[
2ϑ log(2/ω) + max

x,y↗X
(↔g, x↓ ↗ ↔g, y↓+ 2ϑ log(BC(A(x),A(y))))

]
,

(4.21)

and find points x↔, y↔ ↑ X that attain the maximum in

maxx,y↗X (↔g, x↓ ↗ ↔g, y↓+ 2ϑ↔ log(BC(A(x),A(y)))), so that

2(→
↔(log(2/ω)) = (→

log(2/ω)
(x↔, y↔;ϑ↔). (4.22)
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(3) Define

ς↔ =
ϑ↔
2

log


pA(x↓)

pA(y↓)


. (4.23)

(4) The estimator g↔ is then obtained by setting

g↔ = ς↔ +
1

2
(↔g, x↔↓+ ↔g, y↔↓) . (4.24)

Observe that our algorithm does not require one to compute the minimum over ς ↑ F, thus

reducing the computational cost compared to the procedure of [62]. Furthermore, the estimator given

in Eq. (4.24) is appealing from a theoretical standpoint because we have a closed-form expression

in terms of the saddle-points (x↔, y↔) and ϑ↔. The main di”erence between the procedure given in

Box 2 and the procedure given in [89] is that we allow ϑ ⇔ 0 in Box 2, as opposed to ϑ > 0 in [89].

Since the estimation procedure in Box 2 is di”erent from the estimation procedure of [62]

given in Box 1, we need to prove that the estimator constructed in Box 2 satisfies all the guarantees

of [62]. We begin by proving that (→
↔(r) defined in Eq. (4.20) is equal to (↔(r) defined in Eq. (4.11).

Proposition 4.10. The following results hold for all r > 0.

1. log(BC(µ, ν)) is well-defined for all µ, ν ↑ M. It is continuous and concave in (µ, ν) ↑ M ≃M.

2. The function (→
r(x, y;ϑ) is continuous and concave in (x, y) ↑ X for a fixed ϑ ⇔ 0, and is

continuous and convex in ϑ ⇔ 0 for a fixed (x, y) ↑ X. The inner maximization over x, y ↑ X in

Eq. (4.21) is a convex optimization problem for each ϑ ⇔ 0, and the outer minimization over

ϑ ⇔ 0 is convex.

3. The optimization problem in Eq. (4.20) is the dual problem of the optimization problem in

Eq. (4.18) and strong duality holds, so that

(→
↔(r) = (↔(r). (4.25)
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Proof. 1. Since for all µ, ν ↑ M, we have BC(µ, ν) =

!

∋
pµpςdm and pµ, pς > 0 on $ by definition

of a good pair, we have BC(µ, ν) > 0. Consequently, log(BC(µ, ν)) is well-defined for all µ, ν ↑ M.

The continuity and concavity of log(BC(µ, ν)) follows from Prop. 4.9.

2. The continuity and convexity properties of (→
r can be directly verified. The inner

maximization in Eq. (4.21) over (x, y) ↑ X ≃ X is convex for each ϑ ⇔ 0 because the ob-

jective function ↔g, x↓ ↗ ↔g, y↓ + 2ϑ log(BC(A(x),A(y))) is concave in (x, y) and X is a convex

set. Since the maximum of a family of convex functions is convex [8, Prop. 8.16], 2ϑ log(2/ω) +

maxx,y↗X (↔g, x↓ ↗ ↔g, y↓+ 2ϑ log(BC(A(x),A(y)))) is a convex function of ϑ. It follows that the

outer minimization over ϑ ⇔ 0 in Eq. (4.21) is convex.

3. First, rewrite the maximization problem in Eq. (4.18) as

2(↔(r) = max
x,y↗X

{↔g, x↓ ↗ ↔g, y↓ | ↗ 2 log(BC(A(x),A(y))) ↘ 2r} . (4.26)

We add the factor of 2 to the constraint to ensure that the dual variable for this constraint coincides

with the variable ϑ in Eq. (4.19). The Lagrangian of the concave maximization problem in Eq. (4.26)

is given by

L(x, y;ϑ) = ↔g, x↓ ↗ ↔g, y↓+ 2ϑ (log(BC(A(x),A(y))) + r) = (→
r(x, y;ϑ), (4.27)

where x, y ↑ X are the primal variables and ϑ ⇔ 0 is the dual variable. Since X ↙ R
D is a non-empty

convex set, it has a non-empty relative interior [8, Fact. 6.14]. Taking any x ↑ relintX and setting

y = x, we have BC(A(x),A(y)) = 1 and 0 = ↗2 log(BC(A(x),A(x))) < 2r, so that Slater’s condition

holds. Therefore, strong duality holds, and we have

2(↔(r) = inf
↼′0

max
x,y↗X

L(x, y;ϑ) = inf
↼′0

max
x,y↗X

(→
r(x, y;ϑ) = 2(→

↔(r). (4.28)
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Next, we prove that (→
r in Eq. (4.19) has a saddle point in (x, y) ↑ X and ϑ ⇔ 0, and that

the ϑ-component of the saddle point is unique.

Proposition 4.11. For r > 0, the following statements hold.

1. There is some ϑ↔ ⇔ 0 that attains the minimum in Eq. (4.20).

2. The minimum over ϑ ⇔ 0 in Eq. (4.20) is attained at a unique ϑ↔ ⇔ 0.

3. (→
r defined in Eq. (4.19) has a saddle point (x↔, y↔;ϑ↔), where x↔, y↔ ↑ X and ϑ↔ ⇔ 0. Conse-

quently, 2(→
↔(r) = (→

r(x
↔, y↔;ϑ↔).

4. (x↔, y↔;ϑ↔) is a saddle point of (→
r if and only if x↔, y↔ ↑ X attain the maximum in Eq. (4.18)

and ϑ↔ ⇔ 0 is a dual optimal of the optimization problem in Eq. (4.18). Consequently, we have

(→
↔(r) =

1

2
(↔g, x↔↓ ↗ ↔g, y↔↓) . (4.29)

Proof. 1. Eq. (4.28) shows that we can write 2(→
↔(r) = inf↼′0maxx,y↗X (→

r(x, y;ϑ). It remains

to show that the infimum over ϑ ⇔ 0 can be replaced by a minimum. Denote fr(ϑ) = 2ϑr +

maxx,y↗X(↔g, x↓ ↗ ↔g, y↓+ 2ϑ log(BC(A(x),A(y)))) and write 2(→
↔(r) = inf↼′0 fr(ϑ).

Since log(BC(A(x),A(x))) = 0 for all x ↑ X, we have the lower bound fr(ϑ) ⇔ 2ϑr. Therefore,

lim↼↖⇒ fr(ϑ) = ⇑, from which it follows that fr is a coercive function. Since log(BC(A(x),A(y))) ↘

0 for all x, y ↑ X and ϑ ⇔ 0, we have fr(ϑ) ↘ 2ϑr+maxx,y↗X(↔g, x↓ ↗ ↔g, y↓), so that fr is a proper

function. fr is a convex function since the supremum of a family of convex functions is convex [8,

Prop. 8.16]. Similarly, fr is lsc because the supremum of a family of lsc functions is lsc [8, Lem. 1.26].

Then, by [8, Prop. 11.15], we can infer that fr has a minimizer in [0,⇑).

2. If the minimum of fr(ϑ) over ϑ ⇔ 0 occurs at ϑ↔ = 0 and it is unique, then the statement

holds. Thus, assume that there is at least one ϑ↔ > 0 that attains the minimum. Note that the set

[0,⇑) is strictly convex in the sense that for all ϑ,▷ ↑ [0,⇑) with ϑ ⇓= ▷, we have (ϑ+▷)/2 ↑ (0,⇑).

Then, by [8, Prop. 11.8], fr(ϑ) has at most one minimizer in [0,⇑), which implies that ϑ↔ must be

unique.
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3. By Prop. 4.10.1, (→
r(x, y;ϑ) is continuous and concave in (x, y) ↑ X ≃X for all ϑ ⇔ 0,

and continuous and convex in ϑ ⇔ 0 for all x, y ↑ X. Since X is compact and convex and [0,⇑) is

convex, by Sion-Kakutani minimax theorem [97], we have 2(→
↔(r) = min↼′0maxx,y↗X (→

r(x, y;ϑ) =

maxx,y↗X inf↼′0(→
r(x, y;ϑ). By Prop. 4.10.3, we have 2(→

↔(r) = 2(↔(r). It can be verified that

2(→
↔(r) = maxx,y↗X inf↼′0 (→

r(x, y;ϑ) gives Eq. (4.18) after performing the minimization over ϑ ⇔ 0,

since inf↼′0 ϑ(r + log(BC(A(x),A(y)))) = ↗⇑ if log(BC(A(x),A(y))) < ↗r. Since the maximum

of a continuous function on a compact set is attained at a point in the compact set, the set

{(x, y) ↑ X ≃X | ↗ log(BC(A(x),A(y)) ↘ r} is compact (since the intersection of a compact and

a closed set is compact), and ↔g, x↓ ↗ ↔g, y↓ is a continuous function of (x, y), the maximum in

Eq. (4.18) is always attained. Let x↔, y↔ ↑ X be points that attain the maximum in Eq. (4.18), and

let ϑ↔ ⇔ 0 be the (unique) point that attains minimum in min↼′0maxx,y↗X (→
r(x, y;ϑ). Then, we

have min↼′0maxx,y↗X (→
r(x, y;ϑ) = maxx,y↗X (→

r(x, y;ϑ↔) ⇔ (→
r(x

↔, y↔;ϑ↔) ⇔ inf↼′0(→
r(x

↔, y↔;ϑ) =

maxx,y↗X inf↼′0(→
r(x, y;ϑ). Since min↼′0maxx,y↗X (→

r(x, y;ϑ) = maxx,y↗X inf↼′0(→
r(x, y;ϑ) =

2(→
↔(r), we can conclude that (x↔, y↔;ϑ↔) is a saddle point of (→

r with 2(→
↔(r) = (→

r(x
↔, y↔;ϑ↔).

4. If (x↔, y↔;ϑ↔) is a saddle point of (→
r, then x↔, y↔ attains the maximum in 2(→

↔(r) =

maxx,y↗X inf↼′0(→
r(x, y;ϑ). Since performing the minimization over ϑ ⇔ 0 in

maxx,y↗X inf↼′0(→
r(x, y;ϑ) gives Eq. (4.18), we can conclude that x↔, y↔ ↑ X attain the maximum

in Eq. (4.18). Since ϑ↔ ⇔ 0 attains the minimum in min↼′0maxx,y↗X (→
r(x, y;ϑ), by Prop. 4.10.3,

can infer that ϑ↔ ⇔ 0 is the dual optimal of Eq. (4.18).

Now, suppose that x↔, y↔ attains the maximum in Eq. (4.18). Then, x↔, y↔ attains the

maximum in maxx,y↗X inf↼′0 (→
r(x, y;ϑ), so that it is a valid (x, y)-component of the saddle point of

(→
r. By Prop. 4.10.3, a dual optimal ϑ↔ ⇔ 0 of the optimization in Eq. (4.18) attains the minimum

in min↼′0maxx,y↗X (→
r(x, y;ϑ), so that it is a valid ϑ-component of the saddle point of (→

r.

Owing to Prop. 4.10.3, we can use any primal optimal points x↔, y↔ ↑ X that attain the

maximum in Eq. (4.18), and the (unique) dual optimal point ϑ↔ ⇔ 0 for the optimization in

Eq. (4.18) to compute the estimator in Box 2. We have also shown that (→
r defined in Eq. (4.19)
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has a well-defined saddle-point value that is equal to 2(↔(r). Next, we need to find a ς ↑ F so as to

construct a nearly-optimal a!ne estimator for ↔g, xtrue↓. For this purpose, we show that for a fixed

x, y ↑ X and fixed ϑ ⇔ 0, the function (→
r is obtained as a minimization of (r defined in Eq. (4.10)

over all ς. Using this observation, we can find a suitable ς↔ using the saddle point (x↔, y↔;ϑ↔) of

(→
r. Before constructing such a ς↔, we present the following useful characterization of coercivity for

proper, lsc, convex functions on a finite-dimensional space. The version of this result for real-valued

convex functions is stated in [43] without proof.

Proposition 4.12. Let V be a finite-dimensional real vector space and let f : V ↖ R be a proper,

lsc, convex function. Let x0 ↑ V be a point where f(x0) is finite. Then, f is coercive if and only if

for all non-zero x ↑ V, we have limt↖⇒ f(x0 + tx) = ⇑.

In particular, if f : V ↖ R is a convex function, then f is coercive if and only if for all

non-zero x ↑ V, we have limt↖⇒ f(tx) = ⇑

Proof. Given ◁ ↑ R, denote lev↑↽f = {x ↑ V | f(x) ↘ ◁} to be the sublevel set of f at height

◁. It can be verified that lev↑↽f is convex for all ◁ ↑ R. A set K ↙ V is said to be a cone

if for all x ↑ K and all ϑ > 0, we have ϑx ↑ K. Given a non-empty convex set C ↙ V, let

recC = {x ↑ V | x+ C ↙ C} denote the recession cone of C. See [8, Prop. 6.49] for a proof that

recC is a convex cone.

It follows from the definition of coercivity that if f is coercive, then limt↖⇒ f(x0+ tx) = ⇑ for

all non-zero x ↑ V. Therefore, suppose that for all non-zero x ↑ V, we have limt↖⇒ f(x0+ tx) = ⇑.

Let 0 = f(x0) ↑ R, so that x0 ↑ lev↑⇀f . Assume, towards a contradiction, that lev↑⇀f is unbounded.

Then, by [8, Cor. 6.52], there is some non-zero y ↑ rec lev↑⇀f . Since rec lev↑⇀f is a cone, we have

ty ↑ rec lev↑⇀f for all t > 0. Because x0 ↑ lev↑⇀f , by the definition of a recession cone, we have

x0 + ty ↑ lev↑⇀f for all t > 0. But limt↖⇒ f(x0 + ty) = ⇑ by assumption, which contradicts

x0 + ty ↑ lev↑⇀f for all t > 0. Therefore, lev↑⇀f must be bounded. It follows from [8, Prop. 11.13]

that f is coercive.

Now, if f is real-valued and convex, then it is proper and continuous [8, Cor. 8.40]. Then,
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taking x0 = 0 gives the desired result.

We now show how to construct a ς↔.

Lemma 4.13. Let ϑ > 0 be fixed. Then, for r ⇔ 0, the function

(↼

r (x, y;ς) = ↔g, x↓ ↗ ↔g, y↓ + ϑ

[
log



!

exp(↗ς/ϑ)pA(x)dm



+ log



!

exp(ς/ϑ)pA(y)dm

]
+ 2ϑr (4.30)

defined on (X≃X)≃F has a saddle point (x↔, y↔;ς↔) for x↔, y↔ ↑ X and ς↔ ↑ F. ς↔ can be chosen

as

ς↔ =
ϑ

2
log


pA(x↓)

pA(y↓)


. (4.31)

Furthermore, (x↔, y↔) is the (x, y)-component of the saddle point of (↼
r if and only if it attains the

maximum in maxx,y↗X (2ϑr + ↔g, x↓ ↗ ↔g, y↓+ 2ϑ log(BC(A(x),A(y)))), and therefore, the saddle-

point value of (↼
r is equal to

(↼

r (x
↔, y↔;ς↔) = 2ϑr + ↔g, x↔↓ ↗ ↔g, y↔↓+ 2ϑ log(BC(A(x↔),A(y↔))). (4.32)

Proof. We adapt the proof of [43, Thm. 2.1] to show this result. From Prop. 4.7.1, we know that

(↼
r is continuous and concave in (x, y) ↑ X ≃X and continuous and convex in ς ↑ F. Then, since

X is compact and F is a finite-dimensional vector space, it follows from Sion-Kakutani minimax

theorem [97] that (↼
r has a well-defined saddle-point value

inf
φ↗F

max
x,y↗X

(↼

r (x, y;ς) = sup
x,y↗X

inf
φ↗F

(↼

r (x, y;ς). (4.33)

Since (↼
r (x, y;ς) is continuous in x, y ↑ X for each ς ↑ F, infφ↗F (↼(x, y;ς) is upper semi-

continuous in (x, y) ↑ X≃X [8, Lem. 1.26]. Then, sinceX is compact, the maximummaxx,y↗X infφ↗F (↼(x, y;ς)

is attained in X ≃X. Therefore, to show the existence of a saddle point, it su!ces to show that
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the minimum infφ↗F maxx,y↗X (↼(x, y;ς) is attained in F. To avoid technicalities concerning zero

m-measure sets, in the remainder of the proof, we identify functions in F that are equal upto

m-measure zero, and redefine F accordingly. This does not a”ect any calculations because ς

appears in (↼
r (x, y;ς) only through integrals with respect to m.

Observe that for all s ↑ R and all x, y ↑ X, we have (↼
r (x, y;ς + s) = (↼

r (x, y;ς). Thus,

we restrict our attention to the subspace F0 = {ς ↑ F |

!
ςpςdm = 0} for a fixed ν ↑ M.

Since, by the definition of a good pair,

!
ςpςdm is well-defined for all ς ↑ F, the existence

of a minimum of (↼
r (x, y;ς) over ς ↑ F0 implies an existence of a minimum of (↼

r (x, y;ς) over

ς ↑ F. Because maxx,y↗X (↼(x, y;ς) is a well-defined, convex, lsc function of ς ↑ F0, to show that

infφ↗F0 maxx,y↗X (↼(x, y;ς) has a minimum in F0, it su!ces to prove that maxx,y↗X (↼
r (x, y;ς) is

coercive in ς ↑ F0 [8, Prop. 11.15]. To that end, we show that for all x, y ↑ X, (↼(x, y;ς) is coercive

for ς ↑ F0. Since (↼
r (x, y;ς) ↘ maxx,y↗X (↼

r (x, y;ς), this also shows that maxx,y↗X (↼
r (x, y;ς) is

coercive in ς ↑ F0.

For x, y ↑ X, write (↼
r (x, y;ς) = ↔g, x↓ ↗ ↔g, y↓+ 2ϑr + ϑ%x,y(ς/ϑ), where

%x,y(ς) = log



!

exp(↗ς)pA(x)dm


+ log



!

exp(ς)pA(y)dm


. (4.34)

Since %x,y(ς) is a real-valued convex function on F0, to show that it is coercive in ς, it su!ces to

prove that %x,y(tς) ↖ ⇑ as t ↖ ⇑ for all non-zero ς ↑ F0 (see Prop. 4.12). For all non-zero ς ↑ F0,

we have

!
max{ς, 0}pςdm =


!
max{↗ς, 0}pςdm > 0 since pς > 0 on $. Then, because ez >

max{z, 0} for all z ↑ R, we have %x,y(ς) > log(

!
max{↗ς, 0}pA(x)dm)+log(


!
max{ς, 0}pA(y)dm).

Since pA(x), pA(y) > 0 on $ for all x, y ↑ X, we can conclude that %x,y(tς) ↖ ⇑ as t ↖ ⇑. It

follows that %x,y(ς), and therefore, (↼(x, y;ς) is coercive in ς ↑ F0 for all x, y ↑ X. Therefore, (↼
r

has a saddle point.

Now, suppose that (x↔, y↔) is the (x, y)-component of the saddle-point of (↼
r (i.e., attains the

maximum of the function infφ(↼
r (x, y;ς)). Then, if ς↔ is the ς-component of the saddle point (i.e.,

attains the minimum of the function maxx,y (↼
r (x, y;ς)), it minimizes the function (↼

r (x
↔, y↔;ς). This
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is because (↼
r (x

↔, y↔;ς↔) ⇔ infφ(↼
r (x

↔, y↔;ς) = maxx,y infφ(↼
r (x, y;ς) = infφmaxx,y (↼

r (x, y;ς) =

maxx,y (↼
r (x, y;ς↔) ⇔ (↼

r (x
↔, y↔;ς↔). It follows that ς↔/ϑ minimizes the function %x

↓
,y

↓
(ς/ϑ). Thus,

we compute the minimum of %x,y(ς) over ς ↑ F following [43, Thm. 2.1] and [62, Prop. 3.1].

For a given x, y ↑ X, denote ςx,y = (1/2) log(pA(x)/pA(y)) ↑ F. Write any given ς ↑ F as

ς = ςx,y +#. Then, by Hölder’s inequality, we have

exp


1

2
%x,y(ςx,y)


=



!

√
pA(x)pA(y)dm

=



!

[
(pA(x)pA(y))

1/4e≃#/2

] [
(pA(x)pA(y))

1/4e#/2

]
dm

↘



!

(pA(x)pA(y))1/2e≃#dm



!

(pA(x)pA(y))1/2e#dm

= exp


1

2
%x,y(ς)


.

(4.35)

Since equality in Hölder’s inequality holds if and only if (pA(x)pA(y))
1/2e≃2# = 1(pA(x)pA(y))

1/2e2#

for some 1 ↑ R, # must be constant for equality. Therefore, every minimum of %x,y is of the form

ςx,y + s for s ↑ R. Since (↼
r (x, y;ς) is invariant under translations of the form ς ¬↖ ς+ s for s ↑ R,

we can choose ς↔ as

ς↔
ϑ

=
1

2
log


pA(x↓)

pA(y↓)


. (4.36)

Since ςx,y = (1/2) log(pA(x)/pA(y)) minimizes %x,y(ς) for all x, y ↑ X, we can verify by direct

substitution that maxx,y↗X infφ↗F (↼
r (x, y;ς) = maxx,y↗X (2ϑr + ↔g, x↓ ↗ ↔g, y↓+ 2ϑ log(BC(A(x),A(y)))).

Since (↼
r has a well-defined saddle-point value, (x↔, y↔) is the (x, y)-component of the saddle point if

and only if it attains the maximum in maxx,y↗X infφ↗F (↼
r (x, y;ς), from which Eq. (4.32) follows.

We are now in a position to show that the estimator constructed using Box 2 has the same

estimation error as the estimator constructed using Box 1.

Theorem 4.14. Given a confidence level 1↗ ω ↑ (0, 1), let ϑ↔ ⇔ 0 attain the minimum in

2(↔(log(2/ω)) = min
↼′0

[
2ϑ log(2/ω) + max

x,y↗X
(↔g, x↓ ↗ ↔g, y↓+ 2ϑ log(BC(A(x),A(y))))

]
(4.37)
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and x↔, y↔ ↑ X attain the maximum in maxx,y↗X (↔g, x↓ ↗ ↔g, y↓+ 2ϑ↔ log(BC(A(x),A(y)))). Define

ς↔ =
ϑ↔
2

log


pA(x↓)

pA(y↓)


. (4.38)

Then, the estimator

g↔ = ς↔ +
1

2
(↔g, x↔↓+ ↔g, y↔↓) (4.39)

satisfies

PA(xtrue)
(|g↔ ↗ ↔g, xtrue↓ | ↘ (↔(log(2/ω))) ⇔ 1↗ ω (4.40)

for all xtrue ↑ X.

Proof. For ϑ↔ = 0, we have g↔ = (↔g, x↔↓+ ↔g, y↔↓)/2 and (↔(r) = (↔g, x↔↓ ↗ ↔g, y↔↓)/2. Then, since

x↔, y↔ attain the maximum in maxx,y↗X (↔g, x↓ ↗ ↔g, y↓), for all xtrue ↑ X, we have

g↔ ↗ ↔g, xtrue↓ = ↔g, x↔↓ ↗ ↔g, xtrue↓ ↗ (↔(r) ↘ (↔g, x↔↓ ↗ ↔g, y↔↓)↗ (↔(r) = (↔(r)

↔g, xtrue↓ ↗ g↔ = ↔g, xtrue↓ ↗ ↔g, y↔↓ ↗ (↔(r) ↘ (↔g, x↔↓ ↗ ↔g, y↔↓)↗ (↔(r) = (↔(r).

(4.41)

Therefore, |g↔ ↗ ↔g, xtrue↓ | ↘ (↔(r) always holds. Thus, for the remainder of the proof, we take

ϑ↔ > 0.

Since (x↔, y↔) attains the maximum in maxx,y↗X (↔g, x↓ ↗ ↔g, y↓+ 2ϑ↔ log(BC(A(x),A(y)))),

by Lem. 4.13, (x↔, y↔;ς↔) for ς↔ defined in Eq. (4.38) is a saddle point of (↼↓
log(2/ω)

defined in

Eq. (4.30). Consequently, the points x↔, y↔ achieve the maximum in maxx,y↗X (↼↓
log(2/ω)

(x, y;ς↔), so

that

(↼↓
log(2/ω)

(x, y↔;ς↔) ↘ (↼
↓

log(2/ω)
(x↔, y↔;ς↔) = 2(↔(log(2/ω)) (∝x ↑ X)

(↼↓
log(2/ω)

(x↔, y;ς↔) ↘ (↼
↓

log(2/ω)
(x↔, y↔;ς↔) = 2(↔(log(2/ω)) (∝y ↑ X).

(4.42)

Next, we rewrite the constant term in the estimator g↔ in Eq. (4.24) in a convenient form.

Since

!
exp(↗ς↔/ϑ↔)pA(x↓)dm =


!
exp(ς↔/ϑ↔)pA(y↓)dm holds for ς↔ given in Eq. (4.38), we have

c △ 1

2
(↔g, x↔↓+ ↔g, y↔↓) (4.43)
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=
1

2

[
↔g, x↔↓+ ϑ↔ log



!

exp(↗ς↔/ϑ↔)pA(x↓)dm


+ ϑ↔ log(2/ω)

]

↗ 1

2

[
↗↔g, y↔↓+ ϑ↔ log



!

exp(ς↔/ϑ↔)pA(y↓)dm


+ ϑ↔ log(2/ω)

]

=
1

2
(↼↓
log(2/ω)

(x↔, y↔;ς↔)↗
[
↗↔g, y↔↓+ ϑ↔ log



!

exp(ς↔/ϑ↔)pA(y↓)dm


+ ϑ↔ log(2/ω)

]
(4.44)

=

[
↔g, x↔↓+ ϑ↔ log



!

exp(↗ς↔/ϑ↔)pA(x↓)dm


+ ϑ↔ log(2/ω)

]
↗ 1

2
(↼↓
log(2/ω)

(x↔, y↔;ς↔) (4.45)

We have g↔ = ς↔ + c.

We now prove a slightly more general statement than Eq. (4.40) following the ideas in [62,

Lem. 3.1]. To that end, let ⇁→ ⇔ 0 be any non-negative number and define ε = (↔(log(2/ω)) + ⇁→. For

all xtrue ↑ X, using Eq. (4.44) and taking x = xtrue in Eq. (4.42), we have

↔g, xtrue↓+ ϑ↔ log



!

exp(↗g↔/ϑ↔)pA(xtrue)
dm


+ ϑ↔ log(2/ω)

= ↔g, xtrue↓+ ϑ↔ log



!

exp(↗ς↔/ϑ↔)pA(xtrue)
dm


+ ϑ↔ log(2/ω)↗ c

= (↼↓
log(2/ω)

(xtrue, y
↔;ς↔)↗

1

2
(↼↓
log(2/ω)

(x↔, y↔;ς↔)

↘ (↔(log(2/ω))

= ε↗ ⇁→

2
.

(4.46)

Similarly, using Eq. (4.45) and taking y = xtrue ↑ X in Eq. (4.42), we find that

↗↔g, xtrue↓+ ϑ↔ log



!

exp(g↔/ϑ↔)pA(xtrue)
dm


+ ϑ↔ log(2/ω) ↘ ε↗ ⇁→

2
. (4.47)

Denoting ω→ = ωe≃⇁
↔
/2↼↓ and


!
fpA(xtrue)

dm = EA(xtrue)
[f ] for any ($,B(ϖ))-measurable function

f , we can divide Eq. (4.46) and Eq. (4.45) by ϑ↔ > 0 and rearrange terms to obtain

log
(
EA(xtrue)

[exp((↔g, xtrue↓ ↗ g↔ ↗ ε)/ϑ↔)]
)
↘ log


ω

2


↗ ⇁inf

2ϑ↔
△ log


ω→

2



log
(
EA(xtrue)

[exp((↗↔g, xtrue↓+ g↔ ↗ ε)/ϑ↔)]
)
↘ log


ω

2


↗ ⇁inf

2ϑ↔
△ log


ω→

2


.

(4.48)
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Then, from Markov’s inequality, we have

PA(xtrue)
(↔g, xtrue↓ ↗ g↔ ↗ ε ⇔ 0) ↘ EA(xtrue)

[exp((↔g, xtrue↓ ↗ g↔ ↗ ε)/ϑ↔)] ↘
ω→

2

PA(xtrue)
(↗↔g, xtrue↓+ g↔ ↗ ε ⇔ 0) ↘ EA(xtrue)

[exp((↗↔g, xtrue↓+ g↔ ↗ ε)/ϑ↔)] ↘
ω→

2
.

(4.49)

Using the union bound and ε = (↔(log(2/ω)) + ⇁→, we obtain

PA(xtrue)

(
|g↔ ↗ ↔g, xtrue↓ | ⇔ (↔(log(2/ω)) + ⇁→

)
↘ ω→ (4.50)

for all ⇁→ ⇔ 0 and all xtrue ↑ X. For all ⇁→ > 0, we have ω→ < ω, and for ⇁→ = 0, we obtain

Eq. (4.40).

Therefore, the estimator g↔ constructed using Box 2 has the same estimation error as the

estimator constructed using Box 1. Consequently, by Thm. 4.8, the estimator obtained using Box 2

is also minimax optimal under the premise of Sec. 4.1. Since (↔(log(2/ω) is within a constant factor

of the minimax optimal risk, we can use it as a proxy to study the optimal estimation error. We

give two additional results for the estimation procedure given in Box 2 and (↔(log(2/ω)).

Proposition 4.15. Let r > 0 and let (x↔, y↔;ϑ↔) be computed according to Box 2. Then, the

following statements hold.

