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There is growing interest in constructing quantum devices that control increasingly large
numbers of quantum systems. There is a tremendous need for methods that can measure the quality
and other properties of these devices. Such measurements often amount to learning the expectation
value of a quantum observable with respect to the quantum state of the device. Learning expectation
values is also a key component in many well-known applications such as quantum machine learning
and quantum optimization algorithms. Because of the large system sizes involved, it is essential
to find methods for learning expectation values that are efficient with respect to the system size.
Existing methods that have rigorous guarantees and are practical to implement are often not optimal
for observables of interest. Other methods are heuristic, or require the use measurement protocols
that are challenging to implement experimentally with current technology.

In this study, we propose an estimation procedure, The Optimal Observable expectation value
Learner or TOOL, that can learn the expectation values of observables using the outcomes of any
given measurement protocol. We show that there is a seminorm on the set of all observables, which
we call the minimax norm, that characterizes the smallest possible estimation error for learning a
given observable using the outcomes of a given non-adaptive measurement protocol to a specified
confidence level in the worst case over all states. We prove that TOOL is minimax optimal for every
observable by showing that it can achieve an estimation error to within a small constant factor of
the minimax norm.

For many applications, one wishes to learn the expectation value of more than one observable
from the same experiment. A popular method for learning the expectation values of one or many
observables with rigorous guarantees is classical shadows. Classical shadows has near-optimal

performance in the worst case over all observables. We prove that TOOL always performs at least
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iii
as well as classical shadows. Moreover, we show by example that TOOL dramatically outperforms
classical shadows for many observables of interest. This highlights the need to characterize the optimal
performance for the task of simultaneously learning the expectation values of many observables.
Under a mild assumption, we give such a characterization using the minimax norm and prove that
TOOL is nearly minimax optimal for this task.

We also study the applications of TOOL to fidelity estimation. Using experimental data from
a trapped-ion quantum computer, we show that TOOL performs well in practice and matches the
estimates obtained from Maximum Likelihood Estimation (MLE), but with rigorous guarantees
on the estimation error unlike MLE. We also compare TOOL with another popular method called
direct fidelity estimation, which estimates the fidelity by judiciously sampling Pauli observables
and measuring them. We show that there is a different importance sampling scheme for Pauli
measurements for which TOOL performs as well as, or better than, direct fidelity estimation.

Since TOOL constructs an estimator using only the observable, the measurement protocol,
and the confidence level, it provides the flexibility to perform estimation for experiments that have
already been performed and experiments that will be performed in the future. Similarly, since the
minimax norm can be computed beforehand, it can be used to compare the performance of different

measurement protocols and allow minimax optimal design of experiments.
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Chapter 1

Introduction

1.1 Overview and motivation

Quantum information science presents an opportunity to perform tasks that are inefficient
or sometimes impossible to perform classically. This includes a wide range of tasks, spanning
multiple fields of science such as computation [73, 38], communication [5, 18], metrology [40], and
cryptography [41]. This has engendered a great amount of research and investment into developing
quantum technologies, in particular the development of a general-purpose quantum computer. While
it may take some time to build a large-scale fault-tolerant quantum computer that can outperform
classical computers, we can still benefit from the theoretical and technological advancements that
are achieved on the road to building such a computer.

In order for a quantum protocol to obtain an advantage over a classical protocol, it is
necessary to utilize a resource that is quantum mechanical. For example, using an entangled state,
one can create nonlocal correlations that no classical system can produce [9, 51, 93, 42]. Such
states can be harnessed for tasks like device-independent quantum key distribution [81], quantum
teleportation [10, 80], and quantum metrology [40]. Because real quantum devices are noisy, the
state prepared by the device can be very different from the resource state that was necessary for
implementing the desired quantum information task, which can lead to poor performance or even
failure in implementing the task. This motivates us to learn what quantum state was prepared by

the device. Unfortunately, it turns out that for learning a d-dimensional quantum state to an error

For the most up-to-date version of this thesis, please consult the arXiv or contact the author.
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¢ in trace distance with high probability, every procedure needs at least (d?/e?) copies of the state
in the worst case [46]. For a system of n qubits, the dimension d = 2" scales exponentially with the
number of qubits. Thus, even the most efficient quantum tomography procedures [78, 46] become
intractable for large system sizes.

Fortunately, we rarely need the fully reconstructed quantum state in practice. Usually, it
suffices to learn some properties of the quantum state depending on the application. One such
property, which is focus of our study, is the expectation value of an observable with respect to
the quantum state prepared by the device. We focus on the task of learning the expectation
values of observables because it is an integral component in several applications such as the
characterization of quantum systems [29, 49], entanglement verification using an entanglement
witness [23], quantum optimization algorithms [99, 14], quantum machine learning [13, 86, 105], and
quantum chemistry [19, 7]. Consequently, there is a vast literature on estimation of expectation
values, including both rigorous and heuristic approaches as well as applications to experiments.
We refer the reader to recent review articles [4, 37] on learning properties of quantum systems for
references and details. In our discussion below, we focus on some recent results on the complexity
of estimating expectation values.