1.

0 ↘ (↔(r) ↘ (max

↔ (r) △ 1

2
max
x,y↗X

(↔g, x↓ ↗ ↔g, y↓) (4.51)

2. (↔(r) = (max
↔ (r) if and only if ϑ↔ = 0.

Proof. 1. (↔(r) ⇔ 0 was noted in Prop. 4.7.2. The upper bound is obtained from Eq. (4.18) by

dropping the constraint.

2. By Prop. 4.10.3, we have 2(↔(r) = 2(→
↔(r) = min↼′0maxx,y↗X (→

r(x, y;ϑ), where (→
r is

defined in Eq. (4.19). Since ϑ↔ attains the minimum in min↼′0maxx,y↗X (→
r(x, y;ϑ), for ϑ↔ = 0,

we obtain 2(↔(r) = maxx,y↗X (→
r(x, y; 0) = 2(max

↔ (r). Conversely, if (↔(r) = (max
↔ (r), then
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2(max
↔ (r) = 2(→

↔(r) = min↼′0maxx,y↗X (→
r(x, y;ϑ) ↘ maxx,y↗X (→

r(x, y; 0) = 2(max
↔ (r). Thus,

ϑ↔ = 0 is a point that attains the minimum in 2(→
↔(r) = min↼′0maxx,y↗X (→

r(x, y;ϑ), and by

uniqueness of ϑ↔ shown in Prop. 4.11.2, ϑ↔ = 0 is the only such point.

Finally, we give an alternate expression for the saddle-point value 2(↔(r), obtained using

Fenchel-Rockafellar duality. Specifically, we convert the maximization in Eq. (4.18) into a minimiza-

tion problem, from which we also derive upper bounds on (↔(r).

Proposition 4.16. Let X ↙ R
d and M ↙ R

M . Suppose that A is linear. Then, for r > 0, the

following statements hold.

1. For all g ↑ R
d, we have

max
x,y↗X

(↔g, x↓ ↗ ↔g, y↓+ log(BC(A(x),A(y))))

= min
u,v↗RM

(
SX(g ↗A†u) + SX(↗g ↗A†v) + BD↔(u, v)


,

(4.52)

where SX is the support function of X.

2. The saddle-point value (↔(r) can be written as

(↔(r) = inf
↼>0

min
u,v↗RM

ϑ
(
SX

( g

2ϑ
↗A†u


+ SX

(
↗ g

2ϑ
↗A†v


+ BD↔(u, v) + r


. (4.53)

3. The saddle-point value (↔(r) is bounded above as

(↔(r) ↘ inf
↼>0

min
u↗RM

ϑ (BD↔(u,↗u) + r) .

s.t. A†u =
g

2ϑ

(4.54)

Furthermore, if A is injective, then we have

(↔(r) ↘ inf
↼>0

ϑ
(
BD↔

(
(A+)†

( g

2ϑ


,↗(A+)†

( g

2ϑ


+ r


, (4.55)
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where A+ = (A†A)≃1A† is the Moore-Penrose pseudoinverse of A.

Proof. 1. First, we note that

max
x,y↗X

(↔g, x↓ ↗ ↔g, y↓+ log(BC(A(x),A(y))))

= max
x,y↗Rd

[↔g, x↓ ↗ ↔g, y↓ ↗ (BD(A(x),A(y)) + χX⇐X(x, y))]

= (χX⇐X + BD ∈ (A′A))↔(g,↗g).

(4.56)

Now, χX⇐X is a proper, lsc, convex function since X is a compact and convex set. Moreover,

from Prop. 4.10.1, we have that ↗ log(BC) is well-defined, convex, and continuous on M ≃ M.

From [8, Cor. 6.15], we have that relintA(X) = A(relintX) and relint(M≃M↗ (A′A)(X≃X)) =

relint(M ≃ M) ↗ relint(A ′ A)(X ≃ X). Since M is relatively open, the latter set is equal to

M≃M↗ relintA(X)≃ relintA(X). Since X is a non-empty convex set, it has non-empty relatively

interior [8, Fact 6.14]. Picking a point x ↑ relintX, we have A(x) ↑ A(relintX) = relintA(X). But,

by definition, A(x) ↑ M = relintM. It follows that 0 ↑ relint(M ≃M ↗ (A′A)(X ≃X)). Note

that in finite dimensions, the notion of strong relative interior and relative interior coincide (see [8,

Fact 6.14]). Thus, by [8, Thm. 15.27], we have

(χX⇐X + BD ∈ (A′A))↔(g,↗g) = min
u,v↗RM

(
χ↔
X⇐X(g ↗A†u,↗g ↗A†v) + BD↔(u, v)


. (4.57)

Since the convex conjugate of characteristic function is the support function, and χX⇐X(x, y) =

χX(x) + χX(y) for x, y ↑ R
d, we obtain χ↔

X⇐X(a, b) = SX(a) + SX(b) for all a, b ↑ R
d. Combining

these observations gives Eq. (4.52).

2. From Prop. 4.10.3, we have

2(↔(r) = inf
↼>0

[
2ϑr + max

x,y↗X
(↔g, x↓ ↗ ↔g, y↓+ 2ϑ log(BC(A(x),A(y))))

]

= inf
↼>0

2ϑ

[
r + max

x,y↗X

(〈 g

2ϑ
, x

〉
↗
〈 g

2ϑ
, y
〉
+ log(BC(A(x),A(y)))

]
.

(4.58)
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Then, using Eq. (4.52), we obtain

2(↔(r) = inf
↼>0

2ϑ

[
r + min

u,v↗RM

(
SX(g ↗A†u) + SX(↗g ↗A†v) + BD↔(u, v)

]
, (4.59)

from which Eq. (4.53) follows.

3. Since SX(0) = 0, taking choosing u, v ↑ R
M satisfying A†u = g/2ϑ and v = ↗u, we obtain

the upper bound in Eq. (4.54). If, in addition, A: R
d ↖ R

M is injective, then A†A is invertible,

and A has a Moore-Penrose pseudoinverse A+ : R
M ↖ R

d given by A+ = (A†A)≃1A† [79, Sec. 3.6].

Moreover, (A+)† = (A†)+ for any linear map A [79, Sec. 3.6]. Thus, if we take u = (A+)†g→ for

g→ = g/2ϑ, then A†u = A†(A+)†g→ = (A+A)†g→ = g→, since A+A = I. We obtain Eq. (4.55) from

Eq. (4.54) for this choice of u.

In Eq. (4.53), the minimization over u, v is unconstrained, while the minimization over ϑ > 0,

while constrained, is one-dimensional. Thus, if we have an expression for the convex conjugate BD↔

of the Bhattacharyya distance, we can use Eq. (4.53) to compute the saddle-point value. If $ is a

finite set equipped with the discrete ↼-algebra, the distributions are discrete, and therefore, we can

use the closed-form expression for BD↔(u,↗u) given in Eq. (3.11) to compute the upper bounds in

Eq. (4.54) and Eq. (4.55).
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Chapter 5

TOOL: A minimax optimal procedure for learning expectation values

Our goal in this chapter is to develop an estimation method that can learn the expectation

values of observables using a measurement protocol specified by the experimentalist. We will focus on

the case of learning the expectation value of a single observable here, since we can use this procedure

with the union bound to learn the expectation values of many observables simultaneously in the

l⇒-norm. We formulate the quantum problem of learning the expectation value of an observable in

Sec. 5.1, and show how it relates to general statistical problem studied in Ch. 4. In Sec. 5.2, we

adapt the results of Sec. 4.3 to develop an estimation procedure for learning the expectation values.

We call the estimation procedure so obtained The Optimal Observable expectation value Learner, or

TOOL. We then discuss some properties of the estimator constructed by TOOL in Sec. 5.3. Finally,

in Sec. 5.4, we present a convex optimization algorithm, along with convergence guarantees, that

can be used to construct the estimator and estimation error for TOOL.

5.1 Mathematical formulation

Suppose that X is the set of d-dimensional density matrices. The state ↽ ↑ X is prepared by

a quantum device, but is not known to us. We are given an observable O, whose expectation value

↔O↓ = Tr(O↽) we wish to learn. Since we do not know the true state ↽, we perform measurements on

it. Suppose that M = {(E(i), Ni)}Li=1
is the measurement protocol that was, or will be, implemented

in the experiment. For each i ↑ [L], measuring the ith POVM gives an outcome k ↑ [Mi]

with probability p(i)ε (k) = Tr(E(i)

k
↽) according to Born’s rule. Since we only have access to the
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measurement outcomes, we need to construct an estimator that uses the outcomes observed in

the experiment to give an estimate for ↔O↓. An estimator in this context is a real-valued function

that takes the observed measurement outcomes as input and outputs an estimate for ↔O↓. Given a

confidence level 1↗ ω ↑ (0, 1), our goal is to find an estimator that estimates the expectation value

of O using the outcomes of M with a confidence level of 1↗ ω no matter what state ↽ is prepared by

the device, such that the estimation error is as small as possible.

To proceed, we need to formalize what we mean by “smallest possible estimation error”. For

a given estimator, the error constructed can depend on the statistical method used, such as the

specific concentration inequality used to derived confidence intervals. To avoid such ambiguities, we

look at the smallest possible estimation error for a given estimator, as defined below.

Definition 5.1 (ω-risk of an estimator given a measurement protocol). Given an observable

O, a confidence level 1↗ ω ↑ (0, 1), and a measurement protocol M, the ω-risk of the estimator O

for learning the expectation value of O with confidence level 1↗ ω is defined as

R( O,O,M, ω) = inf
{
ε > 0 | inf

ϑ
PM,ϑ

(
| O ↗ Tr(O↼)| ↘ ε


> 1↗ ω


, (5.1)

where PM,ϑ is the joint probability distribution over the labels determined by M and the state ↼ as

per Born’s rule.

Since the risk R( O,O,M, ω) does not depend on the underlying state or the data, we are

working with minimax procedures in the sense defined in Sec. 2.4. Then, we can define the minimax

optimal risk, which is obtained by minimizing the risk of an estimator over all estimation procedures.

Definition 5.2 (Minimax optimal risk given a measurement protocol). Given an observable

O, a confidence level 1↗ ω ↑ (0, 1) and a measurement protocol M, the minimax optimal risk for

�����������������������
�����	����������������
����������




86

learning the expectation value of O using outcomes of M to a confidence level of 1↗ ω is defined as

R↔(O,M, ω) = inf
Ô

R( O,O,M, ω), (5.2)

where the infimum is over all estimators.

The minimax optimal riskR↔(O,M, ω) is the main quantity of interest in practice, as we usually

know the measurement protocol M that was/will be implemented in an experiment. R↔(O,M, ω)

can also help us determine whether implementing the measurement protocol M for learning ↔O↓ is a

scalable as we increase the system size. Note that when we talk about scalability with the system

size, we look at measurement protocols M and observables O that have a suitable definition as a

function of the system size. For example, O can be the projector onto an n-qubit GHZ state, and M

can be the measurements of the stabilizer group of O. Then, the number of qubits n gives a natural

notion of system size, and we can study the scaling of the minimax optimal risk with respect to n.

In addition to such practical considerations, it is also useful to know from a theoretical

standpoint what measurements are the best to implement for a given observable. For if such

measurements happen to be implementable in an experiment, we can implement them to get

optimal performance. Thus, we also define the minimax optimal risk that is obtained by minimizing

R↔(O,M, ω) over all measurement protocols that use a fixed number of samples N .

Definition 5.3 (Minimax optimal risk over all measurement protocols). Given an observable

O and a confidence level 1↗ ω ↑ (0, 1), the minimax optimal risk for learning the expectation value

of O to a confidence level of 1↗ ω using N samples is defined as

R↔(O, N, ω) = inf
M

N(M)=N

R↔(O,M, ω), (5.3)

where the infimum is over all measurement protocols that use N copies of the state.

The main quantities of interest in this study are R↔(O,M, ω) and R↔(O, N, ω). Our goal for

this chapter is to construct an estimator that can achieve an estimation error to within a constant
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factor of R↔(O,M, ω). The problem of finding a measurement protocol that achieves the smallest

possible error for a given observable is postponed to Ch. 7.

Now, from Ch. 4, we know that the estimation procedure given in Sec. 4.3 achieves the

minimax optimal risk to within a small constant factor, which follows from the results of [62]. Thus,

we wish to use this statistical framework to construct an estimator and estimator error for learning

the expectation value of O. However, it is not possible to directly apply this framework because a

key requirement of [62] is that all the probability densities must be strictly positive. To circumvent

this problem, we suppose that for any given measurement protocol M, we instead implement the

perturbed measurement protocol M(⇁⇓) defined below.

Definition 5.4 (Perturbed measurement protocol). Given a measurement protocol M =

{(E(i), Ni)}Li=1
and a positive number ⇁⇓ > 0, we define the perturbed measurement protocol

M(⇁⇓) as the measurement protocol where the POVM


E(i)

1
+ ⇁⇓I/Mi

1 + ⇁⇓
, . . . ,

E(i)

Mi
+ ⇁⇓I/Mi

1 + ⇁⇓

)
(5.4)

is measured Ni times, for i ↑ [L].

Observe that for all ⇁⇓ > 0, the outcome probabilities obtained by implementing M(⇁⇓) is

strictly positive for every state. Moreover, for ⇁⇓ ▽ 1, these probabilities are very close to the

probabilities obtained by implementing M. Furthermore, the perturbed measurement protocol is

trivial to implement in an experiment for any given ⇁⇓ > 0, either by randomly sampling POVMs

from M and measuring them, or by post-processing the measurement outcomes of M. For the

random sampling strategy, for each i ↑ [L] and r ↑ [Ni], at the rth repetition of the ith POVM, we

sample the POVM E(i) with probability 1/(1+⇁⇓) and measure it, or with probability ⇁⇓/(1+⇁⇓), we

(uniformly) randomly choose a number in [Mi] and output it. This randomized strategy implements

the measurement protocol M(⇁⇓). If the measurement protocol M has already been implemented in

an experiment, we can post-process the observed outcomes to obtain outcomes from M(⇁⇓) as follows.

For each i ↑ [L] and r ↑ [Ni], if we observe the outcome o(i)r ↑ [Mi] after the rth repetition of the
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ith POVM E(i), we output o(i)r with probability 1/(1 + ⇁⇓), or we output a (uniformly) randomly

chosen number in [Mi] with probability ⇁⇓/(1 + ⇁⇓). Therefore, from a practical point of view, we

don’t lose much by assuming that we measure M(⇁⇓). However, from a theoretical point of view, it

is important to know that the theoretical guarantees for the estimator as well as the optimality

results can be derived for M instead of M(⇁⇓). We will show in Ch. 7 that all our guarantees and

optimality results are valid for M by choosing a su!ciently small ⇁⇓ > 0. It is therefore su!cient to

obtain results in this chapter for any given ⇁⇓ > 0.

In the remainder of this section, we formally map the problem of learning the expectation

value of an observable to the statistical problem studied in Sec. 4.1. For readers who wish to skip

the details, we provide a quick summary of this mapping in Tab. 2. The first quantity of interest

is the set of states X. In the statistical problem, this is a compact and convex subset of R
D. On

the other hand, in the quantum case, the set of quantum states, while compact and convex, is a

subset of C
d⇐d. This, however, is not a problem, since we can construct an isometric isomorphism

from the set Sd of Hermitian matrices in C
d⇐d to R

d
2
(i.e., D = d2 in the quantum case). The

image of compact and convex sets under a linear map are compact and convex. It can be verified

that I : Sd ↖ R
d
2
defined as I(P ) = ((Pii)1↑i↑d, (

∋
2 Re(Pij))1↑i<j↑d, (

∋
2 Im(Pij))1↑i<j↑d) for

P ↑ Sd an isometric isomorphism, where the notation (Pij)1↑i↑d means P11, · · · , Pdd and so forth.

Since all the matrices in Sd appear in our construction only through inner products, we can directly

work with Sd instead of R
d
2
. Thus, we omit the map I in the construction for brevity.

We take the vector g in Sec. 4.1 to be the observable O ↑ Sd. Thus, our goal is to estimate

↔g, xtrue↓ = Tr(O↽) in the quantum scenario. For this purpose, we need to incorporate data obtained

from an experiment. Recall that this is done in Sec. 4.1 by considering random variables Z(i) for

i ↑ [L], taking values in a Polish space ($(i),B($(i))). The random variable Z(i) is assumed to

have a density p(i)
A(i)(xtrue)

with respect to a ↼-finite reference measure m(i) on ($(i),B($(i)). The

probability densities p(i)µ are parameterized by µ ↑ M(i), where M(i) is a relatively open convex set

in a finite-dimensional space, and A(i) : X ↖ M(i) is an a!ne map that determines the parameter

given the true state xtrue.
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In the quantum scenario, our data corresponds to measurement outcomes. Upon measuring

the ith POVM E(i), we observe an outcome in the set [Mi]. Thus, for each i ↑ [L], we define

$(i) = [Mi], and equip $(i) with the discrete topology 2!
(i)
. It can be verified that $(i) is a separable

complete metric space (and thus a Polish space), where the underlying metric is the discrete metric

d(i, j) = 0 i” i = j. The Borel ↼-algebra generated by the discrete topology is also discrete. We

equip ($(i),B($(i))) with the counting measure m(i), i.e., m(i)(E) = |E| for any E ↙ $(i). The

probability density functions with respect to m(i) are just the discrete distributions on $(i). Since

the probabilities must be strictly positive, we take M(i) = {x ↑ R
Mi | (∝i)xi > 0,

∑
i
xi = 1}

to be the relatively open simplex in Mi dimensions, and map µ ↑ M(i) to the density function

p(i)µ = (µ1, . . . , µMi). Since the density function is just a discrete distributions over Mi symbols, we

view it as a vector in the standard simplex #Mi .

Next, we need to construct an a!ne map A(i) that maps the state ↽ ↑ X to a parameter

A(i)(↽) ↑ M(i), which in turn determines the distribution p(i)
A(i)(ε)

. Since this distribution determines

the probability of measurement outcomes given a state, this is given by Born’s rule. Therefore, given

the parameter ⇁⇓ > 0 (for the perturbed measurement protocol), we define the a!ne map A(i) as

A(i)(↽) =


Tr(E(i)

1
↽) + ⇁⇓/Mi

1 + ⇁⇓
, · · · ,

Tr(E(i)

Mi
↽) + ⇁⇓/Mi

1 + ⇁⇓

)
(5.5)

on X.

Next, we need to choose a set F(i) of a!ne estimators. In Sec. 4.1, this is a finite-dimensional

space of real-valued measurable functions on ($(i),B($(i))) that contains constant functions. Since

($(i),B($(i))) is a discrete space, every function on $(i) is measurable. Moreover, since $(i) is

a finite set, real-valued functions on $(i) can be viewed as Mi-dimensional real vectors. This is

because any function ς(i) on $(i) can be identified with the vector (ς(i)(1), . . . ,ς(i)(Mi)). Thus, we

choose F(i) ⇐= R
Mi to be the set of all functions on $(i), or equivalently, all Mi-dimensional vectors.

We verify that each (D(i),F(i)) is a good pair, by checking that it satisfies the requirements

of Def. 4.1. The first two conditions of Def. 4.1 hold by construction, and the third condition holds
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because F(i) is the set of all functions on $(i). The last condition holds because for ς(i) ↑ F(i),

we have F
φ(i)(µ) = log(

∑
Mi
k=1

exp(ς(i)

k
)µk), which is a concave function of µ. We have thus verified

that (D(i),F(i)) is a good pair for i ↑ [L]. At this point, we have a set of estimators for the ith

POVM for each i ↑ [L]. According to the measurement protocol M, for each i ↑ [L], the ith POVM

is measured Ni times. Thus, we need a way to construct an estimator that accounts for multiple

measurement outcomes for every POVM measurement. For this purpose, we use the direct product

of good pairs (Def. 4.4) to construct a large space that accounts for all the measurement outcomes.

The large space $ is given by $ =


L

i=1
($(i))Ni , which we equip with the Borel ↼-algebra

B($). The reference measure on ($,B($)) is the product measure m =


L

i=1
(m(i))Ni . The set of

parameters is given by M = (M1)N1 ≃ · · ·≃ (ML)NL . The a!ne map A: X ↖ M is given by the

direct sum A = ′L

i=1
′Ni

r=1
A(i). Specifically, the ith map A(i) is repeated Ni times to incorporate Ni

outcomes for the ith POVM. The set of a!ne estimators F on the large space is defined as all the

estimators of the form ς =
∑

L

i=1

∑
Ni
r=1

ς(i,r), where ς(i,r) ↑ F(i) for all r ↑ [Ni] and acts on the rth

outcome of the ith POVM. However, for a fixed i, since we receive many outcomes from the same

distribution, by [62, Rem. 3.2], it su!ces to take ς(r,i) = ς(i) for all r ↑ [Ni] and all i ↑ [L]. Therefore,

given outcomes ϖ(i)

1
, . . . ,ϖ(i)

Ni
↑ $(i) sampled according to the distribution p(i)

A(i)(I(ε))
for i ↑ [L], the

estimate computed by ς using these outcomes is ς(ϖ(1)

1
, . . . ,ϖ(L)

NL
) =

∑
L

i=1

∑
Ni
r=1

ς(i)(ϖ(i)

r ).

For convenience of the reader, we summarize the mappings defined in this section in Tab. 2.

5.2 Estimation procedure

In this section, we introduce The Optimal Observable expectation value Learner (TOOL)

for estimating the expectation value of a given observable using the outcomes of the specified

measurement protocol. Formally, TOOL consists of two parts: (I) a procedure for constructing the

estimator and estimation error (Box 3), and (II) a procedure for estimating expectation value from

measurement outcomes (Box 4). In part (I), TOOL takes the observable O, the measurement protocol

M, the confidence level 1↗ ω, and the parameter ⇁⇓ > 0 as input, and constructs an estimator O↔

and the associated estimation error ε↔. This construction is done by solving a convex optimization
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X Set of density matrices

$(i) Measurement labels {1, . . . , Ni}

m(i) Counting measure on ($(i),B($(i))) with B($(i)) = 2!
(i)

M(i) Relatively open simplex {x ↑ R
Mi | (∝i) xi > 0,

∑
i
xi = 1}

pµ pµ = (µ1, . . . , µMi), µ ↑ M(i)

A(i) (A(i)(↽))k =
Tr(E

(i)
k ε)+⇁↑/Mi

1+⇁↑
, k ↑ [Mi], ⇁⇓ > 0

F(i) Real-valued functions on $(i), identified with Mi-dimensional real vectors

g Observable O

Table 2: A dictionary mapping the quantities for the statistical problem given in Sec. 4.1 to the
corresponding quantities for the quantum problem of estimating expectation values. The index i
varies from 1 to L, where L denotes the number of measurement settings.

problem (see Sec. 5.4), and is usually the most computationally intensive part of the estimation

procedure. The estimator O↔ and the estimation error ε↔ can be stored classically, and reused as

many times as necessary for the same input configuration (observable O, measurement protocol

M, confidence level 1↗ ω, and parameter ⇁⇓). Importantly, the construction of the estimator and

estimation error in part (I) does not depend on the measurement outcomes, and therefore, it can be

done either before or after the measurements are performed in an experiment. In part (II), we discuss

how to use the estimator O↔ to estimate the expectation value of O given the measurement outcomes

obtained after implementing M in an experiment. The estimator O↔ can compute the estimate

e!ciently from the data, and runs very fast in practice. Since part (II) is fairly straightforward, we

will use TOOL synonymously with part (I) in practice.

We now discuss part (I), which is construction of the estimator and estimation error. This

estimator construction is performed by adapting the results of Sec. 4.3 to the problem of learning

expectation value of an observable. Note that the construction we describe below di”ers from the

construction given in [92], in that we allow ϑ↔ = 0 in Box 3.
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Box 3: TOOL estimator construction

Input: Observable O, measurement protocol M, confidence level 1 ↗ ω ↑ (0, 1),

parameter 0 < ⇁⇓ ▽ 1

Estimator construction:

(1) Find ϑ↔ ⇔ 0 that achieves the minimum in

ε↔ = min
↼′0

[
ϑ

N
log


2

ω


+ max

χ1,χ2↗X


1

2
(Tr(Oχ1)↗ Tr(Oχ2))↗ ϑBDM(⇁↑)(χ1,χ2)

]
,

(5.6)

and χ↔
1
,χ↔

2
↑ X that achieve the maximum in

max
χ1,χ2↗X


1

2
(Tr(Oχ1)↗ Tr(Oχ2))↗ ϑ↔BDM(⇁↑)(χ1,χ2)


. (5.7)

Here, N =
∑

L

i=1
Ni is the total number of samples used by M, M(⇁⇓) is the perturbed

measurement protocol defined in Def. 5.4, and BCM(⇁↑) is the average Bhattacharyya

distance defined in Def. 3.4. See Eq. (5.10) for an explicit expression for BCM(⇁↑).

(2) For i ↑ [L], set

ς(i)

↔ (k) =
ϑ↔
2

log


Tr(E(i)

k
χ↔
1
) + ⇁⇓/Mi

Tr(E(i)

k
χ↔
2
) + ⇁⇓/Mi

)
, (5.8)

where k ↑ [Mi].

(3) Define the estimator O↔ to be the function

O↔ =
1

N

L

i=1

Ni

r=1

ς(i)

↔ +
1

2
(Tr(Oχ↔

1) + Tr(Oχ↔
2)) , (5.9)

where the rth copy of ς(i)

↔ accepts the outcome observed in the rth repetition of the

ith POVM as input, for r ↑ [Ni] and i ↑ [L].

Output: estimator O↔, estimation error ε↔

In practice, we can store the elements ς(i)(k) for k ↑ [Mi] and i ↑ [L], the constant (Tr(Oχ↔
1
)+
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Tr(Oχ↔
2
))/2, and the estimation error ε↔ computed in Box 3 in memory for future use. This takes at

most O(M) memory, where M =
∑

L

i=1
is the total number of POVM elements. While it may not

be obvious from Eq. (5.9), O↔ is actually an a!ne function of the observed frequencies, which we

show in Prop. 5.12. Importantly, the estimator O↔ and the estimation error ε↔ satisfy the rigorous

guarantee that for all states ↽, the true expectation value Tr(O↽) lies within an error of ε↔ to the

estimate with confidence level of 1↗ ω. To show this, we need the following result connecting the

average Bhattacharyya distance between two states determined by the measurement protocol M(⇁⇓)

(defined in Def. 3.4), and the Bhattacharyya distance (defined in Eq. (4.6)) between the parameters

defined by the mapping in Tab. 2.

Lemma 5.5. For the mapping given in Tab. 2, the Bhattacharyya distance between the parameters

A(χ1) and A(χ2) for states χ1,χ2 ↑ X is given by

BD(A(χ1),A(χ2)) = N BDM(⇁↑)(χ1,χ2)

= ↗
L

i=1

Ni log




Mi

k=1

√√√√

Tr(E(i)

k
χ1) + ⇁⇓/Mi

1 + ⇁⇓

)
Tr(E(i)

k
χ2) + ⇁⇓/Mi

1 + ⇁⇓

)

 .

(5.10)

Furthermore, BDM(⇁↑)(χ1,χ2) is well-defined, continuous, and jointly convex for all χ1,χ2 ↑ X.

Proof. We use the definitions in Tab. 2 in this proof. For i ↑ [L], we have BC(µ(i), ν(i)) =

∑
Mi
k=1

√
µ(i)

k
ν(i)
k
, where µ(i), ν(i) are elements of the relatively open standard simplex M(i). The

map A is given by A = ′L

i=1
′Ni

r=1
A(i), where A(i) : X ↖ M(i). Then, by multiplicativity of the

Bhattacharyya coe!cient (Lem. 4.6), for all states χ1,χ2 ↑ X, we have

BC(A(χ1),A(χ2)) =
L

i=1




Mi

k=1

√√√√

Tr(E(i)

k
χ1) + ⇁⇓/Mi

1 + ⇁⇓

)
Tr(E(i)

k
χ2) + ⇁⇓/Mi

1 + ⇁⇓

)


Ni

. (5.11)

Since

Tr(E(i)

k
χ1) + ⇁⇓/Mi

1 + ⇁⇓
= Tr


E(i)

k
+ ⇁⇓/MiI

1 + ⇁⇓
χ1

)
, (5.12)

and BD = ↗ log(BC) by definition, we obtain Eq. (5.10) from the above equations and Def. 3.4. From
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Prop. 4.10.1, we have that ↗ log(BC(A(χ1),A(χ2))) is well-defined, continuous and jointly convex,

from which it follows that BDM(⇁↑)(χ1,χ2) is well-defined, continuous, and jointly convex.

The estimator and estimation error constructed by TOOL satisfies the rigorous guarantee

noted below.

Proposition 5.6. The estimator O↔ and error ε↔ constructed by TOOL for learning the expectation

value of O using outcomes of M satisfy

PM(⇁↑),ε

(
| O↔ ↗ Tr(O↽)| ↘ ε↔


⇔ 1↗ ω (5.13)

for all ↽ ↑ X, where ⇁⇓ > 0 is the parameter used in the construction.

Proof. From Thm. 4.14, the optimal points ϑ→
↔ ⇔ 0 and x↔, y↔ ↑ X of

2(↔(log(2/ω)) = min
↼↔′0

[
2ϑ→ log(2/ω) + max

x,y↗X

(
↔g, x↓ ↗ ↔g, y↓+ 2ϑ→ log(BC(A(x),A(y)))

)]
(5.14)

can be used to construct the estimator g↔ = ς→
↔+(↔g, x↔↓+↔g, y↔↓)/2, where ς→

↔ = (ϑ→
↔/2) log(pA(x↓)/pA(y↓)).

This estimator satisfies the guarantee PA(xtrue)
(|g↔ ↗ ↔g, xtrue↓ | ↘ (↔(log(2/ω))) ⇔ 1 ↗ ω for all

xtrue ↑ X. To derive Eq. (5.13) from this guarantee, we use the mapping given in Tab. 2, and the

fact that BD(A(χ1),A(χ2)) = NBDM(⇁↑)(χ1,χ2) (Lem. 5.5). Additionally, we identify (↔(log(2/ω))

with ε↔, map ϑ→ to ϑ/N in Eq. (5.6), and map ς→
↔ to ς↔/N in Eq. (5.8). Then, the estimator g↔

becomes O↔ in Eq. (5.9) under these mappings.

Now, we move on to part (II), where we show how to use the estimator constructed in Box 3

on experimental data.

Box 4: TOOL estimation procedure

Input: Observable O, measurement protocol M, confidence level 1↗ ω ↑ (0.75, 1),

parameter 0 < ⇁⇓ ▽ 1, outcomes o = (o(1)
1

, . . . , o(1)
N1

, . . . , o(L)
1

, . . . , o(L)
NL

) of

M(⇁⇓)
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Estimation procedure:

(1) If the estimator O↔ and the error ε↔ in Box 3 have been pre-computed for the input

configuration (O,M, 1↗ω, ⇁⇓), then proceed to (2). Else, compute O↔ and ε↔ according

to Box 3.

(2) Compute the estimate for ↔O↓ using the outcomes o observed in the experiment as

O↔(o) =
1

N

L

i=1

Ni

r=1

ς(i)

↔ (o(i)r ) +
1

2
(Tr(Oχ↔

1) + Tr(Oχ↔
2)) . (5.15)

Here, o(i)r ↑ [Mi] denotes the outcome observed in the rth repetition of the ith POVM,

for r ↑ [Ni] and i ↑ [L].

Output: estimate O↔(o), estimation error ε↔

Step (2) of Box 4 requires O(N) time to implement on a computer, where N =
∑

L

i=1
Ni is the

total number of samples, since the entries of ς(i)

↔ and the constant term in O↔ are computed before

step (2) in Box 4. In practice, we see that computing an estimate from the observed outcomes is

very fast.

5.3 Properties of the estimator

In this section, we prove some properties for the estimator O↔ and the estimation error ε↔

constructed by TOOL. In Sec. 5.3.1, we use the result of [62] to show that the estimator constructed

by TOOL is minimax optimal to a constant factor under the premise of Sec. 5.1. This shows that

the estimation error ε↔ is an important quantity to study in its own right. We therefore derive

alternate expressions for ε↔ and bounds on it. In particular, we show that under certain conditions,

ε↔ is related to an f -divergence. In Sec. 5.3.2, we show that the estimator O↔ can be expressed as an

a!ne estimator of the observed frequencies. Subsequently, we compute the bias of this estimator.
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5.3.1 Minimax optimality

We begin by showing that the estimator O↔ constructed by TOOL is minimax optimal to a

constant factor in the following sense.

Proposition 5.7. The estimation error ε↔ of the estimator O↔ constructed by TOOL with parameter

⇁⇓ > 0 to learn the expectation value an observable O using the outcomes of M to a confidence level

of 1↗ ω ↑ (0.75, 1) satisfies

R↔(O,M(⇁⇓), ω) ↘ ε↔ ↘
2 log(2/ω)

log(1/(4ω))
R↔(O,M(⇁⇓), ω), (5.16)

where R↔(O,M(⇁⇓), ω) is the minimax optimal risk defined in Eq. (5.2).

Proof. This follows from Thm. 4.8 under the mappings defined in Tab. 2 and in the proof of

Prop. 5.6.

As in the case of the theoretical guarantee derived in Prop. 5.6, the above optimality result

applies when the measurement outcomes are obtained from the perturbed measurement protocol

M(⇁⇓). We prove in Thm. 7.13 that we get optimality guarantees for TOOL even for the case of

⇁⇓ = 0. Observe that

2 <
2 log(2/ω)

log(1/(4ω))
< 6.54 (5.17)

for confidence levels greater than 90%. Thus, the multiplicative factor in Eq. (5.16) is small for

large enough confidence levels.

The estimation error ε↔ is therefore an important quantity that needs to be studied in its

own right, as it can help understand the optimal performance for learning the expectation values of

observables. While a detailed study of ε↔ is postponed to Ch. 7, where we relate ε↔ to the minimax

norm, we note down some additional expressions for ε↔ in this section. We begin with the following

expression for ε↔, which is helpful in computing it analytically as well as numerically. Additionally,

we show that solving the optimization problem in Eq. (5.18) is su!cient to compute the estimator

O↔ in Box 3.
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Proposition 5.8. The estimation error ε↔ of the estimator constructed by TOOL with parameter

⇁⇓ > 0, for learning the expectation value of O using outcomes of M, can be expressed as

ε↔ = max
χ1,χ2↗X

1

2
(Tr(Oχ1)↗ Tr(Oχ2))

s.t. BDM(⇁↑)(χ1,χ2) ↘
1

N
log


2

ω


.

(5.18)

Furthermore, if χ↔
1
,χ↔

2
↑ X are the points achieving the maximum in Eq. (5.18), and ϑ↔ ⇔ 0

denotes the optimal value of the dual variable for the constraint BDM(⇁↑)(χ1,χ2) ↘ (1/N) log(2/ω)

in Eq. (5.18), then (χ↔
1
,χ↔

2
;ϑ↔) can be used to construct the estimator O↔ in Box 3.

Proof. It follows from Prop. 4.9 that

ε↔ = max
χ1,χ2↗X

1

2
(Tr(Oχ1)↗ Tr(Oχ2))

s.t. BC(A(χ1),A(χ2)) ⇔

ω

2


,

(5.19)

where we use the fact that ε↔ is equal to (↔(log(2/ω)). Since

BD(A(χ1),A(χ2)) = ↗ log(BC(A(χ1),A(χ2))), Eq. (5.18) follows from Lem. 5.5.

Next, from Prop. 4.11.4, it follows that (χ↔
1
,χ↔

2
;ϑ↔) as defined in the statement of Prop. 5.8 is

a saddle point (maximum in χ1,χ2 ↑ X and minimum in ϑ ⇔ 0) of the function

(log(2/ω)(χ1,χ2;ϑ) =
ϑ

N
log


2

ω


+ max

χ1,χ2↗X


1

2
(Tr(Oχ1)↗ Tr(Oχ2))↗ ϑBDM(⇁↑)(χ1,χ2)


. (5.20)

Note that by Prop. 4.11.3, a saddle point for the function (log(2/ω)(χ1,χ2;ϑ) always exists. Moreover,

ϑ↔ ⇔ 0 is unique (Prop. 4.11.2). It is shown in Prop. 4.10.3 that Eq. (5.6) is the dual optimization

problem of Eq. (5.18), which shows that ϑ↔ is the dual optimal. Since (χ↔
1
,χ↔

2
;ϑ↔) is a saddle point

of (log(2/ω)(χ1,χ2;ϑ), ϑ↔ achieves the minimum in Eq. (5.18), and χ↔
1
,χ↔

2
↑ X achieve the maximum

in maxχ1,χ2↗X (log(2/ω)(χ1,χ2;ϑ↔). It follows that (χ↔
1
,χ↔

2
;ϑ↔) can be used for constructing the

estimator in Box 3.
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We now give another expression for the estimation error in terms of the saddle points of

Eq. (5.6). This expression shows that, under some conditions, the error ε↔ is proportional to an

f -divergence. We first define this f -divergence below.

Definition 5.9. Given probability distributions p, q on M symbols, define

d(p, q) =


i↗supp p

(pi ↗ qi)2

2
∋
piqi

. (5.21)

if p, q have the same support, and ⇑ otherwise.

We can, in fact, extend the definition of d to an f -divergence between arbitrary probability

distributions, which we show below.

Proposition 5.10. The function f : (0,⇑) ↖ R given by

f(x) =
(x↗ 1)2

2
∋
x

(5.22)

defines an f-divergence d(P,Q) = Df (P,Q) between probability distributions P,Q on a measurable

space according to Eq. (2.3). d is symmetric in its arguments. For discrete probability distributions

p, q on M symbols, d(p, q) is equal to Eq. (5.21).

Proof. We can write

f(x) =
1

2
∋
x
↗

∋
x+

1

2
x3/2. (5.23)

Since 1/
∋
x, ↗

∋
x, and x3/2 are convex on (0,⇑), f is convex. We also have f(1) = 0. Thus,

d △ Df as defined in Eq. (2.3) is an f -divergence. d is symmetric because xf(1/x) = f(x) for all

x ↑ (0,⇑) [82, Rem. (7.3)].

It remains to verify that we obtain Eq. (5.21) for discrete distributions. For that purpose,

observe that f →(⇑) = limx↖0 xf(1/x) = ⇑. Thus, if p is not absolutely continuous with respect to

q, then d(p, q) = ⇑. Since p, q are discrete, p is absolute continuous with respect to q i” the support

of p is contained in the support of q. Since d(q, p) = d(p, q), it follows that d(p, q) < ⇑ only when
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the supports of p and q are equal.

The f -divergence d is closely related to the χ2-divergence. The χ2-divergence (or Pearson

divergence) is an f -divergence defined by fP (x) = (x ↗ 1)2/2 according to Def. 2.5, while the

reverse χ2-divergence (or the Neyman divergence) is an f -divergence defined by fN = (x↗ 1)2/2x

(see [94, Sec. (2.3)]). The χ2-divergence is an important quantity in statistics, as it bounds the

performance of statistical methods for hypothesis testing and estimation (see, for example, [21],

where the χ2-divergence is relevant for estimating the expectation values of Pauli observables). d

defined in Eq. (5.21) is a symmetrized version of the χ2-divergence, obtained by taking the geometric

mean of fP and fN , since f(x) =
√

fP (x)fN (x) for all x ↑ (0,⇑).

Below, we give bounds on the estimation error ε↔ in terms of the optimal points χ↔
1
,χ↔

2
and

ϑ↔ of Eq. (5.6). When these optimal points satisfy some conditions, we can show that the error can

be expressed in terms of d.

Proposition 5.11. Let χ↔
1
,χ↔

2
↑ X and ϑ↔ ⇔ 0 be the primal and dual optimal points respectively

for the optimization in Eq. (5.18). For i ↑ [L], let A(i) be the linear map defined in Tab. 2. Then,

the following statements hold.

1. The error ε↔ can be expressed as

ε↔ =
1

2
(Tr(Oχ↔

1)↗ Tr(Oχ↔
2)) . (5.24)

2. The error ε↔ satisfies the bound

0 ↘ ϑ↔

L

i=1

Ni

N

d(A(i)(χ↔
1
),A(i)(χ↔

2
))

BC(A(i)(χ↔
1
),A(i)(χ↔

2
))

↘ ε↔. (5.25)

3. If the points χ↔
1
,χ↔

2
are full rank and ϑ↔ > 0, then we have

ε↔ = ϑ↔

L

i=1

Ni

N

d(A(i)(χ↔
1
),A(i)(χ↔

2
))

BC(A(i)(χ↔
1
),A(i)(χ↔

2
))
. (5.26)
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Proof. 1. The estimation error ε↔ corresponds to the saddle-point value (↔(log(2/ω)) in Eq. (4.20).

From Prop. 4.11.3, we know that Eq. (4.20) has a saddle point. Moreover, from the proof of

Prop. 4.11.3, we know that this saddle point attains the maximum in Eq. (4.18). From these

observations, we can infer that Eq. (5.6) has a saddle point (χ↔
1
,χ↔

2
;ϑ↔), with χ↔

1
,χ↔

2
↑ X and ϑ↔ ⇔ 0.

The equation ε↔ = (Tr(Oχ↔
1
)↗ Tr(Oχ↔

2
))/2 then follows from Eq. (5.18).

2. From Eq. (5.18), we can infer that ε↔ ⇔ 0 since any χ1 = χ2 satisfies the constraint of the

optimization. Furthermore, d(A(i)(χ1),A(i)(χ2)) < ⇑ and BC(A(i)(χ1),A(i)(χ2)) > 0 for all i ↑ [L]

and all χ1,χ2 ↑ X, since A(i)(χ1) lies inside the relatively open simplex. Thus, if ϑ↔ = 0, then

Eq. (5.25) holds trivially. We therefore take ϑ↔ > 0 for the remainder of the proof.

From Eq. (5.6), we can write

ε↔ =

[
ϑ↔
N

log


2

ω


+ max

χ1,χ2↗X


1

2
(Tr(Oχ1)↗ Tr(Oχ2))↗ ϑ↔BDM(⇁↑)(χ1,χ2)

]
, (5.27)

where χ↔
1
,χ↔

2
attain the maximum. Slater’s condition holds for this optimization problem since

it is convex and relintX ⇓= ⫅̸. Thus, KKT conditions are necessary and su!cient for optimality

(see Sec. 2.5 for details). In particular, the gradient of the Lagrangian with respect to the primal

variables vanishes at the optimum. The Lagrangian for the optimization problem, after converting

it to a minimization problem by changing signs of the objective function, can be written as

L(χ1,χ2;21,22, ν1, ν2) = ↗1

2
Tr(Oχ1) +

1

2
Tr(Oχ2)↗ 2

ϑ↔
N


BDM(⇁↑)(χ1,χ2) + log


2

ω



+ ν1(Tr(χ1)↗ 1) + ν2(Tr(χ2)↗ 1)↗ Tr(21χ1)↗ Tr(22χ2),

(5.28)

where ν1, ν2 ↑ R are the dual variables for the constraints Tr(χ1) = 1 and Tr(χ2) = 1 respectively,

and 21,22 ↑ Sd are positive semi-definite matrices that are dual variables for the constraints χ1 ⇔ 0

and χ2 ⇔ 0 respectively. The gradient of L with respect to χ1 and χ2 is given by

∀χ1 L(χ1,χ2;21,22, ν1, ν2) = ↗1

2
O ↗ 2

ϑ↔
N

∀χ1 BDM(⇁↑)(χ1,χ2) + ν1 ↗ 21,

∀χ2 L(χ1,χ2;21,22, ν1, ν2) =
1

2
O ↗ 2

ϑ↔
N

∀χ2 BDM(⇁↑)(χ1,χ2) + ν2 ↗ 22.

(5.29)
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To proceed, we evaluate the gradient of BDM(⇁↑) using Eq. (5.10). Denoting Ẽ(i)

k
= (E(i)

k
+

⇁⇓I/Mi)/(1 + ⇁⇓), we obtain

∀χ1 BDM(⇁↑)(χ1,χ2) =
1

2

L

i=1

Ni

Mi

k=1

Ẽ(i)

k

BC(A(i)(χ1),A(i)(χ2))

√√√√Tr(Ẽ(i)

k
χ2)

Tr(Ẽ(i)

k
χ1)

,

∀χ2 BDM(⇁↑)(χ1,χ2) =
1

2

L

i=1

Ni

Mi

k=1

Ẽ(i)

k

BC(A(i)(χ1),A(i)(χ2))

√√√√Tr(Ẽ(i)

k
χ1)

Tr(Ẽ(i)

k
χ2)

.

(5.30)

Using the definition of A(i) in Tab. 2 and N =
∑

L

i=1
Ni, we obtain

Tr(χ1∀χ1 BDM(⇁↑)(χ1,χ2)) =
N

2
,

Tr(χ2∀χ2 BDM(⇁↑)(χ1,χ2)) =
N

2
.

(5.31)

Furthermore, we have

1

N

(
Tr(χ2∀χ1 BDM(⇁↑)(χ1,χ2)) + Tr(χ1∀χ2 BDM(⇁↑)(χ1,χ2))

)
↗ 1

=
1

2N

L

i=1

Ni

BC(A(i)(χ1),A(i)(χ2))

Mi

k=1

√
Tr(Ẽ(i)

k
χ1)Tr(Ẽ

(i)

k
χ2)


Tr(Ẽ(i)

k
χ2)

Tr(Ẽ(i)

k
χ1)

+
Tr(Ẽ(i)

k
χ1)

Tr(Ẽ(i)

k
χ2)

↗ 2



=
1

2N

L

i=1

Ni

BC(A(i)(χ1),A(i)(χ2))

Mi

k=1

√
Tr(Ẽ(i)

k
χ1)Tr(Ẽ

(i)

k
χ2)

(Tr(Ẽ(i)

k
χ1)↗ Tr(Ẽ(i)

k
χ2))2

Tr(Ẽ(i)

k
χ1)Tr(Ẽ

(i)

k
χ2)

=
L

i=1

Ni

N

d(A(i)(χ1),A(i)(χ2))

BC(A(i)(χ1),A(i)(χ2))
.

(5.32)

Denote the dual optimal points as 2↔
1
,2↔

2
, ν↔

1
, ν↔

2
. Then, using the above gradient calculations, the

fact that ∀χ1 L = 0 and ∀χ2 L = 0 at optimality, and Tr(2↔
1
χ↔
1
) = Tr(2↔

2
χ↔
2
) = 0 by complementary
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slackness, we obtain

0 = Tr(χ↔
1∀χ1 L(χ↔

1,χ
↔
2)) = ↗1

2
Tr(Oχ↔

1)↗ ϑ↔ + ν↔1

0 = Tr(χ↔
2∀χ2 L(χ↔

1,χ
↔
2)) =

1

2
Tr(Oχ↔

2)↗ ϑ↔ + ν↔2

0 = Tr(χ↔
2∀χ1 L(χ↔

1,χ
↔
2)) = ↗1

2
Tr(Oχ↔

2)↗ 2
ϑ↔
N

Tr(χ↔
2∀χ1 BDM(⇁↑)(χ

↔
1,χ

↔
2)) + ν↔1 ↗ Tr(2↔1χ

↔
2)

0 = Tr(χ↔
1∀χ1 L(χ↔

1,χ
↔
2)) =

1

2
Tr(Oχ↔

1)↗ 2
ϑ↔
N

Tr(χ↔
1∀χ2 BDM(⇁↑)(χ

↔
1,χ

↔
2)) + ν↔2 ↗ Tr(2↔1χ

↔
1).

(5.33)

Solving for ν↔
1
, ν↔

2
from the first two equations, and rearranging the last two equations, we obtain

ϑ↔

L

i=1

Ni

N

d(A(i)(χ1),A(i)(χ2))

BC(A(i)(χ1),A(i)(χ2))
= ε↔ ↗

1

2
(Tr(2↔1χ

↔
2) + Tr(2↔2χ

↔
1)) , (5.34)

where we used the fact that ε↔ = (Tr(Oχ↔
1
)↗ Tr(Oχ↔

2
))/2. Since Tr(2↔

1
χ↔
2
),Tr(2↔

2
χ↔
1
) ⇔ 0, we obtain

Eq. (5.25).

3. By complementary slackness, we have Tr(2↔
1
χ↔
1
) = 0 and Tr(2↔

2
χ↔
2
) = 0. If χ↔

1
and χ↔

2
are

full rank, then we must have 2↔
1
= 2↔

2
= 0 for complementary slackness to hold. When ϑ↔ > 0, we

also have Eq. (5.34). From these observations, we obtain Eq. (5.26).

Numerically, we observe that the optimal points χ↔
1
,χ↔

2
are full rank when we measure all

the Pauli operators, but not necessarily full rank when we measure only some Pauli operators.

Motivated by this observation, we hypothesize that χ↔
1
,χ↔

2
are full rank when the implemented

measurement protocol is informationally complete. Further investigation is necessary to determine

whether or not this claim holds, and more generally, to characterize the conditions under which

χ↔
1
,χ↔

2
are full rank.

5.3.2 Bias

We show in this section that the estimator O↔ constructed by TOOL is a!ne in the observed

frequencies. We begin by defining what we mean by observed frequencies. Suppose that upon

implementing the measurement protocol M = {(E(i), Ni)}Li=1
in an experiment, we observed the
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outcomes o(i)r ↑ [Mi] for r ↑ [Ni] and i ↑ [L]. Then, for each i ↑ [L], the fraction of Ni outcomes

that are equal to a particular label k ↑ [Mi] is called the observed frequency f (i)

k
of label k of

the ith POVM. Mathematically, this can be expressed as

f (i)

k
=

|{r ↑ [Ni] | o(i)r = k}|
Ni

. (5.35)

We denote the vector of observed frequencies for the ith POVM as

f (i) = (f (i)

1
, . . . , f (i)

Mi
), (5.36)

and the large vector containing the observed frequencies of all the POVMs is denoted

f = (f (1), . . . ,f (L)). (5.37)

We show below that we can think of O↔ as a function of f instead of the measurement outcomes,

and show that it is a!ne in f .

Proposition 5.12. Let O↔ be the estimator constructed by TOOL to learn the expectation value of O

using outcomes of M. If o = (o(1)
1

, . . . , o(1)
N1

, . . . , o(L)
1

, . . . , o(L)
NL

) denotes the outcomes observed upon

implementing M, and f denotes the corresponding vector of observed frequencies, then we have

O↔(o) = O↔(f) =
L

i=1

Ni

N

〈
ε(i)

↔ ,f (i)

〉
+

1

2
(Tr(Oχ↔

1) + Tr(Oχ↔
2)) , (5.38)

where we denote

ε(i)

↔ = (ς(i)

↔ (1), . . . ,ς(i)

↔ (Mi)), (5.39)

for i ↑ [L].

Proof. For i ↑ [L] and k ↑ [Mi], denote e(i,k) to be the Mi-dimensional vector with the kth

component equal to 1 and zero elsewhere. Then, we have ς(i)

↔ (k) =
〈
ε(i)

↔ , e(i,k)
〉
. Consequently, the
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estimator O↔ in Eq. (5.9) can be written as

O↔(o) =
1

N

L

i=1

Ni

r=1

〈
ε(i)

↔ , e(i,o
(i)
r )

〉
+

1

2
(Tr(Oχ↔

1) + Tr(Oχ↔
2)). (5.40)

Now, observe that we can write

f (i) =
1

Ni

Ni

r=1

e(i,o
(i)
r ) (5.41)

for all i ↑ [L]. From the above equations, we obtain Eq. (5.38).

Using the above result, we can compute the bias of the estimator constructed by TOOL.

Corollary 5.13. If the true quantum state is ↽, then the bias of the estimator O↔ constructed by

TOOL with parameter ⇁⇓ > 0 for learning the expectation value of O using outcomes of M is equal to

Tr(O↽)↗ 1

2
(Tr(Oχ↔

1) + Tr(Oχ↔
2)) +

ϑ↔
2N

(
KL(PM,ε→PM(⇁↑),χ↓

1
)↗KL(PM,ε→PM(⇁↑),χ↓

2
)

, (5.42)

where M(⇁⇓) is the perturbed measurement protocol defined in Def. 5.4.

Proof. Note that for all i ↑ [L], we have E[f (i)] = p(i)ε , where (p(i)ε )k = Tr(E(i)

k
↽) for k ↑ [Mi]. Then,

denoting Ẽ(i)

k
= (E(i)

k
+ ⇁⇓I/Mi)/(1 + ⇁⇓) for i ↑ [L], from Eq. (5.38), we obtain

E[ O↔] =
L

i=1

Ni

N

〈
ε(i)

↔ , p(i)ε

〉
+

1

2
(Tr(Oχ↔

1) + Tr(Oχ↔
2))

=
ϑ↔
2N

L

i=1

Ni

Mi

k=1

Tr(E(i)

k
↽) log


Tr(Ẽ(i)

k
χ↔
1
)

Tr(Ẽ(i)

k
χ↔
2
)

)
+

1

2
(Tr(Oχ↔

1) + Tr(Oχ↔
2))

=
ϑ↔
2N

L

i=1

Ni

[
Mi

k=1

Tr(E(i)

k
↽) log


Tr(E(i)

k
↽)

Tr(Ẽ(i)

k
χ↔
2
)

)
↗

Mi

k=1

Tr(E(i)

k
↽) log


Tr(E(i)

k
↽)

Tr(Ẽ(i)

k
χ↔
1
)

)]

+
1

2
(Tr(Oχ↔

1) + Tr(Oχ↔
2))

=
ϑ↔
2N

L

i=1

Ni

[
KL(p(i)ε →A(i)(χ↔

2))↗KL(p(i)ε →A(i)(χ↔
1))

]
+

1

2
(Tr(Oχ↔

1) + Tr(Oχ↔
2))

=
ϑ↔
2N

[
KL(PM,ε→PM(⇁↑),χ↓

2
)↗KL(PM,ε→PM(⇁↑),χ↓

1
)
]
+

1

2
(Tr(Oχ↔

1) + Tr(Oχ↔
2)) ,

(5.43)
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where to obtain the last equality, we used the fact that KL(p∞ q→p→ ∞ q→) = KL(p→q) + KL(p→→q→)

for probability distributions p, p→, q, q→. Since the bias of O↔ is defined as Tr(O↽)↗ E[ O↔], we obtain

Eq. (5.42).

Thus, the estimator constructed by TOOL is biased in general.

5.4 Optimization algorithm

To construct the estimator given in Box 3, we need to perform the optimization given

in Eq. (5.6). For this, we present the approach described in [92, App. B] for performing this

optimization.

Eq. (5.6) has two optimizations – an inner optimization over density matrices χ1,χ2, and an

outer optimization over ϑ ⇔ 0. Both these optimization problems are convex, and therefore, can be

solved with rigorous convergence guarantees.

Box 5: Optimization algorithm

Input: Observable O, measurement protocol M, confidence level 1↗ ω ↑ (0.75, 1),

parameter 0 < ⇁⇓ ▽ 1

Optimization algorithm:

(1) For a given ϑ ⇔ 0, define the function f↼ : X ≃X ↖ R as

f↼(χ1,χ2) = ↗1

2
(Tr(Oχ1)↗ Tr(Oχ2)) + ϑBDM(⇁↑)(χ1,χ2). (5.44)

Then, solve the inner convex optimization problem in Eq. (5.6)

max
χ1,χ2↗X

[
1

2
(Tr(Oχ1)↗ Tr(Oχ2))↗ ϑBDM(⇁↑)(χ1,χ2)

]

= ↗ min
(χ1,χ2)↗X⇐X

f↼(χ1,χ2)

(5.45)

using the version of Nesterov’s second method [76] given in Ref. [101].
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(2) Perform the outer convex optimization over ϑ in Eq. (5.6) using any algorithm that

can find a local minimum of a real-valued function on [0,⇑).

Nesterov’s second method [76, 101], used for optimizing the function f↼ defined in Eq. (5.44)

over X≃X, is an accelerated version of proximal gradient descent with the property that each iterate

lies in X ≃X. Nesterov’s second method is, therefore, suitable for optimizing convex functions of

the density matrix. Nesterov’s second method requires the Lipschitz constant of the gradient of the

objective function. When this Lipschitz constant is not known explicitly, one can use a backtracking

scheme to estimate the Lipschitz constant [101]. For implementing Nesterov’s second method for the

inner optimization in Eq. (5.45), one needs to be able to project a given Hermitian matrix onto the

set of density matrices. This can be done, for example, by diagonalizing the Hermitian matrix, and

projecting the eigenvalues onto the standard simplex using [104]. This is one of the computationally

costliest parts of the algorithm since diagonalizing a d≃ d matrix requires O(d3) time in the worst

case. Additionally, because we need to compute Tr(E(i)

k
χ1) and Tr(E(i)

k
χ2) for k ↑ [Mi] and i ↑ [L]

to evaluate BDM(⇁↑)(χ1,χ2), we have an extra time cost of O(Md2), where M =
∑

L

i=1
Mi is the

total number of POVM elements. Similarly, since we need to store all the POVM elements in

memory, we also use O(Md2) memory. The outer optimization over ϑ in Eq. (5.6) is convex and

one-dimensional. Therefore, the optimization algorithm given in Box 5 takes a total of O(d3 +Md2)

time and O(Md2) memory. Finally, we remark that while theoretically ⇁⇓ can be an arbitrarily

small positive number, from a practical perspective, a very small value of ⇁⇓ can lead to numerical

issues since the gradient of f↼ can be very large. We leave the problem of devising methods to

circumvent such numerical issues for future work.

Since the outer optimization over ϑ ⇔ 0 is one-dimensional and convex, o”-the-shelf routines

work well because it su!ces to find a local minimum (recall that every local minimum of a convex

function is a global minimum). The inner optimization overX≃X, however, can be high-dimensional,

and one needs a convergence guarantee. Below, we show that the inner optimization problem satisfies

the requirements that guarantee the convergence of Nesterov’s second method to within a specified

precision.
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Proposition 5.14. 1. The objective function f↼ defined in Eq. (5.44) is convex and smooth on an

open set containing X ≃X.

2. The gradient of f↼ is a Lipschitz continuous function on X ≃X.

3. Nesterov’s second method for optimizing f over X ≃X is guaranteed to converge to the optimum

to within the specified precision.

Proof. 1. To define the derivatives of f↼ on X ≃ X, f needs to be well-defined on an open

set D containing X ≃ X. For that purpose, denote r = ⇁⇓/(2maxi↗[L]Mi) and define D =

conv(⇒χ1,χ2↗XB1(χ1, r)≃B1(χ2, r)), whereB1(χ, r) = {χ→ ↑ X | →χ→ ↗ χ→
1
< r}. Since ⇒χ1,χ2↗XB1(χ1, r)≃

B1(χ2, r) is open, it is contained in intD. Since D is convex, so is intD [8, Prop. (3.45)]. But D is

the smallest convex set containing ⇒χ1,χ2↗XB1(χ1, r)≃B1(χ2, r), implying that D = intD, so that

D is open. Furthermore, X ≃X ↙ D by construction. Now, for all χ1 ↑ X and all χ ↑ B1(χ1, r),

we have Tr(E(i)

k
χ) = Tr(E(i)

k
χ1) + Tr(E(i)

k
(χ ↗ χ1)). We have 0 ↘ Tr(E(i)

k
χ1) ↘ 1, and by matrix

Hölder’s inequality, we have |Tr(E(i)

k
(χ↗χ1))| ↘

∥∥∥E(i)

k

∥∥∥
⇒
→χ↗ χ1→1 ↘ r, since

∥∥∥E(i)

k

∥∥∥
⇒

↘ 1 for each

POVM element E(i)

k
. A similar statement holds for all χ2 ↑ X and all χ ↑ B1(χ2, r). It follows from

Eq. (5.10) that BDM(⇁↑), and therefore, f↼, is well-defined on D. Furthermore, it can be verified

from Lem. 5.5 that BDM(⇁↑) is convex and smooth on D, and thus, f↼ is convex and smooth on D.