There are two steps involved in learning the expectation values of observables: (1) perform
measurements on the quantum state, and (2) process the measurement outcomes to obtain estimates
of the expectation values. See Fig. 1 for a schematic of this process. Since we only need to learn
the expectation value, we can considerably reduce the number of samples required to perform
the estimation to a fixed precision. Indeed, for learning the fidelity with a pure quantum state,
which is a special case of estimating expectation values, Ref. [33, 26] proposed a randomized Pauli
measurement protocol and an estimation procedure that can learn the fidelity to an error £ with high
probability using O(d/s?) samples in the worst case. Since the dimension d = 2" grows exponentially
with the number of qubits n, this provides an exponential improvement over quantum tomography.

Building on the idea of performing randomized measurements, Ref. [54] proposed the now well-

known technique of classical shadows for simultaneously learning many observables. The classical
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Figure 1: A schematic of the procedure for learning the expectation value of an observable @, with
respect to the quantum state prepared by the device. Measurements are made on the unknown
state, and the measurement outcomes are processed by an estimation procedure to give an estimate
for the expectation value.

shadows method involves randomly selecting a unitary operator from a fixed ensemble of unitary
operators, rotating the state by the sampled unitary, performing computational basis measurements,
and processing the measurement outcomes to estimate many observables simultaneously. Ref. [54]

showed that there is a norm ||-|| called the shadow norm on the set of observables that depends

shadow

on the chosen unitary ensemble, such that O(maxi<i<g [|0i[|%udon 108(R) /%) copies are sufficient
to simultaneously learn the expectation values of 0y, ...,0Or. If the unitary ensemble is the set

of all global Clifford unitaries, then ||O|| scales as the Hilbert-Schmidt norm of 6. On the

shadow

other hand, if 0 is a k-local observable (which is an operator that acts non-trivially on at most k

qubits) and the unitary ensemble is the set of all local Clifford unitaries, then ||O]| is bounded

shadow

above by 4* times the operator norm of 0. In particular, classical shadows can simultaneously
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learn the expectation values of exponentially many low-weight Pauli observables efficiently using
local measurements. Similar results were obtained by [31, 25, 16, 60] for learning low-weight
Pauli observables or reduced density matrices. This motivated further research on randomized
measurement protocols [30], and several generalization and applications of classical shadows to
different problems of interest[55, 47, 45, 58, 2, 57].

If we wish to learn the expectation value of a weight-n Pauli observable, which is a Pauli
observable that acts non-trivially on n qubits, to an error € with high probability, classical shadows
requires ©(2"/e?) samples using unitary ensemble of global/local Clifford operators. Consequently,
for both global and local random Clifford measurements, we need at least ©(2"/e2) samples to
simultaneously learn all the Pauli observables to an error € using classical shadows. This prompts
the question of whether it is possible to efficiently learn the expectation values of many observables
simultaneously. The general problem of simultaneously estimating the expectation values of many
observables is called shadow tomography, and was introduced by Aaronson [1]. [1] showed that
performing entangled measurements on O((log(R))*log(d)/e*) copies of the d-dimensional state are
sufficient to simultaneously learn the expectation values of 0 < 0y,...,0r < | to an error € with
high probability, where by writing O we hide additional logarithmic factors loglog(R), loglog(d),
and log(1/e). In particular, we can efficiently learn the expectation values of all 4™ Pauli observables
using poly(n) copies of the state. [1] also showed that one needs at least Q(min{d?,log(R)}/e%}
copies of the state to simultaneously learn the expectation values of R observables, in the worst
case over all observables satisfying 0 < @p,...,0r < |. Aaronson’s results have subsequently been
improved and generalized [6, 44, 96].

While the results of [1] are appealing from a theoretical standpoint, performing entangled
measurements on a large number of copies is incredibly challenging with current technological
capabilities. Towards remedying this situation, it was recently shown by [65, 21] that one can
simultaneously learn all n-qubit Pauli observables using O(log(d)/e*) copies of the state, where
entangled measurements are performed only on two copies of the state at a time. This is about as

good as we can do, because it was shown that without using entangled measurements, one needs
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at least Q(d/e?) copies of the state to simultaneously learn all the Pauli observables [56, 20, 21].
This shows that entangled measurements can provide fundamental advantages over performing
unentangled measurements. Another avenue to reduce the number of copies needed for estimation
is by adaptively choosing the next measurement to perform depending on the outcome observed in
the previous experiments. Similar to entangled measurements, adaptive measurements can provide
an advantage over non-adaptive measurements for shadow tomography [22, 95, 103, 28].

While both entangled and adaptive measurements are theoretically appealing, performing
non-adaptive measurements on a single copy of the state at a time remains the most practical
with current technology. Therefore, it is important to know how well one can do for non-adaptive
measurements. Towards this end, [54] proved that one needs at least €2(B?log(R)/c?) copies of
the state to learn the expectation values of R observables to an error € with high probability

in the worst case over all observables satisfying maxj<;<g || 0| < B (see Thm. 8.2 and

shadow
Thm. 8.3 for a precise statement of their result). Later, [69, Thm. (6.3)] derived the lower bound of
Q(dmin{d?,log(R)}/(¢2(1 + log(L)/d))) on the number of copies of the state needed for shadow
tomography using L non-adaptive measurements, in the worst case over all observables with a bound
of d/2 on the Hilbert-Schmidt norm.