2. Since f↼ is smooth on D, its derivatives are continuous. In particular, its Hessian is

continuous on X ≃X, and since X is compact, the Hessian is bounded on X ≃X. Then, from the

mean value theorem, it follows that ∀ f↼ is Lipschitz continuous.

3. Since f↼ is convex with a Lipschitz continuous gradient, and X ≃ X is a compact and

convex set, Nesterov’s second method for minimizing f↼ over X ≃ X is guaranteed to converge

(see [100, Sec. 3] and [101, Thm. 1(c)]).

An open source implementation of the algorithm in Box 5 can be found in [90].
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Chapter 6

Application to fidelity estimation

In this chapter, we apply TOOL to the problem of estimating the fidelity with a pure state.

The results presented in this chapter are borrowed from the papers [91, 92], albeit with some

modifications to fit the presentation of the previous chapters. We begin by presenting the motivation

for studying the problem of fidelity estimation.

A typical goal in experiments and applications is to prepare a pure quantum state ↽target,

which we call the target state, as a resource for other quantum information tasks like computation

and communication. However, due to noise and experimental imperfections in the current quantum

devices, one usually ends up preparing a mixed state ↽, which we hope is close to the target state.

A commonly used measure in experiments to check whether two states are close to each other is the

quantum fidelity (Def. 3.5). When the target state ↽target is pure, the quantum fidelity between the

experimentally prepared state ↽ and the target state ↽target is equal to F (↽target, ↽) = Tr(↽target↽)

(Prop. 3.6.5). Thus, estimating fidelity with ↽target is equivalent to learning the expectation value of

↽target, which allows us to use TOOL for this problem.

In Sec. 6.1, we apply TOOL on experimental data to learn the fidelity with a desired target

state. We also compare the fidelity estimates given by TOOL with those obtained from quantum

tomography performed using maximum likelihood estimation (MLE). In Sec. 6.2, inspired by direct

fidelity estimation (DFE) [33, 26], we study a randomized Pauli measurement scheme, where the

probability of sampling a Pauli operator is determined by ↽target. We show that TOOL can give

better guarantees than DFE for this sampling scheme, and it is also possible to construct exact
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confidence intervals for fidelity.

6.1 Comparison with maximum likelihood estimation

In this section, we test the estimator constructed by TOOL on experimental data from a

trapped-ion quantum processor [84] for the task of estimating fidelity with a quantum state. We

consider data for three di”erent 4-qubit target states: a GHZ state, a W-state, and a locally-rotated

linear cluster state. Each dataset consists of 81 Pauli measurements, with 100 repetitions of each

Pauli measurement.

TOOL is used to construct an estimator for each of the target states we consider (GHZ state,

W state, locally-rotated linear cluster state) for a confidence level of 95% following Box 3. We fix the

parameter ⇁⇓ = 10≃5 in Box 3. The estimates and the errors are computed using the experimental

data following Box 4.

For comparison, we also perform Maximum Likelihood Estimation (MLE) [53, 59] to recon-

struct the quantum state, as it is a popular tool that is used in many experimental studies. The

fidelity is estimated from the reconstructed quantum state ↽ by computing Tr(↽target↽). Since

MLE only provides a point estimate, we need some method to obtain uncertainty bound for the

computed estimate. For this purpose, we use a variant of the bootstrap method [27] for computing

confidence intervals. To construct a bootstrap confidence interval, we “artifically” generate outcomes

according to the observed frequencies in the experiment (these artificial outcomes are generated

using a classical computer). The state is reconstructed using the artificially generated outcomes,

which then gives an “artificial” estimate for fidelity. This process is repeated many times, and we

construct a (possibly asymmetric) confidence interval at the specified confidence level around the

median of the artificial estimates. The confidence interval is then shifted from the median to the

original MLE estimate computed from the experimental data. Note that the confidence intervals so

constructed are heuristic, and generally does not satisfy the guarantee that the true value lies inside

the computed confidence interval at the specified confidence level. For comparison purposes, we

define the error for bootstrap as half the size of the bootstrap confidence interval. We call this error
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the “bootstrap error”.

In Tab. 3, we list the fidelity estimates obtained from TOOL and MLE, along with the

respective errors. When we compare the error given by TOOL with the bootstrap error, it should be

understood that we are comparing the size of the respective confidence intervals. We can see from

Tab. 3 that the estimates obtained from TOOL and MLE agree well with each other. The error

ε↔ computed from TOOL, however, is about 2.5 times the size of bootstrap error. There are two

main reasons for this discrepancy. One, the bootstrap error depends on the state that is prepared,

unlike TOOL which gives worst-case (minimax) errors by construction. Two, the bootstrap error is

heuristic, and not always guaranteed to be correct. This is especially true when the fidelity is high,

as we get close to the boundary of the set of quantum states. In addition, MLE is prone to several

problems, which have been well-documented in the literature [67, 85, 87, 32, 15]. In contrast, TOOL

comes equipped with rigorous guarantees, and is minimax optimal (see Thm. 7.13).

TOOL MLE

Estimate ε↔ Estimate Bootstrap error

GHZ 0.84 0.053 0.84 0.023

W 0.89 0.049 0.88 0.019

Cluster 0.79 0.048 0.79 0.021

Table 3: Fidelity estimates and estimation error for a 4-qubit GHZ state, W state, and a cluster
state obtained from experimental data for a confidence level of 95%. Estimates are calculated using
TOOL and MLE. The error for MLE is obtained from Monte-Carlo (MC) resampling.

To study the claim that MLE with bootstrap can give incorrect results, we consider a numerical

example. Our goal is to estimate the fidelity with a 3-qubit W-state. For this, we measure the

eigenvalues of all the non-identity Pauli operators that have non-zero overlap with the W state.

Each of these Pauli operators is measured 100 times. In order to perform these measurements

numerically, we choose a true state ↽ that has a fidelity of 0.991 with the target state. Such a high

fidelity means that the true state is close to the boundary of the set of density matrices. We perform
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a total of 150 simulations, where the state ↽ is prepared, the Pauli measurements are performed, the

fidelity is estimated using MLE, and confidence intervals are constructed using bootstrap. We find

that MLE with bootstrap gives an empirical coverage probability of 72%, which is much smaller

than the chosen confidence level of 95%. This means that the error reported by bootstrap is too

small. Therefore, for a realistic situation that one may encounter in practice, we find that MLE

with bootstrap gives incorrect results.

In addition to the statistical correctness of TOOL compared to MLE and bootstrap, TOOL has

the advantage that it is less computationally costly to implement compared to MLE and bootstrap.

This is because the costly optimization to compute the estimator only needs to be performed

once for TOOL, whereas one needs to repeatedly reconstruct the state for constructing bootstrap

confidence interval. Moreover, TOOL can construct the estimator independently of the experiments,

so that the estimator construction does not lead to a bottleneck. MLE, on the other hand, can

only be performed after the experiment is completed, which can lead to a computational bottleneck

in the characterization process. Finally, since the estimator constructed by TOOL can be reused

and can also e!ciently compute estimates from data, this estimator may be used for uncertainty

quantification in place of the MLE estimator. This might be useful, for example, in situations where

we wish to model and understand the e”ects of noise on the computed estimates.

6.2 Comparison with direct fidelity estimation

Direct fidelity estimation (DFE) [33, 26] is a technique that estimates the fidelity with a

given target state without reconstructing the state (hence “direct”). This is achieved by judiciously

sampling Pauli operators based on the specified target state and measuring them. In this section,

we introduce a slightly di”erent importance sampling scheme for Pauli operators for estimating the

fidelity with a given target state, and show that TOOL gives improves upon the performance of

DFE for this sampling scheme. We show that TOOL can use outcomes of the modified importance

sampling scheme to get a significant improvement in the dependence of the sample complexity on ω

over a biased version of DFE, in the worst case over all target states. Note that we compare with a
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biased version of DFE because the sample complexity of the commonly used unbiased version of

DFE in the worst case over all target states is infinity. For well-conditioned states, the performance

of TOOL for the modified importance sampling scheme matches with the performance of DFE.

We begin by describing the DFE measurement protocol. Let ↽target be an n-qubit pure

target state and denote d = 2n. For i ↑ {0, . . . , d2 ↗ 1}, the Pauli Pi is sampled with probability

(Tr(Pi↽target))2/d, and subsequently we measure the POVM {(I+Pi)/2, (I↗Pi)/2}. This procedure

is repeated many times, and the outcomes are used to learn the fidelity with ↽target according to the

estimation procedure given by [33, 26]. This estimation procedure constructs an unbiased estimator

for fidelity in terms of the expectation values of Pauli operators that are sampled according to the

DFE sampling scheme (we refer the reader to [33, 26] for details). The sample complexity of DFE

in the worst case over all target states is equal to infinity. This is because there are target states for

which there is an arbitrarily small (but non-zero) probability that we sample Pauli operators which

have an arbtirarily small overlap with the target state, which in turn leads to an arbitrarily large

sample complexity for DFE. That said, since the probability of sampling such Pauli operators is very

small, it is perhaps unfair to study the performance of DFE in the worst case over all target states.

For this reason, we focus on comparing with a biased version of DFE that was noted in [33, 26],

which avoids sampling Pauli operators that have too small an overlap with the target states. [33, 26]

show that the number of samples required to learn the fidelity to an error ε > 0 and confidence

level 1↗ ω > 0 using biased DFE is bounded above by

O


d

ε2
log


1

ω


+

1

ε2ω


(6.1)

in the worst case over all target states.

If instead of looking at the worst-case performance over all target states, we look at “well-

conditioned” target states, the performance of DFE can be significantly improved. ↽target is said

to be well-conditioned with parameter ▷ > 0 if for all k ↑ {0, . . . , d2 ↗ 1}, we have either

Tr(Pk↽target) = 0 or |Tr(Pk↽target)| ⇔ ▷ [33]. Many interesting states, such as stabilizer states and
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Dicke states, are well-conditioned [33, 26]. Observe that well-conditioned target states avoid the

problem of having arbitrarily small (but non-zero) overlap of Pauli observables with the target state,

and therefore, there is no need to truncate the sampling probabilities and introduce a bias. For

target states that are well-conditioned with parameter ▷, the sample complexity of DFE is [33]

O


1

▷2ε2
log


1

ω


. (6.2)

If ▷ scales polynomially with 1/n, then DFE can e!ciently estimate the fidelity with ↽target.

Importantly, for all stabilizer states, we have ▷ = 1, which means that we can estimate the fidelity

with a pure stabilizer state with a number of samples that does not scale with the dimension of the

system.

We work with a slightly di”erent sampling scheme for estimating the fidelity with ↽target

that gives the same or better guarantees than DFE. This importance sampling scheme was studied

in [98, 92].

Box 6: Importance sampling-based Pauli measurements

Input: Pure state ↽target, total number of samples N .

Procedure:

(1) Sample a non-identity Pauli operator Pi for i ↑ [d2 ↗ 1] with probability

pi =
|Tr(Pi↽target)|

∑
d2≃1

i=1
|Tr(Pi↽target)|

. (6.3)

(2) Measure the eigenvalue of the sampled Pauli, and record the measurement outcome.

(3) Flip the measurement outcome ±1 ↖ ∅1 if Tr(Pi↽target) < 0.

(4) Repeat the procedure N times.

Output: Post-processed measurement outcomes
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Because we flip the measurement outcome in step (3) of Box 6 depending on the sign of

Tr(Pi↽target), we are e”ectively measuring Si = sign(Tr(Pi↽))Pi. We seek to measure Si because we

can write the state ↽target as

↽target =
I

d
+

d
2≃1

i=1

Tr(Pi↽target)

d
Pi

=
I

d
+

N

d

d
2≃1

i=1

piSi,

(6.4)

where

N =
d
2≃1

i=1

|Tr(Pi↽target)| (6.5)

is the normalization factor in Eq. (6.3). Moreover, if the true state is ↽, then the probability of

obtaining +1 outcome in the measurement protocol defined in Box 6 is equal to

d
2≃1

i=1

piTr


I + Si

2
↽


. (6.6)

Thus, the e”ective POVM describing the measurement protocol in Box 6 is {%0, I ↗%0}, where

%0 =
d
2≃1

i=1

pi


I + Si

2


=


d+ (N ↗ 1)

2N


↽target +


N ↗ 1

2N


(I ↗ ↽target). (6.7)

Motivated by this observation, we compute the sample complexity of TOOL for estimating the fidelity

with ↽target by measuring the POVM {ϖ1↽target+ϖ2(I↗↽target), (1↗ϖ1)↽target+(1↗ϖ2)(I↗↽target)},

where ϖ1,ϖ2 ↑ [0, 1]. The case of ϖ1 = ϖ2 gives a trivial POVM, and can therefore be discarded.

Consequently, there is no loss of generality in taking ϖ1 > ϖ2. The following result is a modified

version of [92, Thm. C.1].

Proposition 6.1. Given a pure state ↽target, consider the measurement protocol M = {({%, I ↗

%}, N)}, where

% = ϖ1↽target + ϖ2(I ↗ ↽target) (6.8)
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for ϖ1,ϖ2 ↑ [0, 1] with ϖ1 > ϖ2. Given ⇁⇓ > 0, denote ϖ→
i
= (ϖ1 + ⇁⇓/2)/(1 + ⇁⇓) for i = 1, 2. Then,

the following results hold.

1. The error ε↔ of the estimator constructed by TOOL with parameter ⇁⇓ > 0 using the outcomes of

M to a confidence level of 1↗ ω ↑ (0, 1) can be written as

ε↔ = max
ϱ1,ϱ2↗[0,1]

1

2
(φ1 ↗ φ2)

s.t. ↗ log

√
(ϖ→

2
+ (ϖ→

1
↗ ϖ→

2
)φ1)(ϖ→

2
+ (ϖ→

1
↗ ϖ→

2
)φ2)

+
√

((1↗ ϖ→
2
) + (ϖ→

2
↗ ϖ→

1
)φ1)((1↗ ϖ2)→ + (ϖ→

2
↗ ϖ→

1
)φ2)


⇔ 1

N
log


2

ω


.

(6.9)

Furthermore, the estimator in Box 3 can be constructed in O(1) time and memory irrespective of

the system dimension.

2. The number of samples needed by TOOL to estimate Tr(↽target↽) to within an error of ε ↑ (0, 0.5)

and a confidence level of 1↗ ω ↑ (0, 1) using the outcomes of M and parameter ⇁⇓ > 0 is at most

(1 + ⇁⇓)2

2(ϖ1 ↗ ϖ2)2
log(2/ω)

ε2
. (6.10)

Proof. 1. For every state χ, there is a number φ ↑ [0, 1] and an observable O↘ such that Tr(O↘) = 1,

Tr(↽targetO↘) = 0, and

χ = φ↽target + (1↗ φ)O↘. (6.11)

The number φ is uniquely determined by χ. Using this fact along with Eq. (3.8), it can be verified

that

BCM(χ1,χ2) =
√

(ϖ→
2
+ (ϖ→

1
↗ ϖ→

2
)φ1)(ϖ→

2
+ (ϖ→

1
↗ ϖ→

2
)φ→

2
)

+
√
((1↗ ϖ→

2
) + (ϖ→

2
↗ ϖ→

1
)φ1)((1↗ ϖ→

2
) + (ϖ→

2
↗ ϖ→

1
)φ2)

(6.12)

for all χ1,χ2 ↑ X, where φ1,φ2 ↑ [0, 1] are determined by χ1,χ2 according to Eq. (6.11). Then,

Eq. (5.18) gives Eq. (6.9). Eq. (5.6) is just the dual problem of the optimization in Eq. (6.9)

(see Prop. 4.10.3), and therefore, the primal optimal (φ↔
1
,φ↔

2
) and dual optimal (ϑ↔) points can be
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computed in O(1) time and memory. It can be verified that ς↔ in Eq. (5.8) depends only on φ↔
1
,φ↔

2

and ϑ↔, and therefore, the estimator in Eq. (5.9) can be computed in O(1) time and memory.

2. From Eq. (5.18) and Prop. 4.15.2, for ε↔ < 0.5, we must have ϑ↔ > 0. By complementary

slackness, this implies BCM(χ↔
1
,χ↔

2
) = (ω/2)1/N , where χ↔

1
,χ↔

2
denote the states attaining the

maximum in Eq. (5.18). Let φ↔
1
,φ↔

2
↑ [0, 1] be determined by χ↔

1
,χ↔

2
as per Eq. (6.11). Therefore,

denoting 3 = (ω/2)2/N , there is some a↔ ↑ [0, 1] such that

√
(ϖ→

2
+ (ϖ→

1
↗ ϖ→

2
)φ↔

1
)(ϖ→

2
+ (ϖ→

1
↗ ϖ→

2
)φ↔

2
) = a↔

∋
3

√
((1↗ ϖ→

2
) + (ϖ→

2
↗ ϖ→

1
)φ↔

1
)((1↗ ϖ→

2
) + (ϖ→

2
↗ ϖ→

1
)φ↔

2
) = (1↗ a↔)

∋
3

(6.13)

and ε↔ = (φ↔
1
↗ φ↔

2
)/2. Solving for φ↔

1
,φ↔

2
in terms of a↔, we obtain

φ↔
1 =

(2a↔ ↗ 1)3 + (1↗ 2ϖ→
2
)

2(ϖ→
1
↗ ϖ→

2
)

+

∋
1↗ 3

2(ϖ→
1
↗ ϖ→

2
)

√
1↗ (2a↔ ↗ 1)23

φ↔
2 =

(2a↔ ↗ 1)3 + (1↗ 2ϖ→
2
)

2(ϖ→
1
↗ ϖ→

2
)

↗
∋
1↗ 3

2(ϖ→
1
↗ ϖ→

2
)

√
1↗ (2a↔ ↗ 1)23.

(6.14)

Thus, we have the bound

ε↔ ↘
∋
1↗ 3

2(ϖ→
1
↗ ϖ→

2
)

√
1↗ (2a↔ ↗ 1)23 ↘

∋
1↗ 3

2(ϖ→
1
↗ ϖ→

2
)
. (6.15)

Using 3 = (ω/2)2/N and Eq. (8.17), we obtain

ε↔ ↘
1

2(ϖ→
1
↗ ϖ→

2
)


2 log(2/ω)

N
. (6.16)

Setting ε↔ = ε and solving for N gives Eq. (6.10).

We now compute a bound on the sample complexity of TOOL for the measurement protocol

described in Box 6. The following result is a modified version of [92, Thm. II.2].

Corollary 6.2. TOOL can estimate the fidelity with a pure target state ↽target to an error of
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ε ↑ (0, 0.5) and a confidence level of 1↗ ω ↑ (0, 1) using

O


N

d


2 1

ε2
log


2

ω

)
(6.17)

outcomes of the measurement protocol in Box 6, where N is given in Eq. (6.5). Furthermore, for all

↽target, we have N ↘
∋
d+ 1(d↗ 1), and if ↽target is well-conditioned with parameter ▷ > 0, then

the sample complexity of TOOL is

O


1

▷2ε2
log


2

ω


. (6.18)

Proof. From Eq. (6.7), the e”ective POVM of Box 6 can be written as {ϖ1↽target+ϖ2(I↗↽target), (1↗

ϖ1)↽target + (1↗ ϖ2)(I ↗ ↽target)} with

ϖ1 =


d+ (N ↗ 1)

2N


,

ϖ2 =


N ↗ 1

2N


.

(6.19)

Then, Eq. (6.17) follows from Prop. 6.1.

The bound on N can be obtained by solving the convex optimization
∑

d
2≃1

i=1
xi subject to the

constraints xi ⇔ 0 for all i ↑ [d2 ↗ 1], and
∑

d
2≃1

i=1
x2
i
↘ d↗ 1. See [92, Thm. II.2] for details.

Now, suppose that ↽target is well-conditioned with parameter ▷ > 0. Since ↽target is pure, we

must have
∑

d
2≃1

i=1
(Tr(Pi↽target))2 = d ↗ 1. Then, if K denotes the number of non-identity Paulis

with non-zero overlap with ↽target, we have K ↘ (d↗ 1)/▷ by definition of well-conditioned state,

and therefore, N ↘ K ↘ (d↗ 1)/▷. Then, Eq. (6.18) follows from Eq. (6.17).

The sample complexity of TOOL for the measurement procedure given in Box 6 is bounded

above by O(d log(2/ω)/ε2) in worst case over all true states and all target states. Observe that the

dependence on ω is significantly better for TOOL compared to biased DFE in the worst case over all

target states (O(log(1/ω)) for TOOL versus O(1/ω) in DFE). On the other hand, if the target states

are well-conditioned, then the sample complexity of TOOL is the same as the sample complexity of

DFE.
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Chapter 7

Lower bounds on learning expectation values

In this chapter, we first define the minimax norm and studying its properties in Sec. 7.1.

Then, in Sec. 7.2, we show that for a fixed measurement protocol, the minimax norm gives a tight

lower bound on the estimation error. Subsequently, we show in that TOOL can achieve this lower

bound to within a small factor. Often the measurement protocol is fixed based on experimental

constraints and the observable whose expectation value we wish to learn. If we had the ability to

implement any measurement protocol of our choice, then we show in Sec. 7.3 that measuring in the

eigenbasis of the observable is optimal. Finally, in Sec. 7.4, we discuss extension of our lower bound

to learning the expectation values of many observables simultaneously in l⇒-norm.

7.1 Minimax norm

In this section, we define the minimax norm and study its properties. We also look at a few

di”erent interpretations of the minimax norm.

Since we only have access to finitely many outcomes in any experiment implemented in

practice, we cannot have perfect knowledge of the quantum state or the expectation value. The

minimax norm seeks to quantify how large the uncertainty in estimating the expectation value must

be for any estimation procedure in the worst case.

Definition 7.1 (Minimax norm). Given a measurement protocol M and a confidence level
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1↗ ω ↑ (0, 1), the minimax norm of an observable O determined by M and 1↗ ω is defined as

→O→M,ω
= max

χ1,χ2↗X

1

2
(Tr(Oχ1)↗ Tr(Oχ2))

s.t. BDM(χ1,χ2) ↘
1

N
log


2

ω


,

(7.1)

where N is the total number of samples used by M and BDM is the average Bhattacharyya distance

defined in Eq. (3.5).

In the following two paragraphs, we motivate the definition of the minimax norm by relating

it to the estimation error. We begin by motivating the need to study the worst-case estimation error.

Suppose that the state ↽ was prepared in an experiment, but we don’t know ↽. Our goal is to learn

the expectation value of the observable O. So we choose a measurement protocol M for this purpose,

and perform measurements specified by M on ↽. The outcomes observed in the experiment will give

us some confidence region C within which the expectation value Tr(O↽) must lie with probability

greater than 1↗ ω. We can define the estimation error as half size of the confidence region, given

as (1/2)maxo1,o2↗C(o1 ↗ o2). Since the measurement outcomes are obtained probabilistically, they

can be di”erent every time the experiment is performed. Therefore, it is helpful to know what is

the worst-case error in learning the expectation value of O using the measurement protocol M, no

matter what state ↽ was/will be prepared by the device, or what measurements outcomes were/will

be observed when implementing M.

We can, therefore, ask for the following constraint: if ↽ is the true state, then the “distance”

between ↽ and another state χ1 consistent with the measurements is bounded above by some number

u. Since we want the error to be dependent on the measurement protocol but independent of

the measurement outcomes, we use a distance measure defined on the probability distributions

determined by the measurement protocol, which leads us to classical distance measures we studied

in Ch. 3. Furthermore, we posit that u should depend on the chosen confidence level 1↗ ω and the

number of samples N as follows: u increases as ω decreases, and u decreases when N increases. The

reason is that if ω is very small, then we need to allow for a larger error since we want to estimate to
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a very high confidence level. On the other hand, if N is large, then we have a large amount of data,

using which we can reduce the estimation error. When defining the minimax norm, we claim that the

“correct” distance measure to look at is the average Bhattacharyya distance determined by M and the

“correct” upper bound is u = log(2/ω)/N . This gives us the constraint BDM(χ1, ↽) ↘ log(2/ω)/N .

Since we want our uncertainty bound to be valid no matter what state ↽ was prepared by the device,

we look at all the states χ1 and χ2 that satisfy the constraint BDM(χ1,χ2) ↘ log(2/ω)/N . Then,

the minimax norm defined in Eq. (7.1) is just (half the) maximum di”erence in expectation value of

O between states satisfying this constraint.

Since the average Bhattacharyya distance BDM is the negative logarithm of the geometric-

average Bhattacharyya coe!cient BCM (Eq. (3.6)), and the geometric-average classical fidelity

satisfies FCM = BC2

M, we can rewrite the minimax norm in terms of these as follows.

→O→M,ω
= max

χ1,χ2↗X

1

2
(Tr(Oχ1)↗ Tr(Oχ2))

s.t. BCM(χ1,χ2) ⇔

ω

2


1/N

,

= max
χ1,χ2↗X

1

2
(Tr(Oχ1)↗ Tr(Oχ2))

s.t. FCM(χ1,χ2) ⇔

ω

2


2/N

.

(7.2)

Thus, we can interpret the minimax norm in terms of BCM or FCM instead of BDM. The advantage

of working with BDM is that it is a proper convex function (see Prop. 3.8).

We now prove that →·→M,ω
is a seminorm on the set Sd of d ≃ d Hermitian matrices. To

understand why →·→M,ω
is only a seminorm and not a norm on Sd, we return to the connection

between the minimax norm and the error for estimating expectation values. If the observable whose

expectation value we want to learn is O = cI for some c ↑ R, then its expectation value is equal to c,

no matter what the state is. Thus, the error for learning the expectation value of such an observable

should be zero. This notion is captured by the minimax norm, where we have →cI→M,ω
= 0 for all

c ↑ R. This is what leads to →·→M,ω
being a seminorm instead of a norm. Indeed, we show that when
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we “mod out” the constant matrices from Sd, →·→M,ω
becomes a norm.

Proposition 7.2. Fix the measurement protocol M and the confidence level 1↗ ω ↑ (0, 1). Then,

the following statements hold.

1. →·→M,ω
is a seminorm on Sd.

2. Denoting I = {cI | c ↑ R}, →·→M,ω
is a norm on Sd/I.

Proof. 1. First, we prove that →·→M,ω
is non-negative. Since χ1 = χ2 satisfies BDM(χ1,χ2) = 0 and

Tr(Oχ1)↗ Tr(Oχ2) = 0, we have →O→M,ω
⇔ 0 for all observables O.

Next, we prove that →cO→M,ω
= |c| →O→M,ω

for all c ↑ R and observables O. Given any

c ⇔ 0, we have →cO→M,ω
= c →O→M,ω

by linearity and the fact that multiplication with a positive

constant commutes with maximization. To handle the case of c < 0, we note that BDM(χ1,χ2) =

BDM(χ2,χ1), and thus the optimization in Eq. (7.1) is invariant under the exchange of χ1,χ2. Thus,

for c = ↗|c| < 0, we obtain

→cO→M,ω
= |c| max

χ1,χ2↗X

{
↗ 1

2
(Tr(Oχ1)↗ Tr(Oχ2))

BDM(χ1,χ2) ↘
1

N
log


2

ω

}
= |c| →O→M,ω

.

(7.3)

Finally, we prove the triangle inequality. Given O1,O2 ↑ Sd, we have Tr((O1+O2)(χ1↗χ2)) =

Tr(O1(χ1↗χ2))+Tr(O2(χ1↗χ2)). Then, because maxz↗Z(f(z)+g(z)) ↘ maxz↗Z f(z)+maxz↗Z g(z)

for all real-valued functions f, g and all sets Z, we can infer that →O1 +O2→M,ω
↘ →O1→M,ω

+ →O2→M,ω
.

2. The elements of Sd/I are cosets [O] = {O + cI | c ↑ R} for O ↑ Sd. Given a coset

[O] ↑ Sd/I, we show that →A→M,ω
= →O→M,ω

for all A ↑ [O]. Since A ↑ [O], we have A = O+ cI for

some real number c, and therefore, Tr(Aχ1)↗ Tr(Aχ2) = Tr(O(χ1 ↗ χ2)) + cTr(χ1)↗ cTr(χ2) =

Tr(Oχ1)↗Tr(Oχ2) for all χ1,χ2 ↑ X. It follows that →O→M,ω
= →A→M,ω

. Thus, we can unambiguously

define →[O]→M,ω
= →O→M,ω

, so that →[O]→M,ω
is a seminorm on Sd/I.

Thus, to show that →·→M,ω
is a norm on Sd/I, it su!ces to show that [O] ⇓= [0] implies

→[O]→M,ω
> 0. Given [O] ⇓= [0], choose any representative O of [O], so that O ⇓= cI for any c ↑ R.

Then, we must have φmax(O) ↗ φmin(O) > 0. Denoting N = N(M),
∋
3 = (ω/2)1/N ↑ (0, 1), and
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|φmax↓ , |φmin↓ to be eigenstates ofO corresponding to the maximum and minimum eigenvalue, we have

for all χ ↑ X that the states χ→
1
= (1↗∋

3) |φmax↓ ↔φmax|+
∋
3χ and χ→

2
= (1↗∋

3) |φmin↓ ↔φmin|+
∋
3χ

satisfy BCM(χ→
1
,χ→

2
) ⇔

∋
F (χ→

1
,χ→

2
) ⇔ 1↗→χ→

1
↗ χ→

2
→
tr
⇔ ∋

3. The first inequality is a consequence of

Prop. 3.7, and the second inequality is a consequence of Fuchs-van de Graaf inequality (Eq. (3.35)).

Therefore, from Eq. (7.2), we have 2 →O→M,ω
⇔ (φmax(O)↗ φmin(O))(1↗

∋
3). Thus, for any finite

N , we have →O→M,ω
> 0, proving the claim.

Due to the above result, we refer to →·→M,ω
as the minimax norm, instead of the minimax

seminorm, even though it is a seminorm on Sd. Since the minimax norm is closely related to the set

of density matrices satisfying the constraint in Eq. (7.1), we define the constraint set below.

Definition 7.3. Given a measurement protocol M using N samples and a confidence level 1↗ ω ↑

(0, 1), we define the constraint set

C(M, ω) =

{
(χ1,χ2) ↑ X ≃X | BDM(χ1,χ2) ↘

1

N
log


2

ω

}
, (7.4)

and the constraint-di”erence set as

#C(M, ω) =

{
1

2
(χ1 ↗ χ2) | (χ1,χ2) ↑ C(M, ω)

}
. (7.5)

There is a duality between the constraint-di”erence set and the minimax norm, which we

show in Prop. 7.6. Thus, it is useful to study some properties of the constraint set and the

constraint-di”erence set.

Proposition 7.4. Fix the measurement protocol M and the confidence level 1↗ ω ↑ (0, 1). Then,

the following statements hold.

1. The constraint set C(M, ω) satisfies the following properties:

i. C(M, ω) is compact and convex.
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ii. For all χ ↑ X, we have (χ,χ) ↑ C(M, ω).

iii. (χ1,χ2) ↑ C(M, ω) i” (χ2,χ1) ↑ C(M, ω).

2. The constraint-di”erence set #C(M, ω) satisfies the following properties:

i. #C(M, ω) is compact and convex.

ii. 0 ↑ #C(M, ω).

iii. #C(M, ω) is symmetric: ↗#C(M, ω) = #C(M, ω)

iv. #C(M, ω) is balanced: for all a ↑ R with |a| ↘ 1, we have a#C(M, ω) ↙ #C(M, ω).

v. #C(M, ω) absorbs all traceless observables: for all O ↑ Sd with Tr(O) = 0, there is some

r > 0 such that aO ↑ #C(M, ω) for all |a| ↘ r.

vi. #C(M, ω) spans the subspace of traceless observables: span#C(M, ω) = {O ↑ Sd | Tr(O) =

0}.

Proof. 1. i. Since BDM is a proper convex function (Prop. 3.8), the constraint set C(M, ω) is convex

(see [8, Cor. (8.5)]). To show that C(M, ω) is compact, we write it as

C(M, ω) =

{
(χ1,χ2) ↑ X ≃X | BCM(χ1,χ2) ⇔


ω

2


1/N

}
. (7.6)

Since BCM is continuous, the constraint BCM(χ1,χ2) ⇔ (ω/2)1/N defines a closed set. Since X ≃X

is compact, and the intersection of a closed set and a compact set is compact, C(M, ω) is compact.

ii. Since for all χ ↑ X, BDM(χ,χ) = 0, we have (χ,χ) ↑ C(M, ω).

iii. Since BDM(χ1,χ2) = BCM(χ2,χ1), we have (χ1,χ2) ↑ C(M, ω) i” (χ2,χ1) ↑ C(M, ω).

2. i. Since #C(M, ω) is the linear image of C(M, ω), it is a compact and convex set.

ii. Since (χ,χ) ↑ C(M, ω) for all χ ↑ X, we have 0 ↑ #C(M, ω).

iii. Since (χ1,χ2) ↑ C(M, ω) i” (χ2,χ1) ↑ C(M, ω), we have ↗#C(M, ω) = #C(M, ω).

iv. Since #C(M, ω) is symmetric, it su!ces to show that a#C(M, ω) ↙ #C(M, ω) for a ↑ [0, 1].

Because #C(M, ω) is convex and 0 ↑ #C(M, ω), a#C(M, ω) ↙ #C(M, ω) for a ↑ [0, 1] holds.
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v. Since #C(M, ω) is balanced, it su!ces to prove that there is some r > 0 such that

rO ↑ #C(M, ω). First take O→ = O/ →O→
1
. Since Tr(O→) = 0 and →O→→

1
= 1, there are states

χ1,χ2 such that O→ = (χ1 ↗ χ2)/2. Furthermore, for any a ↑ [0, 1) and any χ ↑ X, taking

χ→
1
= aχ1 + (1 ↗ a)χ and χ→

2
= aχ2 + (1 ↗ a)χ, we have aO→ = (χ→

1
↗ χ→

2
)/2. From Eq. (3.37) and

Eq. (3.32), we have 1↗ BCM(χ→
1
,χ→

2
) ↘ →χ→

1
↗ χ→

2
→M,max

↘ →χ→
1
↗ χ→

2
→
tr
= a →χ1 ↗ χ2→tr ↘ a. Thus,

for a = 1↗ (ω/2)1/N , we have BCM(χ→
1
,χ→

2
) ⇔ (ω/2)1/N , so that (χ→

1
↗ χ→

2
)/2 ↑ #C(M, ω). It follows

that taking r = a/ →O→
1
gives rO ↑ #C(M, ω).

vi. Since #C(M, ω) is absorbing for traceless operators, any traceless O ↑ Sd can be written

as O = c(χ1 ↗ χ2)/2 for (χ1 ↗ χ2)/2 ↑ #C(M, ω) and some c ↑ R.

A set that is both convex and balanced is called a disc [75, Def. (4.2.7)]. Parts ii and iii

of Prop. 7.4.2 show that #C(M, ω) is a disc. The fact that #C(M, ω) is absorbing for traceless

matrices means that it can be expanded to fully cover the subspace of traceless matrices.

We now prove some simple but useful properties of the minimax norm.

Proposition 7.5. Let O be an observable, M be a measurement protocol, and 1↗ ω ↑ (0, 1) be the

confidence level. Then, the following statements hold.

1. For any c ↑ R, we have →O + cI→M,ω
= →O→M,ω

.

2. Denoting φmax(O) and φmin(O) as the maximum and minimum eigenvalues of O, we have

→O→M,ω
↘ φmax(O)↗ φmin(O)

2
. (7.7)

3. The optimization in Eq. (7.1) defining the minimax norm is convex. Moreover, there is an extreme

point of the constraint set C(M, ω) that attains the maximum in Eq. (7.1).

4. →O→M,ω
is a monotonically decreasing function of ω.

5. →O→M,ω
is a monotonically decreasing function of L (number of POVMs) and N1, . . . , NL (number

of repetitions of each POVM).

�����������������������
�����	����������������
����������




125

6. →O→M,ω
is a continuous and convex function of O.

Prop. 7.5.1 says that the minimax norm is invariant under translations of the observable by a

constant matrix. From the point of view of estimation, this means that the estimation error only

depends on the spread of the eigenvalues of the observable, and not the actual numerical values.

An analogy of this property can be drawn with the freedom in shifting the reference energy of a

Hamiltonian, which is commonplace in the analysis of physical systems.

Proof. 2. Dropping the constraint in Eq. (7.1), we obtain

→O→M,ω
↘ 1

2
max

χ1,χ2↗X
(Tr(Oχ1)↗ Tr(Oχ2)) ↘

1

2
(φmax(O)↗ φmin(O)). (7.8)

3. From Prop. 7.4.1, we know that the constraint set C(M, ω) is compact and convex. Since

the objective function Tr(Oχ1)↗Tr(Oχ2) is a!ne in (χ1,χ2), the optimization in Eq. (7.1) is convex.

Since the maximum of an a!ne function on a compact and convex set is attained at an extreme

point of the set, there is an extreme point (χ↔
1
,χ↔

2
) ↑ C(M, ω) that attains the maximum in Eq. (7.1).

4. We have C(M, ω) ↙ C(M, ω→) for ω ⇔ ω→. Therefore, the set over which (Tr(Oχ1) ↗

Tr(Oχ2))/2 is maximized in Eq. (7.1) shrinks as ω increases, and subsequently, the value of the

minimax norm decreases, proving the claim.

5. For a fixed L, as the value of N1, . . . , NL increases, the value of (BCM(χ1,χ2))N =


L

i=1
[BC(p(i)χ1 , p

(i)

χ2)]
Ni decreases, as the Bhattacharyya coe!cient is bounded between 0 and 1.

Similarly, if we add additional POVMs (i.e., increase L), then the value of (BCM(χ1,χ2))N =


L

i=1
[BC(p(i)χ1 , p

(i)

χ2)]
Ni decreases. As a result, the constraint set C(M, ω) = {(χ1,χ2) ↑ X ≃ X |


L

i=1
[BC(p(i)χ1 , p

(i)

χ2)]
Ni ⇔ ω/2} shrinks in size, from which the claim follows.

6. Since →·→M,ω
is a seminorm, it is convex. Since any real-valued convex function on a

finite-dimensional vector space is continuous [8, Cor. 8.40], →·→M,ω
is continuous.

We now show that there is a duality between the characteristic function of the constraint-

di”erence set #C(M, ω) and the minimax norm. Since there is a bijective correspondence between
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a set and its characteristic function, this can be thought of as a duality between #C(M, ω) and

→·→M,ω
.

Proposition 7.6. Fix the measurement protocol M and the confidence level 1↗ ω ↑ (0, 1). Then

the following statements hold.

1. With S#C(M,ω) defined to be the support function of #C(M, ω) according to Eq. (2.7), we have

→·→M,ω
= S#C(M,ω)(·). (7.9)

2. With χ#C(M,ω) defined to be the characteristic function of #C(M, ω) according to Eq. (2.6), the

convex conjugate of →·→M,ω
is given as

→·→↔M,ω
= χ#C(M,ω)(·). (7.10)

3. The minimax norm satisfies →·→↔↔M,ω
= →·→M,ω

.

4. The constraint-di”erence set can be expressed as

#C(M, ω) = {O→ ↑ Sd | (∝O ↑ Sd) Tr(OO
→) ↘ →O→M,ω

}. (7.11)

Proof. 1. Follows from the definitions.

2. We always have χ↔
#C(M,ω)

= S#C(M,ω). Since #C(M, ω) is closed and convex (Prop. 7.4),

χ#C(M,ω) is a proper lsc convex function, and thus self-dual [8, Thm. 13.37]. It follows that

(S#C(M,ω))
↔ = (χ↔

#C(M,ω)
)↔ = χ#C(M,ω).

3. Follows from Eq. (7.9) and Eq. (7.10), and the fact that χ↔
#C(M,ω)

= S#C(M,ω).
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4. We have

{O→ ↑ Sd | (∝O ↑ Sd) Tr(OO
→) ↘ →O→M,ω

} = {O→ ↑ Sd | sup
O↗Sd

(Tr(OO→)↗ →O→M,ω
) ↘ 0}

= {O→ ↑ Sd |
∥∥O→∥∥↔

M,ω
↘ 0}

= #C(M, ω),

(7.12)

where the second equality follows from the definition of convex conjugate, and the last equality

follows from Eq. (7.10).

The fact that →·→M,ω
is the support function of #C(M, ω) gives us a geometric interpretation

of the minimax norm. This is shown as a schematic in Fig. 2, which we adapt from [8, Fig. (7.1)].

!C(M, ω)

0

O

→O
→ M

,ω

HO

1

Figure 2: Interpretation of the minimax norm as the support function of the constraint-di”erence
set #C(M, ω). The observable O is normalized such that →O→

HS
= 1. The minimax norm measures

the distance of the supporting hyperplane HO = {O→ ↑ Sd | Tr(O→O) = →O→M,ω
} of #C(M, ω) from

the origin.

Below, we describe another useful symmetry property of the minimax norm. By a symmetry,
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we mean a unitary that permutes the measurement settings in the measurement protocol. In

particular, this includes unitaries that leave the measurement settings invariant. We make this

notion precise below. In Def. 7.7, a permutation of [M ] is a bijective function ↼ : [M ] ↖ [M ].

Definition 7.7 (Measurement symmetry). A unitary U is said to be a symmetry of the

measurement protocol M = {(E(i), Ni)}Li=1
if for every i ↑ [L], there is some j ↑ [L] and a

permutation ↼i of [Mi] such that

{UE(i)

ϑi(k)
U †}Mi

k=1
= E(j), (7.13)

and Ni = Nj . The set of symmetries of M is denoted by UM.

Observe that if i and j are related by a unitary as in Eq. (7.13), we must have Mi = Mj . It can

be verified that UM forms a group under multiplication. As an example, consider the measurement

protocol where (the eigenvalue of) every Pauli operator is measured the same number of times.

Since any unitary that takes Pauli operators to Pauli operators under conjugation is Cli”ord by

definition, the set of symmetries of this measurement protocol is just the Cli”ord group. Another

relevant example is a measurement protocol that corresponds to measuring a single POVM many

times (this encompasses randomized measurements, for example). The measurement symmetries

for such a protocol are those unitaries that leave the POVM invariant. Below, we show that the

minimax norm is invariant under the action of a measurement symmetry.

Proposition 7.8. Let O be any observable, M be a measurement protocol, and 1↗ω be the confidence

level. Then, for all U ↑ UM, the following statements hold.

1. BDM(Uχ1U †, Uχ2U †) = BDM(χ1,χ2) for all χ1,χ2 ↑ X.

2. UC(M, ω)U † △ {(Uχ1U †, Uχ2U †) | (χ1,χ2) ↑ C(M, ω)} = C(M, ω).

3. U#C(M, ω)U † △ {UO→U † | O→ ↑ #C(M, ω)} = #C(M, ω).

4.
∥∥UOU †∥∥

M,ω
= →O→M,ω

.

�����������������������
�����	����������������
����������




129

Proof. 1. If U ↑ UM, then U † ↑ UM. By definition of measurement symmetry, and noting that

POVMs are taken to be distinct in the definition of a measurement protocol, for all i ↑ [L], there

is exactly one j ↑ [L] and a permutation ↼i of [Mi], such that Ni = Nj and Tr(E(i)

ϑi(k)
UχU †) =

Tr(U †E(i)

ϑi(k)
Uχ) = Tr(E(j)

k
χ) for all k ↑ [Mi] and all χ ↑ X. Then, BDM(Uχ1U †, Uχ2U †) =

BDM(χ1,χ2) for all χ1,χ2 ↑ X follows from the definition of BDM.

2. If (χ1,χ2) ↑ C(M, ω), then (Uχ1U †, Uχ2U †) ↑ C(M, ω) by part 1. and the definition of

C(M, ω). Therefore, UC(M, ω)U † ↙ C(M, ω). Since we also have U † ↑ UM, for any (χ1,χ2) ↑

C(M, ω), we have (U †χ1U,U †χ2U) ↑ C(M, ω). Consequently, (U(U †χ1U)U †, U(U †χ1U)U †) =

(χ1,χ2) ↑ C(M, ω). Thus, we have C(M, ω) ↙ UC(M, ω)U †.

3. By part 2., we have (χ1,χ2) ↑ C(M, ω) i” (Uχ1U †, Uχ2U †) ↑ C(M, ω). It follows that

U#C(M, ω)U † = #C(M, ω) by definition of #C(M, ω).

4. By the definition of minimax norm, we have

∥∥∥UOU †
∥∥∥
M,ω

=
1

2
max

{
Tr(UOU †χ1)↗ Tr(UOU †χ2)

(χ1,χ2) ↑ C(M, ω)

}

=
1

2
max

{
Tr(OU †χ1U)↗ Tr(OU †χ2U)

(χ1,χ2) ↑ C(M, ω)

}

=
1

2
max

{
Tr(Oχ→

1)↗ Tr(Oχ→
2)

(χ
→
1,χ

→
2) ↑ U †C(M, ω)U

}

=
1

2
max

{
Tr(Oχ→

1)↗ Tr(Oχ→
2)

(χ
→
1,χ

→
2) ↑ C(M, ω)

}

= →O→M,ω
,

(7.14)

where the third equality follows from the definition of U †C(M, ω)U and the fourth equality follows

from part 2.

Finally, we prove a data-processing inequality for the minimax norm. Suppose that an

experimentalist implements the POVM E, and then classically processes the outcome observed after

the measurement. This classical processing, which can be deterministic or random, is described

mathematically as a classical channel. A classical channel describes a process that takes an input

probability distribution on [M ] to an output probability distribution on [M →]. We can think of a
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classical channel in terms of its transition matrix N, which is an M → ≃M matrix with non-negative

entries, where the columns sum to 1. If pE,χ is the distribution after measuring E in the state

χ, then the post-processing step is described by a classical channel N that acts on pE,χ. This

gives rise to a new POVM F with M → elements, where Fj =
∑

M

k=1
NjkEk for j ↑ [M →]. It can be

verified that pF ,χ = NpE,χ for all χ ↑ X. Thus, the POVM F is the e”ective POVM that describes

the measurement E and the classical post-processing. We show that performing a classical data

processing on the measurement outcomes does not help with estimation.

Proposition 7.9 (Data-processing inequality for minimax norm). Let M = {(E(i), Ni)} be

a measurement protocol, and let Mpp = {(F (i), Ni)}, where for all i ↑ [L], the POVM F (i) is the

e”ective POVM describing the measurement E(i) followed by a classical post-processing. Then, for

all observables O and all 1↗ ω ↑ (0, 1), we have

→O→Mpp,ω
⇔ →O→M,ω

. (7.15)

Proof. Since for all i ↑ [L], F (i) is obtained by classically post-processing E(i), there is some channel

N(i) such that pF (i),χ = N(i)pE(i),χ for all χ ↑ X. From [107, Ex. (9.2.8)], we have that for all

quantum channels Q and all states χ1,χ2, we have F (Q(χ1),Q(χ2)) ⇔ F (χ1,χ2). Since a classical

channel acting on discrete probability distributions is a special case of a quantum channel acting on

quantum states (see [107, Sec. (4.6.4)]), we have FC(pF (i),χ1
, pF (i),χ2

) ⇔ FC(pE(i),χ1
, pE(i),χ2

) for all

i ↑ [L] and all χ1,χ2. It follows that FCMpp(χ1,χ2) ⇔ FCM(χ1,χ2) for all χ1,χ2. Then, Eq. (7.15)

follows from the expression for minimax norm given in Eq. (7.2).

As a consequence of Prop. 7.9, we can conclude that forgetting the sampled POVM in a

randomized measurement protocol does not help with estimation.

7.2 Lower bound on the error for a given measurement protocol

In this section, we derive a lower bound on the error of learning the expectation value of an

observable for a fixed measurement protocol using the minimax norm. We also show that our lower
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bounds can be achieved by TOOL to within a small factor, thus proving that our bounds are tight,

and that we have a constructive estimation procedure for achieving the lower bound to within a

constant factor.

We first reinterpret the estimation error of TOOL given in Box 3 as the minimax norm of the

observable whose expectation value we wish to learn with respect to the perturbed measurement

protocol defined in Def. 5.4.

Proposition 7.10. 1. The estimation error ε↔ of the estimator constructed by TOOL with parameter

⇁⇓ > 0 for learning the expectation value of O using outcomes of M to a confidence level of

1↗ ω ↑ (0, 1) can be expressed as

ε↔ = →O→M(⇁↑),ω
, (7.16)

where M(⇁⇓) is the perturbed measurement protocol defined in Def. 5.4.

2. If O↔ is the estimator constructed by TOOL, then we have the guarantee

PM(⇁↑),ε

(
| O↔ ↗ Tr(O↽)| ↘ →O→M(⇁↑),ω


⇔ 1↗ ω (7.17)

for all ↽ ↑ X.

3. For 1↗ ω ↑ (0.75, 1), we have

R↔(O,M(⇁⇓), ω) ↘ →O→M(⇁↑),ω
↘ 2 log(2/ω)

log(1/(4ω))
R↔(O,M(⇁⇓), ω), (7.18)

where R↔(O,M, ω) is the minimax optimal risk for learning the expectation value of O using M,

defined in Eq. (5.2).

Proof. Eq. (7.16) follows from Eq. (5.18) and the definition of minimax norm in Eq. (7.1). Eq. (7.17)

follows from Eq. (5.13) and Eq. (7.16). Eq. (7.18) follows from Eq. (7.16) and Eq. (5.16).

We begin by showing that →O→M(⇁↑),ω
converges to →O→M,ω

from above, as ⇁⇓ ↖ 0. For

simplifying notation, in Lem. 7.11, we take φ = ⇁⇓/(1 + ⇁⇓) in the definition of M(⇁⇓) in Def. 5.4.
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Lemma 7.11. Let M = {(E(i), Ni)}Li=1
be a measurement protocol. For φ ↑ [0, 1], define the

measurement protocol M(φ) to consist of the POVMs

{
(1↗ φ)E(i)

1
+ φ

I

Mi

, . . . , (1↗ φ)E(i)

Mi
+ φ

I

Mi

}
(7.19)

for i ↑ [L], where ith POVM is measured Ni times. Then, for any observable O and confidence level

1↗ ω ↑ (0, 1), the following statements hold.

1. For all φ ↑ [0, 1], we have →O→M(ϱ),ω
⇔ →O→M,ω

.

2. For all C ⇔ 0, we have limϱ↖0 →O→M(ϱ),ω≃Cϱ
= →O→M,ω

.

Proof. 1. Let p, q be discrete probability distributions over M symbols. Let e = (1/M, . . . , 1/M)

denote the uniform probability distribution over M symbols. Then, by joint concavity of the

Bhattacharyya coe!cient [106, Corollary 3.26], we have

BC((1↗ φ)p+ φe, (1↗ φ)q + φe) ⇔ (1↗ φ)BC(p, q) + φBC(e, e) ⇔ BC(p, q), (7.20)

where in the last step, we used 1 = BC(e, e) ⇔ BC(p, q).

Now, given state χ, denote p(i)χ = (Tr(E(i)

1
χ), . . . ,Tr(E(i)

Mi
χ)) obtained from the POVM

{E(i)

k
}Mi
k=1

. Then, if p(i)χ (φ) is the distribution obtained from the perturbed POVM in Eq. (7.19),

we can write p(i)χ (φ) = (1 ↗ φ)p(i)χ + φe(i), where e(i) = (1/Mi, . . . , 1/Mi). Then, we have

B(p(i)χ1(φ), p
(i)

χ2(φ)) ⇔ B(p(i)χ1 , p
(i)

χ2) for all i ↑ [L], and consequently,

BCM(ϱ)(χ1,χ2) =
L

i=1

[B(p(i)χ1
(φ), p(i)χ2

(φ))]Ni/N ⇔
L

i=1

[B(p(i)χ1
, p(i)χ2

)]Ni/N = BCM(χ1,χ2). (7.21)

It follows from Eq. (7.2) that →O→M(ϱ),ω
⇔ →O→M,ω

.

2. For C ⇔ 0, define φ⇓ = min{ω/2C, 1} and ) = [0,φ⇓]. Observe that ω ↗ φC ↑ (0, 1) for all
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φ ↑ ). Consider the set-valued function C : ) ↖ 2X⇐X defined as

C(φ) =

{
(χ1,χ2) ↑ X ≃X | (BCM(ϱ)(χ1,χ2))

N ⇔ ω ↗ Cφ

2

}
, (7.22)

where 2X⇐X is the power set of X ≃ X and N =
∑

L

i=1
Ni is the total number of samples. For

each φ ↑ ), C(φ) = C(M(φ), ω ↗ Cφ) is the constraint set (Eq. (7.4)) over which the optimization

defining the minimax norm →·→M(ϱ),ω≃Cϱ
is performed. Observe that C(φ) is non-empty for each

φ ↑ ) because BCM(ϱ)(χ,χ) = 1 for any density matrix χ.

The graph of the set-valued function C is given as [3, Def. (17.9)]

grC = {(φ, (χ1,χ2)) ↑ )≃ (X ≃X) | (χ1,χ2) ↑ C(φ)}

=
{
(φ, (χ1,χ2)) ↑ )≃ (X ≃X) | (BCM(ϱ)(χ1,χ2))

N + Cφ/2 ⇔ ω/2
}
.

(7.23)

Since (BCM(ϱ)(χ1,χ2))N + Cφ/2 is a continuous function of φ ↑ ) and (χ1,χ2) ↑ X ≃X, grC is a

closed subset of )≃(X≃X). Now, the set-valued function C is said to be upper hemicontinuous if for

every closed subset F ofX≃X, the set {φ ↑ ) | C(φ)∩F ⇓= ⫅̸} is a closed subset of ) [3, Lem. (17.4)].

Since X≃X is a compact subset of a Hilbert space, we have from [3, Thm. (17.11)] that C is an upper

hemicontinuous set-valued function. Moreover, for each φ ↑ ), C(φ) is a non-empty compact set (see

Prop. 7.4). Since (Tr(Oχ1)↗Tr(Oχ2))/2 is a continuous function of (φ, (χ1,χ2)) ↑ )≃ (X≃X), the

minimax norm →O→M(ϱ),ω≃Cϱ
= max(χ1,χ2)↗C(ϱ)(Tr(Oχ1)↗ Tr(Oχ2))/2 is an upper semicontinuous

function of φ ↑ ) [3, Lem. (17.30)]. By definition of upper semicontinuity [3, Lem. (2.42)], we

have lim supϱ↖0 →O→M(ϱ),ω≃Cϱ
↘ →O→M,ω

, where we used the fact that M(φ = 0) = M. Then, since

→O→M,ω
↘ →O→M,ω≃Cϱ

↘ →O→M(ϱ),ω≃Cϱ
, from Prop. 7.5.4 and Lem. 7.11.1, we have the chain of

inequalities

→O→M,ω
↘ lim inf

ϱ↖0

→O→M(ϱ),ω≃Cϱ
↘ lim sup

ϱ↖0

→O→M(ϱ),ω≃Cϱ
↘ →O→M,ω

. (7.24)

This implies limϱ↖0 →O→M(ϱ),ω≃Cϱ
= →O→M,ω

.

Next, we show that we can lower bound the minimax optimal risk defined in Eq. (5.2) for the
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measurement protocol M by minimizing the minimax optimal risk for M(⇁⇓) over all ⇁⇓ > 0.

Lemma 7.12. Let M be a fixed measurement protocol, and for ⇁⇓ > 0, let M(⇁⇓) be the perturbed

measurement protocol defined in Def. 5.4. Then, for learning the expectation value of the observable

O with confidence 1↗ ω ↑ (0, 1), we have

inf
⇁↑>0

R↔(O,M(⇁⇓), ω) ↘ R↔(O,M, ω). (7.25)

Proof. We begin by noting that for any given family of non-empty sets {Fi}i↗I indexed by some

set I and any function f : ⇒i↗I Fi ↖ R, we have

inf
r↗∞i↗IFi

f(r) = inf
i↗I

inf
r↗Fi

f(r). (7.26)

To see this, observe that for all i ↑ I, we have infr↗∞i↗IFi f(r) ↘ infr↗Fi f(r), so that infr↗∞i↗IFi f(r) ↘

infi↗I infr↗Fi f(r). On the other hand, for each r ↑ ⇒i↗IFi, there is some i ↑ I such that r ↑ Fi, so

that infi↗I infr↗Fi f(r) ↘ infr↗Fi f(r) ↘ f(r), and therefore, infi↗I infr↗Fi f(r) ↘ infr↗∞i↗IFi
f(r).

In particular, when Fi ↙ R for all i ↑ I, we have inf ⇒i↗IFi = infi↗I inf Fi.

To proceed, recall that PM,ϑ denotes the probability over outcomes defined by the measurement

protocol M and the state ↼. Given an estimator O and error ε > 0, define the set A
Ô
(ε) =

{| O ↗ Tr(O↼)| ↘ ε}. Then, using Eq. (7.26) along with Eq. (5.1) and Eq. (5.2), we can write

R↔(O,M, ω) = inf
⋃

Ô

{
ε > 0 | inf

ϑ
PM,ϑ

(
A
Ô
(ε)

)
> 1↗ ω


, (7.27)

and

inf
⇁↑>0

R↔(O,M(⇁⇓), ω) = inf
⋃

(⇁↑,Ô)

{
ε > 0 | inf

ϑ
PM(⇁↑),ϑ

(
A
Ô
(ε)

)
> 1↗ ω


, (7.28)

where the union in the second equation is over all estimators O and all positive numbers ⇁⇓ > 0.

Since PM,ϑ and PM(⇁↑),ϑ are product distributions, by subadditivity of total variation distance
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for product distributions, for all states ↼ and all ⇁⇓ > 0, we have

∥∥PM(⇁↑),ϑ ↗ PM,ϑ

∥∥
TV

↘ 1

2

L

i=1

Ni

Mi

j=1



Tr(E(i)

j
↼) + ⇁↑

Mi

1 + ⇁⇓
↗ Tr(E(i)

j
↼)



↘ ⇁⇓
1 + ⇁⇓

1

2

L

i=1

Ni

Mi

j=1

Tr(E
(i)

j
↼)↗ 1

Mi



↘ N
⇁⇓

1 + ⇁⇓

< N⇁⇓,

(7.29)

where N =
∑

L

i=1
Ni is the total number of samples, and the last inequality follows from the fact

that
∑

Mi
j=1

|Tr(E(i)

j
↼)↗ 1/Mi| ↘ 2. By the definition of total variation distance that

∥∥PM(⇁↑),ϑ ↗ PM,ϑ

∥∥
TV

= supH |PM(⇁↑),ϑ(H) ↗ PM,ϑ(H)|, where the supremum is over all events H,

we have |PM(⇁↑),ϑ(AÔ
(ε))↗ PM,ϑ(AÔ

(ε))| < N⇁⇓ for all ⇁⇓ > 0, all ε > 0, all estimators O, and all

states ↼.

Now, consider an arbitrary element ε→ ↑
⋃

Ô

{
ε > 0 | infϑ PM,ϑ

(
A
Ô
(ε)

)
> 1↗ ω

}
. We claim

that ε→ ↑
⋃

(⇁↑,Ô)

{
ε > 0 | infϑ PM(⇁↑),ϑ

(
A
Ô
(ε)

)
> 1↗ ω

}
. For if this does not hold, then for all

⇁⇓ > 0 and all estimators O, we have infϑ PM(⇁↑),ϑ(AÔ
(ε→)) ↘ 1 ↗ ω. Since infϑ PM,ϑ(AÔ

(ε→)) ↘

infϑ PM(⇁↑),ϑ(AÔ
(ε→)) + N⇁⇓, we obtain infϑ PM,ϑ(AÔ

(ε→)) ↘ 1 ↗ ω + N⇁⇓. Because this inequality

holds for all ⇁⇓ > 0, we obtain infϑ PM,ϑ(AÔ
(ε→)) ↘ 1 ↗ ω for all estimators O, contradicting the

assumption that ε→ ↑
⋃

Ô

{
ε > 0 | infϑ PM,ϑ

(
A
Ô
(ε)

)
> 1↗ ω

}
. Consequently, we have

⋃

Ô

{
ε > 0 | inf

ϑ
PM,ϑ

(
A
Ô
(ε)

)
> 1↗ ω


↙

⋃

(⇁↑,Ô)

{
ε > 0 | inf

ϑ
PM(⇁↑),ϑ

(
A
Ô
(ε)

)
> 1↗ ω


, (7.30)

from which the claim follows.

Using Lem. 7.11 and Lem. 7.12, we show that the minimax norm lower bounds the estimation

error up to a small factor. We also show that TOOL can achieve this lower bound to within a small

constant factor.
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Theorem 7.13. Every estimation protocol that learns the expectation value of the observable O

using outcomes of M to within an error of ε > 0 with a confidence level of 1↗ ω ↑ (0.75, 1) satisfies

ε ⇔ c(ω) →O→M,ω
, (7.31)

where

c(ω) =
log2(1/ω)↗ 2

2 log2(1/ω) + 2
. (7.32)

Moreover, denoting N to be the total number of samples used by M, for all ◁ > 0, there is some

0 < ⇁⇓ ↘ ω/(2N), such that the estimator O↔ constructed by TOOL with parameter ⇁⇓ for a confidence

level of 1↗ (ω ↗N⇁⇓) satisfies

PM,ε

(
| O↔ ↗ Tr(O↽)| ↘ (1 + ◁) →O→M,ω


> 1↗ ω (7.33)

for all states ↽.

Proof. For all ⇁⇓ > 0 and ω ↑ (0, 0.25), we know from Eq. (7.18) that

→O→M(⇁↑),ω
↘ 1

c(ω)
R↔(O,M(⇁⇓), ω), (7.34)

where we used the fact that

2 log(2/ω)

log(1/(4ω))
=

2(1 + log2(1/ω))

log2(1/ω)↗ 2
=

1

c(ω)
. (7.35)

Minimizing this inequality over all ⇁⇓ > 0, we obtain

inf
⇁↑>0

→O→M(⇁↑),ω
↘ 1

c(ω)
inf
⇁↑>0

R↔(O,M(⇁⇓), ω). (7.36)

Now, let φ = ⇁⇓/(1 + ⇁⇓), so that M(φ) defined in Lem. 7.11 coincides with M(⇁⇓) defined in
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Def. 5.4. Then, from Lem. 7.11.1, we have

→O→M,ω
↘ inf

⇁↑>0

→O→M(⇁↑),ω
. (7.37)

Therefore, we obtain

→O→M,ω
↘ inf

⇁↑>0

→O→M(⇁↑),ω
↘ 1

c(ω)
inf
⇁↑>0

R↔(O,M(⇁⇓), ω) ↘
1

c(ω)
R↔(O,M, ω) ↘ 1

c(ω)
ε, (7.38)

where the second inequality follows from Eq. (7.36), the third inequality follows from Lem. 7.12,

and the last inequality follows from Def. 5.2.

Now, we show that TOOL achieves this lower bound to a small constant factor. Fix ◁ > 0.

Since lim⇁↑↖0 →O→M(⇁↑),ω≃N⇁↑
= →O→M,ω

(Lem. 7.11.2), we can find a small enough 0 < ⇁⇓ ↘ ω/(2N)

such that →O→M(⇁↑),ω≃N⇁↑
↘ (1 + ◁) →O→M,ω

. Note that this bound holds even when →O→M,ω
= 0,

since by Prop. 7.2, we have →O→M,ω
= 0 i” O = cI i” →O→M(⇁↑),ω≃N⇁↑

= 0. Let O↔ be the estimator

constructed by TOOL with parameter ⇁⇓, for a confidence level of 1 ↗ (ω ↗ N⇁⇓). Then, from

Eq. (7.17), we have

PM(⇁↑),ε

(
| O↔ ↗ Tr(O↽)| ↘ (1 + ◁) →O→M,ω


⇔ PM(⇁↑),ε

(
| O↔ ↗ Tr(O↽)| ↘ →O→M(⇁↑),ω≃N⇁↑


⇔ 1↗(ω↗N⇁⇓)

(7.39)

for all states ↽. From Eq. (7.29), we know that
∥∥PM(⇁↑),ε ↗ PM,ε

∥∥
TV

↘ N⇁⇓/(1 + ⇁⇓) for all ↽. It

follows from the definition of total variation distance that

PM,ε({| O↔ ↗ Tr(O↽)| ↘ (1 + ◁) →O→M,ω
}) ⇔ PM(⇁↑),ε({| O↔ ↗ Tr(O↽)| ↘ (1 + ◁) →O→M,ω

})↗N
⇁⇓

1 + ⇁⇓

⇔ 1↗ ω +
N⇁2⇓
1 + ⇁⇓

> 1↗ ω

(7.40)

for all ↽.

Since ◁ > 0 can be made arbitrarily small in Eq. (7.33), the lower bound in Eq. (7.31) is tight
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to within a factor of 1/c(ω). For confidence levels 90% or more, we have c(ω) ↑ (0.15, 0.5), and

therefore, the lower bound in Eq. (7.31) is fairly tight.

7.3 General lower bound on the estimation error

Our goal in this section is to derive a lower bound on the error of estimating the expectation

value of an observable that does not depend on the measurement protocol that is implemented.

We also show that our lower bound is tight, in the sense that there is some measurement protocol

(and estimation procedure) for which we can achieve the lower bound on the estimation error to

within a constant factor. We find that measuring in the eigenbasis of the observable gives optimal

performance for learning the expectation value of that observable. This result should be intuitive

and familiar to many readers, and we give a formal proof using the results derived in the previous

section.

Since the minimax norm gives a lower bound on the estimation error for any given measurement

protocol, it su!ces to obtain a lower bound on the minimax norm that holds for all measurement

protocols using a fixed number of samples.

Lemma 7.14. Fix the observable O and confidence level 1↗ ω ↑ (0, 1). Then, for all measurement

protocols M using N samples, we have

→O→M,ω
⇔ (φmax(O)↗ φmin(O))

2



1↗

ω

2


2/N

. (7.41)

Proof. We prove this statement by generalizing the strategy in Ref. [92, Thm. II.1]. In the proof

below, we denote φmax(O) as φmax and φmin(O) as φmin for simplicity. O is a multiple of identity i”

φmax = φmin, in which case Eq. (7.41) holds trivially. Thus, we assume for the rest of the proof that

O is not a multiple of identity.

Since by Prop. 3.7, FCM(χ1,χ2) ⇔ F (χ1,χ2) for all χ1,χ2 ↑ X, we have from Eq. (7.2) the

lower bound

→O→M,ω
⇔ 1

2
max

χ1,χ2↗X

{
Tr(Oχ1)↗ Tr(Oχ2)

F (χ1,χ2) ⇔

ω

2

 2
N
}
, (7.42)

�����������������������
�����	����������������
����������




139

where N =
∑

L

i=1
Ni is the total number of samples. We proceed to evaluating this lower bound.

Denote 3 = (ω/2)2/N , so that the constraint in the above equation becomes F (χ1,χ2) ⇔ 3. Recall

that the trace distance between two states χ1,χ2 can be expressed as [107, Lem. (9.1.1)]

→χ1 ↗ χ2→tr = max
0↑$↑I

Tr()(χ1 ↗ χ2)). (7.43)

Therefore, we have

Tr(Oχ1)↗ Tr(Oχ2) ↘ (φmax ↗ φmin) →χ1 ↗ χ2→tr (7.44)

↘ (φmax ↗ φmin)
√

1↗ F (χ1,χ2)

↘ (φmax ↗ φmin)
√

1↗ 3, (7.45)

where the second inequality follows from the Fuchs-van de Graaf inequality (Eq. (3.35)), and the

last inequality holds when F (χ1,χ2) ⇔ 3.

We show that the upper bound in Eq. (7.45) can be achieved by explicitly constructing the

density matrices χ↔
1
and χ↔

2
achieving this bound and satisfying F (χ↔

1
,χ↔

2
) ⇔ 3. For this purpose, let

|φmin↓ and |φmax↓ denote orthonormal eigenvectors corresponding to the eigenvalues φmin and φmax

respectively. Define

χ↔
1 =

1 +
∋
1↗ 3

2
|φmax↓ ↔φmax|+

1↗
∋
1↗ 3

2
|φmin↓ ↔φmin| ,

χ↔
2 =

1↗
∋
1↗ 3

2
|φmax↓ ↔φmax|+

1 +
∋
1↗ 3

2
|φmin↓ ↔φmin| .

(7.46)

Observe that χ↔
1
and χ↔

2
are diagonal in the eigenbasis of O. Since 0 < 3 < 1, the diagonal entries of

these matrices are non-negative and they sum to 1, so that χ↔
1
and χ↔

2
are density matrices. Since

they are diagonal in the same basis, by Prop. 3.6.6, the fidelity between them is given by

F (χ↔
1,χ

↔
2) =


2


1 +

∋
1↗ 3

2


1↗

∋
1↗ 3

2

)2

= 3. (7.47)
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Furthermore, we have

Tr(Oχ↔
1)↗ Tr(Oχ↔

2) = (φmax ↗ φmin)
√
1↗ 3. (7.48)

As a result, we obtain

max
χ1,χ2↗X

{
Tr(Oχ1)↗ Tr(Oχ2)

F (χ1,χ2) ⇔ 3

}
= (φmax ↗ φmin)

√
1↗ 3. (7.49)

Combining this with Eq. (7.42) gives Eq. (7.41).

Combining the lower bound on the minimax norm in Eq. (7.41) with the lower bound on

estimation error derived in Thm. 7.13 gives the following result.

Theorem 7.15. Every estimation procedure that learns the expectation value of the observable O

using N samples of a non-adaptive measurement to an error of ε and a confidence level 1↗ω ↑ (0.75, 1)

satisfies

ε ⇔ c(ω)
(φmax(O)↗ φmin(O))

2



1↗

ω

2


2/N

, (7.50)

where c(ω) is defined in Eq. (7.32). Equivalently, every estimation procedure needs at least

N ⇔ 2 log(2/ω)log
(
1↗ 4ε2

c(ω)2(ϱmax(O)≃ϱmin(O))2


(7.51)

samples to learn the expectation value of O to within an error of ε ↑ (0, 0.5) and confidence level of

1↗ ω ↑ (0.75, 1).

Note that since log(1 + x) ↘ x for x > ↗1 and log(1 + x) ⇔ 2x for x ↑ [↗1/2, 0], we have

c(ω)2

4

(φmax ↗ φmin)2

ε2
log


2

ω


↘ 2 log(2/ω)log

(
1↗ 4ε2

c(ω)2(ϱmax≃ϱmin)
2


↘ c(ω)2

2

(φmax ↗ φmin)2

ε2
log


2

ω



(7.52)

for 0 < ε ↘ c(ω)(φmax(O)↗ φmin(O))/4.
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Proof. From Thm. 7.13, we know that

R↔(O,M, ω) ⇔ c(ω) →O→M,ω
(7.53)

for any given measurement protocol M. Minimizing over all measurement protocols using N samples,

we obtain

R↔(O, N, ω) ⇔ c(ω) inf
M

→O→M,ω
, (7.54)

where R↔(O, N, ω) is the minimax optimal risk defined in Eq. (5.3). Then, from Lem. 7.14, we

obtain

ε ⇔ R↔(O, N, ω) ⇔ c(ω)
(φmax(O)↗ φmin(O))

2



1↗

ω

2


2/N

, (7.55)

where the first inequality follows from the definition of R↔(O, N, ω). Rearranging Eq. (7.50) gives

Eq. (7.51).

Aaronson [1] has proven a lower bound on the sample complexity of learning the expectation

value of an observable similar to Eq. (7.51) that holds in the worst-case over all observables with

bounded operator norm. The worst-case lower bound can be too large for a given observable, when

the operator norm of the observable is large but the di”erence between the maximum and minimum

eigenvalues is small.

It remains to prove that the lower bound derived in Eq. (7.50) is tight. As one would intuitively

expect, this can be achieved by measuring in the eigenbasis of O, as we show below.

Proposition 7.16. TOOL can learn the expectation value of an observable O to an error of ε > 0

and a confidence level of 1↗ ω ↑ (0.75, 1) using at most

2 log(2/ω)log
(
1↗ 4ε2

(ϱmax≃ϱmin)
2



ℜ c(ω)2

2

(φmax(O)↗ φmin(O))2

ε2
log


2

ω


for ε ▽ c(ω)(φmax(O)↗ φmin(O))

(7.56)

outcomes obtained by measuring in the eigenbasis of O.
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Proof. Let {|φ1↓ , . . . , |φd↓} denote an orthonormal eigenbasis of O. Let the measurement protocol

M consist of measuring the POVM {|φ1↓ ↔φ1| , . . . , |φd↓ ↔φd|} N times. For all ◁ > 0, we know

from Thm. 7.13 that TOOL can learn ↔O↓ to an error of (1 + ◁) →O→M,ω
and a confidence level of

1↗ω ↑ (0.75, 1). Thus, it su!ces to compute →O→M,ω
. We denote φmax(O) = φmax and φmin(O) = φmin

in the proof.

From Prop. 7.5.1, we have →O→M,ω
= →O→→M,ω

for O→ = O ↗ φminI. O→ has eigenvalues

φ→
k
= φk ↗φmin for k ↑ [d] and the same eigenvectors as O. Next, note that Tr(O→χ) =

∑
d

k=1
φ→
k
pχ(k)

for all states χ, where pχ(k) = ↔φk|χ|φk↓. Moreover, we have BCM(χ1,χ2) =
∑

d

k=1

√
pχ1(k)pχ2(k) =

BC(pχ1 , pχ2) for all states χ1,χ2. Thus, the optimization defining the minimax norm in Eq. (7.2)

becomes

→O→M,ω
=

1

2
max
p,q↗#d

d

k=1

φ→
k
(pk ↗ qk)

s.t.
d

k=1

∋
pkqk ⇔


ω

2


1/N

.

(7.57)

We wish to derive an upper bound on →O→M,ω
. For this purpose, note that if p = q, then

∑
d

k=1
φ→
k
(pk↗

qk) = 0, so that the minimax norm is zero. Thus, we focus on distributions p ⇓= q. In this case,

the sets I+ = {k ↑ [d] | pk ↗ qk ⇔ 0} and I≃ = {k ↑ [d] | pk ↗ qk < 0} are non-empty. Observe

that
∑

d

k=1
φ→
k
(pk ↗ qk) =

∑
k↗I+ φ→

k
(pk ↗ qk) +

∑
k↗I↘ φ→

k
(pk ↗ qk) ↘ φ→

max

∑
k↗I+(pk ↗ qk), where

the inequality follows from the fact that φ→
k
⇔ 0 for all k. Since

∑
d

k=1
(pk ↗ qk) = 0, we have

∑
k↗I↘(pk ↗ qk) = ↗

∑
k↗I+(pk ↗ qk). Noting that →p↗ q→

1
=

∑
k↗I+(pk ↗ qk)↗

∑
k↗I↘(pk ↗ qk), we

obtain
∑

k↗I+(pk ↗ qk) = →p↗ q→
1
/2 = →p↗ q→

TV
. Thus, we have the upper bound

∑
d

k=1
φ→
k
(pk ↗

qk) ↘ φ→
max →p↗ q→

TV
= (φmax ↗ φmin) →p↗ q→

TV
. From Fuchs-van de Graaf inequality (Eq. (3.36))

and the constraint BC(p, q) ⇔ (ω/2)1/N , we obtain →p↗ q→
TV

↘
√
1↗ (ω/2)2/N . It follows that

→O→M,ω
↘ ((φmax ↗ φmin)/2)

√
1↗ (ω/2)2/N .

Thus, to learn ↔O↓ to an error of ε, we set (1 + ◁) →O→M,ω
= ε, so that ε ↘ (1 + ◁)((φmax ↗

φmin)/2)
√
1↗ (ω/2)2/N . Solving this for N and noting this holds for arbitrarily small ◁ > 0 gives

the desired result.
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Prop. 7.16 shows that the lower bound on sample complexity derived in Thm. 7.15 is tight to

within a factor of 1/c(ω)2. While we used TOOL to obtain an upper bound in Prop. 7.16, one can

also use Hoe”ding’s inequality [52] to get obtain an upper bound on the sample complexity.

Prop. 7.16 says that the sample complexity scales only with the di”erence in maximum and

minimum eigenvalues of the observable, and not the dimension of the system. Thus, for many

observables of interest, it is, in principle, possible to e!ciently estimate their expectation values.

The problem, however, is that this requires measuring in the eigenbasis of O, which can be very

challenging in practice depending on O. Usually, one works with a class of measurement protocols

that are relatively easy to implement in the underlying quantum computing architecture. This

motivates the importance of Thm. 7.13, which gives tight bounds on learning the expectation value

of an observable for a measurement protocol chosen according to experimental constraints.

7.4 Lower and upper bounds on the error for shadow tomography

In this section, we obtain lower bounds on the error of simultaneously estimating the expecta-

tion value of many observables. This problem is called shadow tomography, and was first studied by

Aaronson [1]. In addition to providing lower bounds for shadow tomography, we give corresponding

upper bounds on the error achieved by TOOL.

To learn the expectation values of many observables simultaneously using TOOL, we just learn

these expectation values separately and use the union bound to combine the estimates. We describe

the general procedure below, and give theoretical guarantees in Prop. 7.17.

Box 7: Shadow tomography with TOOL

Input: Observables O1, . . . ,OR, measurement protocol M,

confidence level 1↗ ω ↑ (0, 1), parameter 0 < ⇁⇓ ▽ 1

Estimator construction:

For i ↑ [R], compute the estimator O(i)

↔ and the error ε(i)↔ for learning ↔Oi↓ using Box 3, with

measurement protocol M, confidence level 1↗ ω/R, and parameter ⇁⇓.
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Output: estimators O(1)

↔ , . . . , O(R)

↔ , estimation error ε↔ = maxi↗[R] ε
(i)

↔ .

The main thing to note in the above procedure is that we need to implement TOOL for each

observable for a confidence level of 1↗ω/R instead of 1↗ω. We now prove a lower bound on learning

the expectation values of many observables simultaneously, and study the performance of TOOL.

Proposition 7.17. The error ε of every estimation procedure that can learn the expectation values

of the observables O1, . . . ,OR simultaneously using outcomes of the measurement protocol M with

confidence level 1↗ ω ↑ (0.75, 1)is bounded below as

ε ⇔ c(ω)max
i↗[R]

→Oi→M,ω
. (7.58)

On the other hand, for all ◁ > 0, there is some ⇁→⇓ ↑ (0, ω/(2NR)], such that for all ⇁⇓ ↑ (0, ⇁→⇓], using

TOOL with parameter ⇁⇓ and confidence level 1↗ (ω ↗N⇁⇓) according to Box 7 can simultaneously

learn the expectation values of O1, . . . ,OR with error

(1 + ◁)max
i↗[R]

→Oi→M,ω/R
, (7.59)

to a confidence level of 1↗ ω.

Proof. If for i ↑ [L], Oi denotes the estimator used by this procedure for learning ↔Oi↓, then

PM,ε

(
| Oi ↗ ↔Oi↓ | > ε


↘ PM,ε


max
j↗[R]

| Oj ↗ ↔Oj↓ | > ε


< ω, (7.60)

for all states ↽. Then, by Thm. 7.13, we must have ε ⇔ c(ω) →Oi→M,ω
for all i ↑ [L], giving Eq. (7.58).

Next, we obtain an upper bound achieved by TOOL. Fix ◁ > 0. For each i ↑ [R], by

Lem. 7.11.2, we have lim⇁↑↖0 →Oi→M(⇁↑),ω/R≃N⇁↑
= →Oi→M,ω/R

. Thus, given ◁ > 0, there is some

0 < ⇁⇓ < ω/(2NR) such that for all i ↑ [R], we have →Oi→M(⇁↑),ω/R≃N⇁↑
↘ (1 + ◁) →Oi→ω/R. We then
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follow the strategy of Thm. 7.13. First, from Eq. (7.17), for all i ↑ [R], we have

PM(⇁↑),ε

(
| O↔

i ↗ Tr(Oi↽)| ↘ (1 + ◁) →Oi→M,ω/R


⇔ PM(⇁↑),ε

(
| O↔

i ↗ Tr(Oi↽)| ↘ →Oi→M(⇁↑),ω/R≃N⇁↑



⇔ 1↗

ω

R
↗N⇁⇓



(7.61)

for all states ↽. From Eq. (7.29), we know that
∥∥PM(⇁↑),ε ↗ PM,ε

∥∥
TV

↘ N⇁⇓/(1 + ⇁⇓) for all ↽. It

follows from the definition of total variation distance that for all ↽ and all i ↑ [R], we have

PM,ε({| O↔
i ↗ Tr(Oi↽)| ↘ (1 + ◁) →Oi→M,ω/R

}) ⇔ PM(⇁↑),ε({| O
↔
i ↗ Tr(Oi↽)| ↘ (1 + ◁) →Oi→M,ω/R

})↗N
⇁⇓

1 + ⇁⇓

⇔ 1↗ ω +N⇁⇓ ↗N
⇁⇓

1 + ⇁⇓

⇔ 1↗ ω

R
+

N⇁2⇓
1 + ⇁⇓

> 1↗ ω

R
(7.62)

Therefore, for all ↽ and all i ↑ [R], we have

PM,ε


| O↔

i ↗ ↔Oi↓ | > (1 + ◁) max
j↗[R]

→Oj→M,ω/R


↘ PM,ε

(
| O↔

i ↗ ↔Oi↓ | > (1 + ◁) →Oi→M,ω/R


<

ω

R
.

(7.63)

Then, by the union bound, we can infer that

PM,ε


max
j↗[R]

| O↔
j ↗ ↔Oj↓ | > (1 + ◁) max

j↗[R]

→Oj→M,ω/R


< ω, (7.64)

giving the desired result.

The error in Eq. (7.59) obtained by implementing Box 7 does not always match the lower

bound in Eq. (7.58) because we are using the union bound to derive Eq. (7.59). In particular, since

ω/R < ω, from Prop. 7.5, we know that →Oi→M,ω/R
⇔ →Oi→M,ω

for all i ↑ [R]. Therefore, even though

◁ > 0 can be made arbitrarily small, Eq. (7.59) can be larger than the lower bound in Eq. (7.58).

As to how large the error in Eq. (7.59) is compared to Eq. (7.58) will depend on the observables
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and the measurement protocol. While the error achieved by Box 7 is not always within a constant

factor of the lower bound in Eq. (7.58), we can prove a slightly weaker optimality result for Box 7

that is su!cient in practice.

Proposition 7.18. For every estimation procedure that learns the expectation values of O1, . . . ,OR

simultaneously using the outcomes of M to a confidence level of 1↗ ω ↑ (0.75, 1) for all states by

learning each expectation value separately to an error ε(i) and a confidence level of 1 ↗ ω/R and

using the union bound to obtain an error of ε = maxi↗[R] ε
(i) must satisfy

ε ⇔ c(ω)max
i↗[R]

→Oi→M,ω/R
. (7.65)

Proof. Suppose that for each i ↑ [R], the estimation procedure learns ↔Oi↓ to error ε(i) to a confidence

level of 1↗ ω/R. Then, by Thm. 7.13, we must have

ε(i) ⇔ c(ω) →Oi→M,ω/R
(7.66)

for all i ↑ [R]. Taking maximum over i ↑ [R] gives Eq. (7.65).

The strategy described in Prop. 7.18 is commonly used by many estimation procedures in

practice, including classical shadows [54]. Then, the result of Prop. 7.18 and Prop. 7.17 together

imply that TOOL performs at least as good as such estimation procedures, up to a factor of 1/c(ω).

A detailed comparison of TOOL with classical shadows is presented in Ch. 8.

Prop. 7.18 and Prop. 7.17 derived lower bounds on shadow tomography for a fixed measurement

protocol. Now, we derive a lower bound, allowing all measurement protocols.

Proposition 7.19. Let M denote a set of measurement protocols that use a fixed number of samples.

Then, the error ε of every procedure that simultaneously learns the expectation values of O1, . . . ,OR

using a measurement protocol from the set M, with probability greater than 1↗ ω ↑ (0.75, 1) for all
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states is bounded below as

ε ⇔ c(ω) inf
M↗M

max
i↗[R]

→Oi→M,ω
. (7.67)

If we focus on estimation procedures that learns the expectation values of O1, . . . ,OR simultaneously

using the outcomes of M to a confidence level of 1 ↗ ω ↑ (0.75, 1) for all states by learning each

expectation value separately to an error ε(i) and a confidence level of 1↗ ω/R and using the union

bound to obtain an error of ε = maxi↗[R] ε
(i), the lower bound can be improved to

ε ⇔ c(ω) inf
M↗M

max
i↗[R]

→Oi→M,ω/R
. (7.68)

On the other hand, for all ◁ > 0, there is a measurement protocol in M such that TOOL can

use the outcomes of this protocol to simultaneously learn the expectation values of O1, . . . ,OR to

within an error of

(1 + ◁) inf
M

max
i↗[R]

→Oi→M,ω/R
(7.69)

with probability greater than 1↗ ω ↑ (0, 1).

Proof. Given any procedure that implements the measurement protocol M→ ↑ M, we know from

Prop. 7.17 that the error of simultaneously learning ↔O1↓ , . . . , ↔OR↓ is bounded below as

ε ⇔ c(ω)max
i↗[R]

→Oi→M↔,ω ⇔ c(ω) inf
M↗M

max
i↗[R]

→Oi→M,ω
, (7.70)

which gives Eq. (7.67). If instead we focus on estimation procedures that use the union bound to

learn the expectation values of O1, . . . ,OR simultaneously, then by Prop. 7.18, the error is bounded

below as

ε ⇔ c(ω)max
i↗[R]

→Oi→M↔,ω/R ⇔ inf
M↗M

max
i↗[R]

→Oi→M,ω/R
. (7.71)

Now, assume that at least one of the observables O1, . . . ,OR is not a multiple of identity, for

otherwise, the expectation value of each Oi is zero and there is nothing to learn. Assuming that the
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measurement protocols in M use N samples, by Thm. 7.15, we have

max
i↗[R]

→Oi→M,ω/R
⇔ c(ω)

2
max
i↗[R]

(φmax(Oi)↗ φmin(Oi))



1↗


ω

2R


2/N

(7.72)

for all M ↑ M, ω ↑ (0, 1), and R ⇔ 1, and consequently,

inf
M↗M

max
i↗[R]

→Oi→M,ω/R
⇔ c(ω)

2
max
i↗[R]

(φmax(Oi)↗ φmin(Oi))



1↗


ω

2R


2/N

> 0. (7.73)

Fix ◁ > 0, and define ◁0 =
∋
1 + ◁ ↗ 1. Since ◁0 > 0, we have

(1 + ◁0) inf
M

max
i↗[R]

→Oi→M,ω/R
> inf

M↗M
max
i↗[R]

→Oi→M,ω/R
, (7.74)

and therefore, by the definition of infimum, there is some measurement protocol M↔ ↑ M such that

max
i↗[R]

→Oi→M↓,ω/R
< (1 + ◁0) inf

M↗M
max
i↗[R]

→Oi→M,ω/R
. (7.75)

From Prop. 7.17, we know that the using the measurement protocolM↔, TOOL can learn ↔O1↓ , . . . , ↔OR↓

simultaneously to a confidence level of 1↗ ω with an error of

(1 + ◁0)max
i↗[R]

→Oi→M↓,ω/R
< (1 + ◁0)

2 inf
M↗M

max
i↗[R]

→Oi→M,ω/R
= (1 + ◁) inf

M↗M
max
i↗[R]

→Oi→M,ω/R
, (7.76)

where (1 + ◁0)2 = (1 + ◁) by definition of ◁0.

As in Prop. 7.18, if we only consider estimation procedures in Prop. 7.19 that simultaneously

learn the expectation values of O1, . . . ,OR using the union bound, then TOOL is minimax optimal

up to a small constant factor.

Before ending this section, we give an alternate expression for maxi↗[R] →Oi→M,ω
. We begin by

introducing a seminorm determined by a given list of observables.

Definition 7.20. Given a list of observables O = (O1, . . . ,OR), we define the seminorm on Sd
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induced by O as

→Q→
O
=

1

2
max
i↗[R]

|Tr(OiQ)| (7.77)

for Q ↑ Sd.

It can be verified that →·→
O
is a seminorm on Sd. Moreover, if ↗I ↘ O1, . . . ,OR ↘ I, and

M(O) = {({(I +Oi)/2, (I ↗Oi)/2}, Ni)}Ri=1 (7.78)

denotes the measurement protocol corresponding to measuring the two-outcome POVMs defined by

O1, . . . ,OR, then

→↽↗ ↼→
O
= →↽↗ ↼→M(O),max

. (7.79)

We now give an expression for the minimax norm in terms of →·→
O
.

Proposition 7.21. 1. The minimax norm of an observable O given the measurement protocol M

and confidence level 1↗ ω can be expressed as

→O→M,ω
=

1

2
max

χ1,χ2↗X
|Tr(Oχ1)↗ Tr(Oχ2)|

s.t. BDM(χ1,χ2) ↘
1

N
log


2

ω


.

(7.80)

2. Given a list of observables O = (O1, . . . ,OR), a measurement protocol M, and a confidence level

1↗ ω, we have

max
i↗[R]

→Oi→M,ω
= max

χ1,χ2↗X
→χ1 ↗ χ2→O

s.t. BDM(χ1,χ2) ↘
1

N
log


2

ω


.

(7.81)

Proof. 1. Since (χ1,χ2) ↑ C(M, ω) i” (χ2,χ2) ↑ C(M, ω) (Prop. 7.4.1.iii), we have Tr(O(χ1↗χ2)) ↘

→O→M,ω
and ↗Tr(O(χ1 ↗ χ2)) ↘ →O→M,ω

for all (χ1,χ2) ↑ C(M, ω). This gives Tr(O(χ1 ↗ χ2)) ↘

|Tr(O(χ1 ↗ χ2)| ↘ →O→M,ω
for all (χ1,χ2) ↑ C(M, ω). Optimizing over (χ1,χ2) ↑ C(M, ω) gives

Eq. (7.80).

2. Eq. (7.81) follows from Eq. (7.80), Def. 7.20, and the fact that maximums commute.
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Eq. (7.81) shows that maxi↗[R] →Oi→M,ω
is related to the constant of domination studied in [71],

though with respect to di”erent distance measures than those studied in [71].
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Chapter 8

Miscellaneous applications of the lower bounds

In Ch. 7, we showed that the minimax norm provides a tight lower bound for learning the

expectation values of observables for any given measurement protocol. Therefore, we can use the

minimax norm as a figure of merit to study and compare the performance of di”erent measurement

protocols and estimation procedures for learning the expectation values of observables. Motivated

by this, we study some upper and lower bounds on the minimax norm for di”erent measurement

protocols, in order to prove feasibility and infeasibility results.

In Sec. 8.1, we study the relation of the minimax norm to the shadow norm for measurement

protocols described by a single POVM. Since randomized measurements can be described by a

single e”ective POVM, our analysis applies to randomized measurements as well. We first show

that the minimax norm is always smaller than the shadow norm up to appropriate constant factors,

which implies that TOOL always performs as well as classical shadows. Subsequently, we show that

there are many observables for which the minimax norm is exponentially smaller than the shadow

norm, implying an exponential advantage of TOOL over classical shadows. In Sec. 8.2, we present

two no-go theorems, one for estimating the fidelity with stabilizer states, and another for learning

the expectation values of arbitrary observables.

8.1 Randomized measurements

In this section, we study the performance of learning the expectation values of observables using

measurement protocols described by a single POVM. As discussed in the preliminaries (Sec. 2.2),
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randomized measurement protocols can be described by an e”ective POVM, and therefore, our

analysis of single POVMs apply to randomized measurement protocols as well.

To begin with, we give a brief description of the classical shadows estimation procedure,

as given in [54]. We discuss the procedure for a system of n-qubits (i.e., d = 2n) following [54],

but we note that the procedure can be generalized to other scenarios. We fix a set U of unitary

operators, called a unitary ensemble, and randomly sample a unitary operator from U according

to some probability distribution. If U ↑ U was sampled, then we rotate the (unknown) state ↽

prepared in the experiment by U , i.e., ↽ ¬↖ U↽U †. After this, we perform a computational basis

measurement. If the outcome b ↑ {0, 1}n was observed, then we store a classical description of

the state U † |b↓ ↔b|U . This measurement procedure is repeated N times, and the resulting classical

description, {U †
i
|bi↓ ↔bi|Ui}Ni=1

, is called a classical shadow. Then, given observables O1, . . . ,OR, for

each r ↑ [R], one implements the median-of-means estimation procedure on {Tr(OrU
†
i
|bi↓ ↔bi|Ui)}Ni=1

to learn Tr(Or↽) to a confidence level of 1 ↗ ω/R. Finally, one uses the union bound to estimate

Tr(O1↽), . . . ,Tr(OR↽) in l⇒-norm to a confidence level of 1↗ ω. Note that it does not matter whether

or not the observables O1, . . . ,OR are known before the measurements are performed.

In this section, we focus on the case where U is a finite ensemble, since that covers the

ensembles studied by [54]. We call the measurement where U ↑ U is sampled according to the

probability distribution pU ↑ #|U|, the state is rotated by U as ↽ ¬↖ U↽U †, and a computational

basis measurement is performed on the rotated state as U-random unitary measurement. The

e”ective POVM describing a U-random unitary measurement is

{pUU † |b↓ ↔b|U}U↗U,b↗{0,1}n . (8.1)

Following [54], when we talk about a U-random unitary measurement, we will assume that the

e”ective POVM in Eq. (8.1) is informationally complete. In this case, the map

E(↼) =


U↗U



b↗{0,1}n
pU

〈
b|U↼U †|b

〉
= EU∈U



b↗{0,1}n

〈
b|U↼U †|b

〉
(8.2)
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for ↼ ↑ X is invertible [54]. Using this, we can define the shadow norm of an observable as follows.

Definition 8.1 (Shadow norm). Given a unitary ensemble U, the shadow norm of an observable

O is defined as

→O→
shadow

= max
ϑ↗X


EU∈U



b↗{0,1}n
↔b|U↼U †|b↓ ↔b|UE≃1(O)U †|b↓2. (8.3)

The shadow norm determines the performance of classical shadows. [54, Thm. 1] shows that

the sample complexity of classical shadows for learning the expectation values of O1, . . . ,OR to an

error of ε > 0 and a confidence level of 1↗ ω is equal to

N = O


log(R)

ε2
max
1↑i↑R

∥∥∥∥Oi ↗
Tr(Oi)

d
I

∥∥∥∥
2

shadow

)
. (8.4)

[54] prove the following lower bounds to show that the performance of classical shadows is

nearly optimal in the worst case over observables.

Theorem 8.2 (Thm. 5, [54], rephrased). Fix a measurement protocol M using N samples,

an estimation error ε, and an integer R ↘ exp(d/32), where d is the system dimension. If for all

O1, . . . ,OR with maxi↗[R] →Oi→HS
↘ B, there are estimators O1, . . . , OR, such that for all ↽, we have

maxr↗[R] | Oi ↗ Tr(Oi↽)| ⇔ ε with high probability, then necessarily

N ⇔ $


B2 log(R)

ε2


. (8.5)

Thm. 8.2 applies to all measurement protocols. [54] also prove a lower bound that applies

specifically to local measurements on a system of n-qubits. A local measurement or a local POVM

is a POVM L = {wid |vi↓ ↔vi|}Mi=1
, where w ↑ #M , |vi↓ = |v(1)

i
↓ ∞ · · · ∞ |v(n)

i
↓ for all i ↑ [M ], and

d = 2n [54]. We define a local measurement protocol as Ml = {(L(i), Ni)}Li=1
, where L(i) is a local

POVM for all i ↑ [R]. On the other hand, a k-local observable acting on a system of n qubits is an
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observable that acts trivially on n↗ k qubits. Then, [54] prove the following result.

Theorem 8.3 (Thm. 6, [54], rephrased). Fix a local measurement protocol M using N samples,

an estimation error ε, number of qubits n, locality k, and an integer R ↘ 3k
(
n

k

)
. If for all k-local

observables O1, . . . ,OR with maxi↗[R] →Oi→⇒ ↘ 1, there are estimators O1, . . . , OR, such that for all ↽,

we have maxr↗[R] | Oi ↗ Tr(Oi↽)| ⇔ ε with high probability, then necessarily

N ⇔ $


3k log(R)

ε2


. (8.6)

[54] prove that the classical shadows estimation procedure achieves the lower bound in Thm. 8.2

by choosing the unitary ensemble to be global Cli”ord operators, while classical shadows achieves

the lower bound in Thm. 8.3 by choosing the unitary ensemble to be local Cli”ord operators. Note,

however, that lower bounds in Thm. 8.2 and Thm. 8.3 are obtained for the worst case over all states

and all observables with either a fixed bound on the Hilbert-Schmidt norm or a fixed locality. Thus,

in principle, it is possible to improve upon the sample complexity bounds given in Thm. 8.2 and

Thm. 8.3 for specific choices of observables.

In this section, we focus on proving three results. First, we prove that TOOL does at least as

well as classical shadows for every unitary ensemble, and more generally, for every measurement

protocol that can be described by a single POVM. Second, we find observables for which TOOL

can beat both the lower bound of Thm. 8.3 as well as classical shadows. Since the lower bound

of Thm. 8.3 is worst case over all observables with a fixed locality, classical shadows itself may

perform better than the lower bound for specific observables. It is therefore necessary to show that

TOOL can do better than both the lower bound and classical shadows. Note that we focus on local

measurements here because they are more practical to implement with the current experimental

capabilities. Finally, we prove two data-processing inequalities for the minimax norm for randomized

measurements.

To begin with, we note that for the measurement protocol M = {(E, N)} that involves

implementing the POVM E = {Ek}Mk=1
N times, we can simplify the expressions for the classical
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distance measures defined in Sec. 3.1. In particular, if we denote pχ(k) = Tr(Ekχ) for χ ↑ X, then

for all χ1,χ2 ↑ X, we have

BCM(χ1,χ2) =
M

k=1

√
pχ1(k)pχ2(k) = BC(pχ1 , pχ2), (8.7)

FCM(χ1,χ2) = (BCM(χ1,χ2))2, and BDM(χ1,χ2) = ↗ log(BCM(χ1,χ2)).

We can also generalize the definition of the shadow norm for measurement protocols described

by a single POVM. Note that generalization of classical shadows to informationally complete POVMs

and frames has been studied in the recent past. We briefly discuss how to define the shadow norm to

the case of single POVM measurements. First, note that the map E given in Eq. (8.2) generalizes to

E(↼) =
M

k=1

Tr(Ek↼)Ek. (8.8)

We can obtain Eq. (8.2) from Eq. (8.8) by taking E to be the e”ective POVM given in Eq. (8.1).

When the POVM E is informationally complete, the map E has a left inverse E≃1 [88]. It can be

verified that the converse also holds, i.e., if E has a left inverse, then E must be informationally

complete. Thus, we can generalize shadow norm to an informationally complete POVM as follows.

Definition 8.4 (Shadow norm for an IC-POVM). Given an informationally complete POVM

E, we define the shadow norm of an observable O with respect to E as

→O→
shadow

= max
ϑ↗X

√√√√
M

k=1

(Tr ((E≃1)†(O)Ek))
2Tr(Ek↼). (8.9)

It can be verified that Eq. (8.9) defines a norm on Sd (also see [57, Sec. VI]). We now derive

an upper bound on the minimax norm in terms of the shadow norm.
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Proposition 8.5. 1. Let E be a POVM and O be an observable contained in the span of E, so that

O =
M

k=1

ϑkEk (8.10)

for some (not necessarily unique) numbers ϑ1, . . . ,ϑk ↑ R. Then, for M = {(E, N)}, we have

→O→M,ω
↘



2↗ 2


ω

2


1/N

inf
c↗R

max
ϑ↗X

√√√√
M

k=1

(ϑk ↗ c)2Tr(Ek↼)

↘



2↗ 2


ω

2


1/N

max
ϑ↗X

√√√√
M

k=1

ϑ2

k
Tr(Ek↼).

(8.11)

2. If E is informationally complete, then

O =
M

k=1

Tr
(
(E≃1)†(O)Ek


Ek, (8.12)

and for M = {(E, N)}, we have

→O→M,ω
↘



2↗ 2


ω

2


1/N

inf
c↗R

→O ↗ cI→
shadow

↘



2↗ 2


ω

2


1/N

→O→
shadow

.

(8.13)

Proof. 1. From Eq. (8.10), we can write Tr(Oχ) =
∑

M

k=1
ϑkpχ(k) for any state χ, where pχ(k) =

Tr(Ekχ). Thus, using Eq. (8.7) and the expression for the minimax norm given in Eq. (7.2), we can

write

→O→M,ω
=

1

2
max

χ1,χ2↗X



k=1

ϑk(pχ1(k)↗ pχ2(k))

s.t. BC(pχ1 , pχ2) ⇔

ω

2


1/N

.

(8.14)

Since
∑

k
ϑk(pχ1(k) ↗ pχ2(k)) =

∑
k
ϑk(

√
pχ1(k) +

√
pχ2(k))(

√
pχ1(k) ↗

√
pχ2(k)), by Cauchy-
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Schwarz inequality, we obtain

M

k=1

ϑk(pχ1(k)↗ pχ2(k)) ↘
∋
2





√√√√
M

k=1

ϑ2

k
pχ1(k) +

√√√√
M

k=1

ϑ2

k
pχ2(k)



HD(pχ1 , pχ2),

where HD(pχ1 , pχ2) is the Hellinger distance between the distributions pχ1 and pχ2 defined in

Eq. (3.21). Since HD(pχ1 , pχ2) =
√
1↗ BC(pχ1 , pχ2), the constraint BC(pχ1 , pχ2) ⇔ (ω/2)1/N

implies H(pχ1 , pχ2) ↘
√

1↗ (ω/2)1/N . Therefore, we have

→O→M,ω
↘ 1

2
max

χ1,χ2↗X



∋
2





√√√√
M

k=1

ϑ2

k
pχ1(k) +

√√√√
M

k=1

ϑ2

k
pχ2(k)







1↗

ω

2


1/N





↘ 1

2



2↗ 2


ω

2


1/N



max
χ1↗X

√√√√
M

k=1

ϑ2

k
pχ1(k) + max

χ2↗X

√√√√
M

k=1

ϑ2

k
pχ2(k)





=



2↗ 2


ω

2


1/N

max
ϑ↗X

√√√√
M

k=1

ϑ2

k
Tr(Ek↼).

(8.15)

From Prop. 7.5.1, we have →O→M,ω
= →O ↗ cI→M,ω

for all c ↑ R. Then, since O ↗ cI =
∑

m

k=1
(ϑk ↗

c)Ek,we obtain Eq. (8.11).

2. Since the map E defined in Eq. (8.8) has a left inverse E≃1 when E is informationally

complete, we have ↼ =
∑

M

k=1
Tr(Ek↼)E≃1(Ek) for all ↼ ↑ X. Consequently, for any observable O,

we have

Tr(O↼) =
M

k=1

Tr
(
OE≃1(Ek)

)
Tr(Ek↼) =

M

k=1

Tr
(
(E≃1)†(O)Ek


Tr(Ek↼). (8.16)

Since this holds for every state ↼, Eq. (8.12) holds.

Since Eq. (8.11) holds for all ϑ1, . . . ,ϑM ↑ R such that O =
∑

M

k=1
ϑkEk, we can take

ϑk = Tr((E≃1)†(O)Ek) to obtain
√

2↗ 2(ω/2)1/N →O→
shadow

. Now, from Prop. 7.5.1, we know

that →O→M,ω
= →O ↗ cI→M,ω

for all c ↑ R. Thus, we also have the stronger inequality →O→M,ω
↘

√
2↗ 2(ω/2)1/N infc↗R →O ↗ cI→

shadow
.
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Since log(1/x) ⇔ 1↗ x for x > 0, we have



1↗

ω

2


1/N

↘


log(2/ω)

N
. (8.17)

Due to the logarithmic dependence of the upper bound in Eq. (8.13) on 1/ω, we can simultaneously

learn the expectation values of R observables in l⇒-norm by learning them separately to a confidence

level of 1 ↗ ω/R and using the union bound. Then, since the minimax norm determines the

performance of TOOL, while the shadow norm determines the performance of classical shadows, we

can infer from Eq. (8.13) that TOOL performs at least as well as classical shadows. We formally

prove this below.

Corollary 8.6. For all informationally complete POVMs E, TOOL can simultaneously learn the

expectation values of O1, . . . ,OR in l⇒-norm to an error of ε and confidence level of 1↗ ω ↑ (0, 1)

using at most

2

ε2
max
1↑i↑R

∥∥∥∥Oi ↗
Tr(Oi)

d
I

∥∥∥∥
2

shadow

log


2R

ω


(8.18)

outcomes of E. In particular, TOOL performs at least as well as classical shadows for all U-random

unitary measurements.

Proof. For all i ↑ [R], we have from Eq. (8.13) and Eq. (8.17) that

→Oi→M,ω
↘



2↗ 2


ω

2


1/N

inf
c↗R

→Oi ↗ cI→
shadow

↘


2 log(2/ω)

N

∥∥∥∥Oi ↗
Tr(Oi)

d
I

∥∥∥∥
shadow

. (8.19)

From Prop. 7.17, we know that for all ◁ > 0, TOOL can simultaneously learn the expectation values

of O1, . . . ,OR to within an error of

(1 + ◁)max
i↗[R]

→Oi→M,ω
↘ (1 + ◁)C


2 log(2/ω)

N
, (8.20)

where C = max1↑i↑N →Oi ↗ Tr(Oi)I/d→shadow. Setting (1 + ◁)C
√

2 log(2/ω)/N ↘ ε, solving for N ,

and using the fact that ◁ > 0 can be made arbitrarily small gives Eq. (8.18).
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Cor. 8.6 shows that TOOL does at least as well as classical shadows. We now show that there

are many observables for which TOOL performs exponentially better than classical shadows.

For this purpose, we focus on uniformly random Pauli measurements on an n-qubit system

that achieves the lower bound worst-case lower bound in Thm. 8.3 (see [54]). To describe this

measurement, we denote Cl1 to be the one-qubit Cli”ord group. Then, by a uniformly random

Pauli measurement (URPM), we mean performing a U-random unitary measurement for

U = Cl↓n

1
and pU = 1/|U| for all U ↑ U. To describe the e”ective POVM for URPM, for

k ↑ {X,Y, Z}n and b ↑ {0, 1}n, we denote |k, b↓ to be the bth eigenvector of Pauli Pk defined by the

string k. For example, if n = 1, then |X, 0↓ = |+↓, if n = 2, then |ZX, 01↓ = |0↗↓, and so on. Then,

the e”ective POVM for URPM is given by the operators

Ek,b =
1

3n
|k, b↓ ↔k, b| , (8.21)

for k ↑ {X,Y, Z}n and b ↑ {0, 1}n.

We begin by showing that TOOL can perform exponentially better than classical shadows for

learning the expectation value of a single observable.

Proposition 8.7. For learning the expectation value of O = |Zn, 0n↓ ↔Zn, 0n| to an error of ε > 0

and a confidence level of 1 ↗ ω ↑ (0, 1)) using uniformly random Pauli measurements, classical

shadows needs at least

$


3

2


n 1

ε2
log


1

ω


(8.22)

samples, whereas TOOL needs at most

O


9

8


n 1

ε2
log


1

ω


(8.23)

samples.

Proof. To obtain a lower bound on the sample complexity of classical shadows, it su!ces to find a

lower bound on the shadow norm. The inverse map E≃1 for E defined in Eq. (8.2) for URPM is
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given by E≃1 =
⊗

n

i=1
D≃1

1/3
, where D≃1

1/3
(A) = 3A↗ Tr(A)I for any 2≃ 2 Hermitian matrix A [54].

Since O is a product state, its shadow norm can be expressed as

→O→2
shadow

= max
ϑ↗X

Tr










b↗{0,1}

EU↗Cl1U
† |Z, b↓ ↔Z, b|U

〈
Z, b|U(3 |Z, 0↓ ↔Z, 0|↗ I)U †|Z, b

〉
2




↓n

↼



 .

(8.24)

Thus, →O→2
shadow

is the maximum eigenvalue of






b↗{0,1}

EU↗Cl1U
† |Z, b↓ ↔Z, b|U

〈
Z, b|U(3 |Z, 0↓ ↔Z, 0|↗ I)U †|Z, b

〉
2




↓n

, (8.25)

which is equal to the nth power of the maximum eigenvalue of



b↗{0,1}

EU↗Cl1U
† |Z, b↓ ↔Z, b|U

〈
Z, b|U(3 |Z, 0↓ ↔Z, 0|↗ I)U †|Z, b

〉
2

, (8.26)

which we now compute. To proceed, denote A = 3 |Z, 0↓ ↔Z, 0| ↗ (3/2)I, so that 3 |Z, 0↓ ↔Z, 0| ↗

I = A + (1/2)I and Tr(A) = 0. Thus,
〈
Z, b|U(3 |Z, 0↓ ↔Z, 0|↗ I)U †|Z, b

〉2
=

〈
Z, b|UAU †|Z, b

〉2
+

〈
Z, b|UAU †|Z, b

〉
+ 1/4. From [54, App. 5], we know that

EU↗Cl1

[
U † |Z, b↓ ↔Z, b|U

〈
Z, b|UAU †|Z, b

〉
2
]
=

Tr(A2)I + 2A2

24
=

3

8
I (8.27)

for b ↑ {0, 1}. Similarly, we have

EU↗Cl1

[
U † |Z, b↓ ↔Z, b|U

〈
Z, b|UAU †|Z, b

〉]
=

A

6
=

1

2


|Z, 0↓ ↔Z, 0|↗ 1

2
I


(8.28)

for b ↑ {0, 1} [54, App. 5]. Finally, we have

EU↗Cl1

[
U † |Z, b↓ ↔Z, b|U 1

4

]
=

1

8
I (8.29)
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for b ↑ {0, 1}. Putting these observations together, we obtain



b↗{0,1}

EU↗Cl1U
† |Z, b↓ ↔Z, b|U

(
Tr((3 |Z, 0↓ ↔Z, 0|↗ I)U † |Z, b↓ ↔Z, b|U)


2

=
3

2
|Z, 0↓ ↔Z, 0|+ 1

2
|Z, 1↓ ↔Z, 1| ,

(8.30)

which has a maximum eigenvalue of 3/2. As a result, we have →O→2
shadow

= (3/2)n, or →O→
shadow

=

√
(3/2)n. We also have →I/2n→

shadow
= 1/2n. Thus, by triangle inequality and reverse triangle

inequality, we have


3

2


n

↗ 1

2n
↘

∥∥∥∥O ↗ 1

2n
I

∥∥∥∥
shadow

↘


3

2


n

+
1

2n
. (8.31)

Since classical shadows need $(→O ↗ I/2n→2
shadow

log(1/ω)/ε2) samples to estimate the fidelity to a

precision of ε and a confidence level of 1↗ ω [54], Eq. (8.22) follows.

Next, we obtain an upper bound on the minimax norm. Using Eq. (7.2), Eq. (8.7), and

Eq. (8.21), we have

→O→M,ω
=

1

2
max

χ1,χ2↗X
Tr(O(χ1 ↗ χ2))

s.t.


k↗{X,Y,Z}n

1

3n



b↗{0,1}n

√
pk,b(χ1)pk,b(χ2) ⇔


ω

2


1/N

,
(8.32)

where we denote pk,b(χ) = ↔k, b|χ|k, b↓ for χ ↑ X. We also denote pk(χ) to be a 2n-dimensional

(probability) vector with entries pk,b(χ) for b ↑ {0, 1}n. Then, using Fuchs-van de Graaf inequality

(Eq. (3.36)), we have
∑

b↗{0,1}n
√
pk,b(χ1)pk,b(χ2) ↘

√
1↗ →pk(χ1)↗ pk(χ2)→2TV

for each k. By

concavity of square-root, we have



k↗{X,Y,Z}n
(1/3n)



b↗{0,1}n

√
pk,b(χ1)pk,b(χ2) ↘


1↗



k↗{X,Y,Z}n
(1/3n) →pk(χ1)↗ pk(χ2)→2TV

. (8.33)
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Thus, from Eq. (8.32), we have the bound

→O→M,ω
↘ 1

2
max

χ1,χ2↗X
Tr(O(χ1 ↗ χ2))

s.t.


k↗{X,Y,Z}n

1

3n
→pk(χ1)↗ pk(χ2)→2TV

↘ 1↗

ω

2


2/N

.
(8.34)

To proceed, we expand χ1 ↗ χ2 in the Pauli basis as

χ1 ↗ χ2 =


▷↗{I,X,Y,Z}n
▷▷P▷. (8.35)

Fix a k ↑ {X,Y, Z}n, and define I(k) = {4 ↑ {I,X, Y, Z}n | ∝i ↑ [n], li ↑ {I, ki}}, so that

|I(k)| = 2n. Denoting Z2 = {0, 1} to be the 2-element field, for 4 ↑ {I,X, Y, Z}n, define 5(4) ↑ Z
n

2

with 5i(4) = 1 if 4i ⇓= I and 5i(4) = 0 otherwise. Also define the weight wt(4, b) = ↔5(4), b↓ =

∑
n

i=1
5i(4)bi (mod 2) ↑ {0, 1} for 4 ↑ {I,X, Y, Z}n and b ↑ {0, 1}n, which is an “inner product”

between 5(4), b ↑ Z
n

2
. Then, #pk,b △ pk,b(χ1)↗ pk,b(χ2) can be expressed as

#pk,b = Tr (|k, b↓ ↔k, b| (χ1 ↗ χ2)) =


▷↗I(k)

(↗1)wt(▷,b)▷▷. (8.36)

Therefore, the equation relating #pk,b for b ↑ {0, 1}n with ▷▷ for 4 ↑ I(k) is the Walsh-Hadamard

transform. Taking its inverse, we find that

▷▷ =
1

2n



b↗{0,1}n
(↗1)wt(▷,b)#pk,b (8.37)

for 4 ↑ I(k).

With future calculations in mind, for a given 4 ↑ {I,X, Y, Z}n, we restrict our attention to all

the strings k ↑ {X,Y, Z}n obtained by replacing identity occurring in 4 with either X or Y . This

defines the set K(4) = {k ↑ {X,Y, Z}n | ∝i ↑ [n], ki = 4i if 4i ⇓= I, ki ↑ {X,Y } if 4i = I} given any

4 ↑ {I,X, Y, Z}n. Let H(4) denote the Hamming weight of 4, i.e., the number of characters of the
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string 4 not equal to identity. Then, we have |K(4)| = 2n≃H(▷), and we can write

▷▷ =
1

|K(4)|


k↗K(▷)

▷▷

=
2H(▷)

2n



k↗K(▷)

1

2n



b↗{0,1}n
(↗1)wt(▷,b)#pk,b.

(8.38)

To proceed, observe that for O = |Zn, 0n↓ ↔Zn, 0n|, we have

Tr(O(χ1 ↗ χ2)) =


▷↗I(Zn)

▷▷, (8.39)

because wt(4, 0n) = 0 for all 4. Since Tr(χ1 ↗χ2) = 0, we must have ▷In = 0. Thus, for convenience,

we denote I0(Zn) = I(Zn) \ {In}. Then, using Eq. (8.39) and Eq. (8.38), we obtain

1

2
Tr(O(χ1 ↗ χ2)) =

1

2



▷↗I0(Z
n)

2H(▷)

2n



k↗K(▷)

1

2n



b↗{0,1}n
(↗1)wt(▷,b)#pk,b

↘


▷↗I0(Z
n)

2H(▷)

2n



k↗K(▷)

1

2n
→#pk→TV

,

(8.40)

where we denote #pk to be the 2n-dimensional vector with components #pk,b for b ↑ {0, 1}n, and

use the fact that
∑

b↗{0,1}n(↗1)wt(▷,b)#pk,b ↘ →#pk→1 = 2 →#pk→TV
.

Next, we show that {K(4) | 4 ↑ I0(Zn)} partitions {X,Y, Z}n \ {X,Y }n. First, note that for

4, 4→ ↑ I0(Zn), if 4 ⇓= 4→, then there is at least one index i ↑ [n] where 4i = Z but 4→
i
= I or 4→

i
= Z

but 4i = I, and as a result, K(4) ∩K(4→) = ⫅̸. Further, for all k ↑ {X,Y, Z}n \ {X,Y }n, we have

k ↑ K(4) for 4 ↑ I0(Zn) obtained by replacing all X,Y in k with I. Thus, {K(4) | 4 ↑ I0(Zn)}

partitions {X,Y, Z}n \ {X,Y }n. Consequently, for every k ↑ {X,Y, Z}n \ {X,Y }n belonging to a

particular K(4), we can uniquely assign an 4 ↑ I0(Zn), which we denote as 4(k). Thus, we can
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write Eq. (8.40) as

1

2
Tr(O(χ1 ↗ χ2)) ↘



k↗{X,Y,Z}n\{X,Y }n

2H(▷(k))

2n
1

2n
→#pk→TV

↘

√√√√


k↗{X,Y,Z}n\{X,Y }n


2H(▷(k))

2n
1

2n

2

3n

√√√√


k↗{X,Y,Z}n\{X,Y }n

1

3n
→#pk→2TV

,

(8.41)

where the second inequality follows from the Cauchy-Schwarz inequality. From the above inequality,

we can see that only the weight of 4(k) contributes to the pre-factor. In I0(Zn), there are
(
n

i

)

strings of Hamming weight i for i ↑ [n]. Each string 4 ↑ I0(Zn) of Hamming weight i comes from

k ↑ K(4), and we have |K(4)| = 2n≃i. Moreover, we know from Eq. (8.34) that we can bound



k↗{X,Y,Z}n\{X,Y }n

1

3n
→#pk→2TV

↘


k↗{X,Y,Z}n

1

3n
→#pk→2TV

↘ 1↗

ω

2


2/N

(8.42)

Thus, we obtain

1

2
Tr(O(χ1 ↗ χ2)) ↘

√√√√
n

i=1


n

i


2n≃i


2i

2n
1

2n


2

3n



1↗

ω

2


2/N

=


3n

8n
(3n ↗ 1)



1↗

ω

2


2/N

↘


9

8


n



1↗

ω

2


2/N

.

(8.43)

Therefore, we have

→O→M,ω
↘


9

8


n



1↗

ω

2


2/N

. (8.44)

Consequently, from Thm. 7.13, we know that TOOL can estimate the expectation value of O with

error at most (1 + ◁)
√
(9/8)n

√
1↗ (ω/2)2/N for a confidence level of 1↗ ω ↑ (0.75, 1), for any given

◁ > 0. Thus, using Eq. (8.17), we can infer that to reach a precision of ε, we need at most

N = O


9

8


n 1

ε2
log


1

ω


(8.45)
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samples.

Since the observable O = |Zn, 0n↓ ↔Zn, 0n| acts non-trivially on all n-qubits, the worst-case

lower bound of [54] (Thm. 8.3) is $(3n/ε2) to learn the expectation value of O to an error of ε. On

the other hand, from Eq. (8.31), we can infer that %((3/2)n log(1/ω)/ε2) samples are both necessary

and su!cient to learn the expectation value of O using classical shadows. Therefore, classical

shadows already beats the lower bound of Thm. 8.3 by an exponential factor (exponential in the

number of qubits). Prop. 8.7 shows that TOOL beats both classical shadows and the lower bound

of Thm. 8.3 by an exponential factor. This shows that there are observables for which classical

shadows is not optimal, and can be improved by an exponential factor.

To numerically check the bounds on the minimax norm and the shadow norm derived in

Prop. 8.7, we define the rescaled minimax norm as

→O→M,ω√
1↗ (ω/2)2/N

. (8.46)

From Eq. (8.44), we have the upper bound of
√
(9/8)n on the rescaled minimax norm of O. Since

the minimax norm is invariant under translations of the observable (Prop. 7.5.1), we also have the

upper bound of
√
(9/8)n on the rescaled minimax norm of O ↗ I/2n. On the other hand, from

Eq. (8.31), we have the lower bound →O ↗ I/2n→
shadow

⇔
√
(3/2)n ↗ 1/2n. In Fig. 3, we plot the

numerically computed values of the rescaled minimax norm and the shadow norm of O↗ I/2n, along

with bounds derived above. We can see that the bounds are valid and improve as the system size n

increases. In the numerical computation of the minimax norm, we use N = 5000, ω = 0.05, and

⇁⇓ = 10≃5. Lem. 7.11.1 guarantees that for ⇁⇓ > 0, the computed value is an upper bound on the

minimax norm.

We now show that the exponential advantage of TOOL over classical shadows persists even if

we learn the expectation values of many observables simultaneously.

Corollary 8.8. For simultaneously learning the fidelity with all the 6n (projectors onto the) eigen-
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1 2 3 4 5
n

1.0

1.5

2.0

2.5

rescaled minimax norm shadow norm

Figure 3: Plot of the rescaled minimax norm (defined in Eq. (8.46)) and the shadow norm of
|Zn, 0n↓ ↔Zn, 0n| ↗ I/2n for uniformly random Pauli measurements as a function of the number
of qubits n. The minimax norm is rescaled by a factor of

√
1↗ (ω/2)2/N . The analytically

computed upper bound of
√

(9/8)n on the rescaled minimax norm (dashed line) and lower bound
of

√
(3/2)n ↗ 1/2n on the shadow norm (dot-dash line) are plotted for reference.

states |k, b↓ ↔k, b|, k ↑ {X,Y, Z}n and b ↑ {0, 1}n, of weight-n Pauli operators in an n-qubit system

to an error of ε > 0 and a confidence level of 1↗ ω ↑ (0, 1), classical shadows needs at least

$


n


3

2


n 1

ε2
log


1

ω


(8.47)

outcomes of uniformly random Pauli measurements, while TOOL needs at most

O


n


9

8


n 1

ε2
log


1

ω


(8.48)

outcomes.

Proof. For all k ↑ {X,Y, Z}n and all b ↑ {0, 1}n, there is a unitary U ↑ Cl↓n

1
such that |k, b↓ ↔k, b| =

U |Zn, 0n↓ ↔Zn, 0n|U †. Since Cl↓n

1
is a group, it can be verified from the definition of shadow norm
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(Def. 8.1) that →|k, b↓ ↔k, b|→
shadow

= →|Zn, 0n↓ ↔Zn, 0n|→
shadow

.

Similarly, each U ↑ Cl↓n

1
is a measurement symmetry of the uniformly random Pauli mea-

surement (as defined in Def. 7.7), since it only permutes the POVM elements in Eq. (8.21). Thus,

from Prop. 7.8, we have →|k, b↓ ↔k, b|→M,ω
= →|Zn, 0n↓ ↔Zn, 0n|→M,ω

for all k ↑ {X,Y, Z}n and all

b ↑ {0, 1}n.

It follows that for both classical shadows and TOOL, learning the expectation value of any

given |k, b↓ ↔k, b| for k ↑ {X,Y, Z}n and b ↑ {0, 1}n using URPM needs exactly as many samples

as learning the expectation value of |Z ,0n↓ ↔Zn, 0n|. Since there are a total of R = 6n observables

whose expectation values we want to learn, for classical shadows as well as TOOL, we learn each

expectation value to a confidence level of 1↗ ω/R and then use the union bound to simultaneously

learn them in l⇒-norm. Thus, Eq. (8.47) and Eq. (8.48) follow from Eq. (8.22) and Eq. (8.23),

respectively.

Finally, we prove a data-processing-type inequality for the minimax norm for randomized

measurements. First, we show that randomizing a deterministic measurement protocol does not

o”er any benefits for estimation. We define what we mean by randomization of a measurement

protocol below.

Definition 8.9 (Randomization of a measurement protocol). Given a measurement protocol

M = {(E(i), Ni)}, its randomization is the measurement protocol M# where the POVM

Ei,k =
Ni

N
E(i)

k
, k ↑ [Mi], i ↑ [L] (8.49)

is measured N times, where N =
∑

L

i=1
Ni denotes the total number of samples.

The measurement protocol M# can be implemented by sampling the ith POVM of M with

probability pi = Ni/N and measuring it, and repeating this procedure a total of N times.

Since the minimax norm provides a tight lower bound on the estimation error for any

measurement protocol, we can use it to compare the performance of M and M# for estimation.
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The result below shows that randomizing a measurement protocol according to Def. 8.9 does not

o”er any benefits for learning the expectation value of an observable.

Proposition 8.10. Let M be a measurement protocol and M# denote its randomization according

to Def. 8.9. Then, for all observables O and confidence levels 1↗ ω ↑ (0, 1), we have

→O→M#,ω
⇔ →O→M,ω

. (8.50)

Proof. Given any state χ, denote p(i)χ (j) = Tr(E(i)

j
χ) to be the probability distribution defined by

the ith POVM of the measurement protocol M. Similarly, given any state χ, denote qχ(i, j) =

(Ni/N)p(i)χ (j) to be the probability distribution defied by the POVM in Eq. (8.49). Observe that

BCM#(χ1,χ2) = BC(qχ1 , qχ2) =
L

i=1

Ni

N
BC(p(i)χ1

, p(i)χ2
) ⇔

L

i=1

[BC(p(i)χ1
, p(i)χ2

)]Ni/N = BCM(χ1,χ2).

Then, Eq. (8.50) follows from the expression for the minimax norm given in Eq. (7.2).

8.2 Two no-go theorems

In this section, we present two no-go theorems (or propositions), one for fidelity estimation

with stabilizer states, and another for learning the expectation values of arbitrary observables.

Our first task is to learn the fidelity with a pure stabilizer state ↽target. We saw in Sec. 6.2, that

if we randomly sample elements of the stabilizer group of ↽target, then we can e!ciently estimate the

fidelity with ↽target. However, we know that all the stabilizer group elements can be obtained from

the generators of the stabilizer group STAB(↽target) of ↽target. Therefore, one can ask the question if

it su!ces to measure the stabilizer group elements, and then post-process the measurement outcomes

to learn the fidelity with ↽target. Note that the size of the stabilizer group of an n-qubit stabilizer

state is 2n, while there are only n stabilizer generators. Thus, if we randomly sample a fixed number

(independent of n) of elements of STAB(↽target), we are likely to draw di”erent a element each time

we sample. Measuring a di”erent sampled element each time amounts to repeatedly changing the
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measurement setting, which is experimentally more time consuming than measuring n stabilizer

generators each a fixed number of times. Therefore, whether measuring the stabilizer generators

su!ces to learn the fidelity with ↽target is also a practically relevant question. First, we consider

the case where we measure the stabilizer generators one at a time, that is, we prepare the state ↽,

measure a stabilizer generator, record the outcome, and repeat this procedure many times. It turns

out that measuring the stabilizer generators in this fashion does not su!ce to learn the fidelity with

the target stabilizer state to a small enough precision.

Proposition 8.11. For n ⇔ 2, there is no procedure that can learn the fidelity with an n-qubit pure

stabilizer state ↽target to an error ε ↘ 0.05 and confidence level 1↗ ω ⇔ 0.95 using outcomes from

independent projective measurements of the stabilizer generators of ↽target.

Proof. Let P1, . . . , Pn denote stabilizer generators of ↽target = |ϱ↓ ↔ϱ|. Note that all the stabilizer

generators, and therefore, the stabilizer group elements commute. Since |ϱ↓ is the eigenstate of

these generators with eigenvalue +1 [66], we can write

↽target =
n

i=1

I + Pi

2
.

(I + Pi)/2 denotes the orthogonal projector onto the +1-eigenvalue subspace of Pi for i ↑ [n], and

since these projectors commute, their product (which is ↽target) corresponds to the projector onto

the intersection of all the +1-eigenvalue subspaces of P1, . . . , Pn.

Taking inspiration from this observation, we construct states χ1,χ2 such that FCM(χ1,χ2) = 1,

while F (↽target,χ1) ↗ F (↽target,χ2) = 1 ↗ 1/n. Here, M is the measurement protocol where the

POVM {(I + Pi)/2, (I ↗ Pi)/2} is measured Ni times, for i ↑ [n], which are eigenvalue/projective

measurements of the stabilizer generators. To that end, define

χ1 =


1↗ 1

n


↽target + ↽↘1

χ2 = ↽↘2 ,
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where

↽↘1 =
L

i=1

I ↗ Pi

2

↽↘2 =
n

i=1

1

n

n

j=1

I + (↗1)ωijPi

2
.

The state ↽↘
1
is the projector onto the simultaneous ↗1 eigenstate of all P1, . . . , Pn, whereas the

state ↽↘
2

is the uniform mixture over i = 1, . . . , n of the +1-eigenstate of Pj for j ⇓= i and ↗1

eigenstate of Pi.

Noting that ((I ± Pi)/2)2 = (I ± Pi)/2 and ((I + Pi)/2)((I ↗ Pi)/2) = 0 for each i ↑ [n], we

obtain

Tr

[
I + Pi

2


χ1

]
= Tr

[
I + Pi

2


χ2

]
= 1↗ 1

n

Tr

[
I ↗ Pi

2


χ1

]
= Tr

[
I ↗ Pi

2


χ2

]
=

1

n
.

Then, since

BCM(χ1,χ2) =
n

i=1



Tr

[
I + Pi

2


χ1

]
Tr

[
I + Pi

2


χ2

]

+



Tr

[
I ↗ Pi

2


χ1

]
Tr

[
I ↗ Pi

2


χ2

])Ni/N

,

we have FCM(χ1,χ2) = (BCM(χ1,χ2))2 = 1. Similarly, since ↽↘
1
and ↽↘

2
are orthogonal to ↽target,

we obtain

F (↽target,χ1)↗ F (↽target,χ2) = Tr(↽target(χ1 ↗ χ2)) = 1↗ 1

n
.

From Eq. (7.2), we have →↽target→M,ω
= 0.5↗ 0.5/n. Then, from Thm. 7.13, it follows that the error

of any procedure is bounded below as ε ⇔ →↽target→M,ω
/6(ω) = (1 ↗ 1/n)/26(ω). For n ⇔ 2 and

ω ↑ (0, 0.05), we have 1↗ 1/n ⇔ 0.5 and 6(ω) < 4.6, so that ε > 0.05.
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In Prop. 8.11, we only considered deterministic stabilizer generator measurements. We can

use the following general strategy to show that randomized stabilizer generator measurements don’t

work either.

Suppose that we have shown for an observable O, POVMs E(1), . . . ,E(L), and a confidence

level 1↗ ω ↑ (0.75, 1), that →O→M,ω
⇔ ϑ holds for all N1, . . . , NL, where M = {(E(i), Ni)}Li=1

. Our

goal is to show that for any randomized measurement protocol M→, obtained by randomly sampling

E(i) with probability pi and measuring it (and repeating this many times), we have →O→M↔,ω ⇔ ϑ.

To see this, let S be a positive number, and define Ni = ℑpiS⊤ for i ↑ [L] and N =
∑

L

i=1
Ni.

Then, pi ℜ Ni/N for large enough S. Then, from Prop. 8.10, we have →O→M#,ω
⇔ →O→M,ω

⇔ ϑ

for all S > 0. Since BC(p, q) is continuous in p, q, we can infer that for large enough S, we have

BCM#(χ1,χ2) ℜ BCM↔(χ1,χ2) for all χ1,χ2. Thus, →O→M↔,ω ℜ →O→M#,ω
⇔ ϑ.

We now look for generalization of the ideas underlying Prop. 8.11. From Prop. 8.11, we

see that although the stabilizer group elements can be written as finite products of the stabilizer

generators, it is not su!cient to measure the stabilizer generators independently to learn the fidelity

with the stabilizer state. This suggests that the algebra structure of Sd is not relevant to learning

the expectation values of observables. We show below that this is indeed the case, as the linear

subspace spanned by the measurement protocol determines the observables whose expectation values

can be learnt with asymptotically vanishing error.

We describe our result in terms of the projection superoperator, which we define below. Let

U ↙ Sd be a subspace. Fix an orthonormal basis H1, . . . , HdimU of U. Then, the (orthogonal)

projection superoperator PU : Sd ↖ Sd is the linear map

PU(O) =
dimU

i=1

Tr(HiO)Hi (8.51)

for all O ↑ Sd. It can be verified that the action of PU does not depend on the choice of the

orthonormal basis of U. If U↘ denotes the orthogonal complement of U, then PU +PU≃ is the

identity map on Sd. Thus, every observable O can be decomposed as PU(O) +PU≃(O). We can
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then state our result as follows.

Proposition 8.12. Fix an observable O and a measurement protocol M = {(E(i), Ni)}Li=1
. If

O /↑ spanM, then the error ε of every estimation procedure that learns the expectation value of O

using the outcomes of M to a confidence level 1↗ ω ↑ (0.75, 1) for all states is bounded below as

ε ⇔ c(ω)

∥∥∥P(spanM)≃(O)
∥∥∥
2

HS∥∥∥P(spanM)≃(O)
∥∥∥
⇒

, (8.52)

independent of the total number of samples used by M.

Conversely, if O ↑ spanM, then the expectation value of O can be learnt to any given error

and confidence level using su!ciently many outcomes from measuring E(1), . . . ,E(L).

Proof. First, assume that O /↑ spanM. Then, denoting O0 = PspanM(O) and O↘
0
= P(spanM)≃(O),

we have O = O0 +O↘
0
. We have O↘

0
⇓= 0, O↘

0
↑ (spanM)↘, and also Tr(O↘

0
) = 0 because I ↑ spanM.

Then,

χ± =
1

d


I ± O↘

0∥∥O↘
0

∥∥
⇒

)
(8.53)

are quantum states, and we have Tr(O(χ+ ↗ χ≃))/2 =
∥∥O↘

0

∥∥2
HS

/
∥∥O↘

0

∥∥
⇒ > 0. Furthermore, if

M = {(E(i), Ni)}, then we have Tr(E(i)

k
χ+) = Tr(E(i)

k
χ≃) for all k ↑ [Mi] and all i ↑ [L] because

O↘
0

↑ (spanM)↘. As a result, we have BCM(χ+,χ≃) = 1. Then, from Eq. (7.2), we obtain

→O→M,ω
⇔

∥∥O↘
0

∥∥2
HS∥∥O↘

0

∥∥
⇒

(8.54)

for all N1, . . . , NL. By Thm. 7.13, we have that the error of all estimation procedures using outcomes

of M is bounded below by c(ω)
∥∥O↘

0

∥∥2
HS

/
∥∥O↘

0

∥∥
⇒, independent of the number of samples.

Conversely, if O ↑ spanM, then we can write O =
∑

L

i=1

∑
Mi
k=1

ϑ(i)

k
E(i)

k
, where each ϑ(i)

k
↑ R.

Therefore, O =
∑

L

i=1

∑
Mi
k=1

ϑ(i)

k
f (i)

k
, where f (i)

k
is the observed frequency (Eq. (5.35)) of E(i)

k
, is a

bounded unbiased estimator of ↔O↓. ↔O↓ can therefore be estimated using Hoe”ding’s inequality [52] to

any given error and confidence level using su!ciently many outcomes from measuring E(1), . . . ,E(L).
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We can informally summarize Prop. 8.12 by saying that the expectation value of an observable

O can be learnt using outcomes of M if and only if O ↑ spanM. This parallels the well-known

result that for learning a state in trace distance, we need to perform an informationally complete

measurement. Indeed, we show that the latter result follows from Prop. 8.12.

Corollary 8.13. If the measurement protocol M is not informationally complete, then there is no

estimation procedure that can learn every quantum state using outcomes of M to an arbitrarily small

error in trace distance with high probability.

Proof. Suppose that we have an estimator ↽ that learns ↽ using outcomes of M to an error ε in

trace distance with confidence level 1↗ ω. If M is not informationally complete, then spanM ⊋ Sd

(see Prop. 2.4). Choose any O ↑ (spanM)↘ with →O→⇒ = 1. Since PM,ε(→↽↗ ↽→
tr

⇔ ε) < ω

by assumption, and |Tr(O(↽ ↗ ↽))| ↘ 2 →↽↗ ↽→
tr
(see [107, Ex. (9.1.6)]), we have PM,ε(|Tr(O↽) ↗

Tr(O↽)| ⇔ 2ε) < ω. Then, by Prop. 8.12, we must have ε ⇔ c(ω) →O→2
HS

/2.

Owing to Prop. 8.12 (and the terminology used in Cor. 8.13), we can call a measurement

protocol M informationally complete for an observable O if O ↑ spanM.
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William K Wootters. Teleporting an unknown quantum state via dual classical and einstein-
podolsky-rosen channels. Physical review letters, 70(13):1895, 1993.

[11] Rajendra Bhatia. Matrix analysis, volume 169. Springer Science & Business Media, 2013.

[12] Anil Bhattacharyya. On a measure of divergence between two statistical populations defined
by their probability distribution. Bulletin of the Calcutta Mathematical Society, 35:99–110,
1943.

[13] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth
Lloyd. Quantum machine learning. Nature, 549(7671):195–202, 2017.

�����������������������
�����	����������������
����������




175

[14] Kostas Blekos, Dean Brand, Andrea Ceschini, Chiao-Hui Chou, Rui-Hao Li, Komal Pandya,
and Alessandro Summer. A review on quantum approximate optimization algorithm and its
variants. Physics Reports, 1068:1–66, 2024.

[15] Robin Blume-Kohout. Optimal, reliable estimation of quantum states. New J. Phys.,
12(4):043034, 2010.

[16] Xavier Bonet-Monroig, Ryan Babbush, and Thomas E O’Brien. Nearly optimal measurement
scheduling for partial tomography of quantum states. Physical Review X, 10(3):031064, 2020.

[17] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

[18] Gilles Brassard. Quantum communication complexity. Foundations of Physics, 33:1593–1616,
2003.

[19] Yudong Cao, Jonathan Romero, Jonathan P Olson, Matthias Degroote, Peter D Johnson,
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Abellán, Waldimar Amaya, Valerio Pruneri, Morgan W. Mitchell, Jörn Beyer, Thomas Gerrits,
Adriana E. Lita, Lynden K. Shalm, Sae Woo Nam, Thomas Scheidl, Rupert Ursin, Bernhard
Wittmann, and Anton Zeilinger. Significant-loophole-free test of bell’s theorem with entangled
photons. Phys. Rev. Lett., 115:250401, Dec 2015.

[43] A. Goldenshluger, A. Juditsky, and A. Nemirovski. Hypothesis testing by convex optimization.
Electron. J. Stat., 9(2):1645–1712, 2015.

[44] Weiyuan Gong and Scott Aaronson. Learning distributions over quantum measurement
outcomes. In International Conference on Machine Learning, pages 11598–11613. PMLR,
2023.

�����������������������
�����	����������������
����������




177

[45] Daniel Grier, Hakop Pashayan, and Luke Schae”er. Sample-optimal classical shadows for pure
states. Quantum, 8:1373, 2024.

[46] Jeongwan Haah, Aram W Harrow, Zhengfeng Ji, Xiaodi Wu, and Nengkun Yu. Sample-optimal
tomography of quantum states. In Proceedings of the forty-eighth annual ACM symposium
on Theory of Computing, pages 913–925, 2016.

[47] Charles Hadfield, Sergey Bravyi, Rudy Raymond, and Antonio Mezzacapo. Measurements of
quantum hamiltonians with locally-biased classical shadows. Communications in Mathematical
Physics, 391(3):951–967, 2022.

[48] Paul R Halmos. Measure theory, volume 18. Springer, 2013.

[49] Akel Hashim, Long B Nguyen, Noah Goss, Brian Marinelli, Ravi K Naik, Trevor Chistolini,
Jordan Hines, JP Marceaux, Yosep Kim, Pranav Gokhale, et al. A practical introduction to
benchmarking and characterization of quantum computers. arXiv preprint arXiv:2408.12064,
2024.

[50] Carl W Helstrom. Quantum detection and estimation theory. Journal of Statistical Physics,
1:231–252, 1969.
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List of symbols

N Set of natural numbers (excluding zero) p.14

R Set of real numbers p.14

R Set of extended real numbers, R = R ⇒ {±⇑} p.14

C Set of complex numbers p.14

[M ] [M ] = {1, . . . ,M},M ↑ N p.14

ωij ωij = 1 if i = j and zero otherwise p.14

{Oi}i↗I Indexed family; elements Oi indexed by elements of the set I p.14

↔·, ·↓ Inner product p.15, 19

span Linear span p.15

′ Direct sum p.16, 17

∞ Tensor product or direct product p.16

V/U Quotient space of the vector space V by the subspace U ↙ V p.16

A +B Minkowski sum of subsets A,B of a vector space p.16

ker Kernel of a linear map p.17

range Range of a function p.17

→·→ Seminorm or norm p.18

K
n Set of n-dimensional vectors with entries from K; K = R or K = C p.18

K
m⇐n Set of m≃ n matrices with entries from K; K = R or K = C p.18

Sn Set of n≃ n Hermitian matrices p.18

φ(A) Vector of eigenvalues of a (Hermitian) matrix A p.18

φmax(A),φmin(A) Maximum, minimum eigenvalue of a (Hermitian) matrix A p.18

↼(A) Vector of singular values of a matrix A p.19

↼max(A),↼min(A) Maximum, minimum singular value of a matrix A p.19

→·→
p

lp or p-norm of a vector; Schatten p-norm of a matrix; p ↑ [1,⇑] p.19
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→A→
HS

Hilbert-Schmidt norm or Schatten-2 norm of a matrix A ↑ Sn p.19

→A→
1

Trace norm or Schatten-1 of a matrix A ↑ Sn p.19

→A→⇒ Operator or spectral norm or Schatten-⇑ norm of a matrix A ↑ Sn p.20

↔O↓ Expectation value of the observable O with respect to some under-
lying state ↽; ↔O↓ = Tr(O↽)

p.20

POVM E Positive operator-valued measure, E = {E1, . . . , EM}, (∝k)Ek ⇔ 0,∑
M

k=1
Ek = I. k ↑ [M ] is referred to as the label of Ek.

p.21

pE,ε Probability distribution over the labels upon measuring the POVM
E with respect to the state ↽ given by Born’s rule

p.21

p(i)ε pE(i),ε, when the POVM E(i) is understood p.21

M Measurement protocol M = {(E(i), Ni)}Li=1
, where for each i ↑ [L],

the POVM E(i) is measured Ni times. The POVMs are assumed
to be distict.

p.22

N(M) Total number of samples used by M; if M = {(E(i), Ni)}Li=1
, then

N(M) =
∑

L

i=1
Ni

p.22

PM,ε Joint probability over the labels determined by the measurement

protocol M, and the state ↽; as a vector, PM,ε = ∞L

i=1
(p(i)ε )↓Ni

p.22

spanM Span of the POVM elements in M; span{E(i)

k
| k ↑ [Mi], i ↑ [L]} p.24

intA Interior of the set A p.26

clA Closure of the set A p.26

($, B($)) Borel space, Polish space p.26, 27

m measure, ↼-finite reference measure p.27, 28

m1 ▽ m2 m1 is absolutely continuous with respect to m2 p.27

dm1/dm2 Radon-Nikodym derivative of m1 with respect to m2 p.27

P Probability measure or probability distribution p.27

E[X] Expected value of the random variable X p.28

#d Standard simplex in R
d; set of discrete probability distributions

over d symbols
p.29

supp p Support of a discrete distribution p p.29

Df f -divergence p.29

KL(P→Q) KL divergence between P and Q p.30

a”K A!ne hull of the set K p.33

convK Convex hull of the set K p.33

relintK Relative interior of the set K p.34
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lsc Lower semicontinuous p.34

usc Upper semicontinuous p.34

χK Characteristic function of the set K; χK(x) = 0 if x ↑ K and ⇑
otherwise

p.35

SK Support function of the set K p.35

f↔ Convex conjugate of the function f p.35

BC Bhattacharyya coe!cient between two probability distributions p.40

FC Classical fidelity between two probability distributions; FC(p, q) =
(BC(p, q))2

p.40

BD Bhattacharyya distance between two probability distributions;
BD(p, q) = ↗ log(BC(p, q))

p.40

BDM Average Bhattacharyya distance between two states determined by
the measurement protocol M

p.41

BCM Geometric-average Bhattacharyya coe!cient between two states
determined by the measurement protocol M

p.42

FCM Geometric-average classical fidelity between two states determined
by the measurement protocol M; FCM(↽,↼) = BC2

M(↽,↼)
p.42

F (↽,↼) Fidelity between the states ↽ and ↼ p.42

→p↗ q→
TV

Total variation distance between the probability distributions p
and q

p.49

HD(p, q) Hellinger distance between the probability distributions p and q p.49

SDC(p, q) Classical sine distance between the probability distributions p and
q

p.49

→↽↗ ↼→M,avg
Average total variation distance between the states ↽ and ↼ p.50

→↽↗ ↼→M,max
Maximum total variation distance between the states ↽ and ↼ p.50

HDM,avg(↽,↼) Average Hellinger distance between the states ↽ and ↼ p.50

HDM,max(↽,↼) Maximum Hellinger distance between the states ↽ and ↼ p.50

SDCM,avg(↽,↼) Average classical sine distance between the states ↽ and ↼ p.50

SDCM,max(↽,↼) Maximum classical sine distance between the states ↽ and ↼ p.50

→↽↗ ↼→
tr

Trace distance between the states ↽ and ↼ p.52

DBur(↽,↼) Bures distance between the states ↽ and ↼ p.52

SD(↽,↼) Sine distance between the states ↽ and ↼ p.52
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Index

⇁-minimax, 32
ω-risk, 61
↼-algebra, 25

absolutely continuous, 27
a!ne estimator, 60
a!ne function, 34
a!ne set, 33
alphabet, 29
average Bhattacharyya distance, 41

Bhattacharyya coe!cient, 40
Bhattacharyya distance, 40
Borel space, 27
Bures distance, 52

characteristic function, 35
classical fidelity, 40
classical sine distance, 49
closure, 26
coercive, 34
compact, 26
complementary slackness, 37
complete, 26
concave function, 34
confidence interval, 32
convex conjugate, Legendre-Fenchel

transform, 35
convex function, 34
convex hull, 33
convex set, 33

dense, 26
discrete distribution, 29
discrete topology, 28
dual feasibility, 37
dual function, 37
dual optimal value, 37

dual problem, 37
dual variable, 37

e”ective POVM, 23
event, 28

fidelity, 42
Fuchs-van de Graaf inequality, 53

geometric-average Bhattacharyya coe!cient,
42

geometric-average classical fidelity, 42
good pair, 61

Hellinger distance, 49

indexed family, 14
informationally complete (IC), 24
interior, 26
isometry, 17
isomorphism, 17

Karush-Kuhn-Tucker (KKT) conditions, 37

label (of a POVM), 21
Lagrangian, 36
log-concave function, 34
lower semi-continuous, lsc, 34

measurable function, 27
measurable space, measurable set, 25
measure, 27
measurement protocol, 22
metric space, 26
minimax optimal risk, 62

observable, 20
orthogonal complement, 16

parametric density family, 60
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perspective (of a) function, 36
Polish space, 26
positive semidefinite (PSD), 17
primal feasibility, 37
primal optimal value, 36
primal problem, 36
primal variable, 37
probability density function, 28
probability measure, probability distribution,

27
probability space, 27
proper function, 34
pseudometric, 51
pure state, 20

quantum state, 20
quotient space, 16

randomized measurement, 23
rank, 19
reference measure, 28
relative interior, 34
relatively open, 34

sample complexity, 33
seminorm, 18
separable, 26
SIC-POVM, 25
simplex, standard simplex, 29
sine distance, 52
Slater’s condition, 38
stationarity, 37
strong duality, 37
subspace, 16
support, 18
support function, 35
support of a distribution, 29
symbol, 29

topology, 26
total variation distance, 49
trace distance, 52

upper semi-continuous, usc, 34

weak duality, 37
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