The lower bounds discussed above are for the worst case over all states (since the estimation
error £ must be valid no matter what state is prepared by the quantum device), and the worst case
over all observables with a fixed bound on a norm. Due to the presence of noise or experimental
imperfections, it can happen that the state prepared by the device is very different from what we
intended to prepare. Since there is no way for us to know what state has been prepared by the
device except by performing measurements on the state, it is reasonable to study the worst-case
performance over all states. This will inform us on how the number of copies required to perform
estimation will scale as a function of the dimension and error, no matter what state is prepared
by the device. In contrast, for most applications in quantum information, the observables whose

expectation values we want to learn are known to us either before or after the measurements are

performed. Therefore, it is important to know what is the optimal performance for learning the
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expectation values of the specific observables we are interested in, and not the worst case over all
observables.

Furthermore, the lower bounds discussed above are derived by allowing a large class of
measurement protocols, such as all non-adaptive measurements. While this is an important question
from a theoretical standpoint, the measurements that achieve the lower bound may be hard to
implement experimentally. For example, global Clifford measurements achieve the worst-case lower
bound of [54], but they are challenging to implement for large system sizes with current technology.
In practice, the measurements that are implementable/implemented in an experiment depend
on several factors such as the observables of interest, the architecture of the quantum computer,
current technological limitations, and noise. Hence, it is useful to know how well one can learn
the expectation value of a given observable using the outcomes of a measurement protocol that is
implementable in an experiment.

We are, therefore, motivated to answer the following basic problem.

Learning Quantum Expectations (LQE):

(1) Given an observable © and a measurement protocol 9%, what is the smallest possible error
(over all estimation procedures) for learning the expectation value of @ using the outcomes

of Mt with probability greater than 1 — ¢ for all states?

(2) Is there a constructive estimation procedure that can achieve this estimation error to within

a constant factor?

LQE asks for a quantification of the “optimal performance” as a function of O, 9, and J, in the
worst case over all states. Observe that we quantify the performance in terms of the estimation
error instead of the number of copies of the state. This is necessary because LQE allows one to
specify an arbitrary measurement protocol as an input, and as a result, the number of copies of the
state used for estimation is fixed by 991. That said, for many measurement protocols of interest, one
can translate between the “smallest estimation error for a fixed number of copies of the state” and

the “minimum number of copies of the state needed for a fixed error”.
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Finding answers to LQE is also helpful from a theoretical standpoint, because we can study
the performance for other cases of interest. For example, if we know the optimal performance for
every observable, we can compute or bound the optimal performance of simultaneously learning
many observables. Similarly, if we know the optimal performance for every measurement protocol,
we can compute or bound the optimal performance when allowing one to implement a measurement

protocol from a given set of measurement protocols.

1.2 Summary of the main results

In this section, we summarize the main results of our study. We begin by providing an answer
to LQE for non-adaptive measurements. By a (non-adaptive) measurement protocol, we mean a
list of positive operator-valued measures (POVMs), along with the number of times each POVM is
repeated (see Def. 2.1). We show in Thm. 7.13 that for each measurement protocol 9t and each
confidence level 1 — 0 € (0.75,1), there is a seminorm ||-|lgy 5 on the set of observables, such that for
every observable O, [|O]|yy 5 gives the optimal estimation error for learning the expectation value of
O to within a factor of 1/¢(d). The constant ¢(0) is defined in Eq. (7.32). For confidence levels
greater than or equal to 95%, we have 1/¢(d) < 5, and therefore, Thm. 7.13 gives a fairly tight
bound on the optimal estimation error.

The precise definition of the seminorm |||y 5 is given in Def. 7.1. Intuitively, [|0]|sy ; measures
how far apart the expectation value of © can be with respect to states that are “close enough”. Since
we only have access to the states through the measurements we perform, we measure the distance
between two states through the distance between the probability distributions over measurement
outcomes determined by the states. It turns out that the “correct” distance measure to look at is
the average Bhattacharyya distance determined by 9t (Def. 3.4). How close the states need to be
depends on the chosen confidence level § and the total number of samples used by 91.

The reason ||-[|gy 5 is not a norm, and only a seminorm, is that for learning the expectation
value of an observable al that is a multiple of the identity, the optimal estimation error is zero.

This is because the expectation value of al with respect to every state is equal to a, and therefore
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there is nothing to learn. We show that if we “mod out” all the multiples of identity from the set
of all observables, then ||-[|sy 5 defines a norm (Prop. 7.2). For this reason, we refer to ||-||oy 5 as
the minimaz norm, where “minimax” alludes to the fact that ||-[|gy 5 characterizes the best (“min”)
performance in the worst case (“max”) over all states.

The minimax norm satisfies several desirable properties. Importantly, it can be calculated by
convex optimization (Prop. 7.5.3). It is invariant under measurement symmetries (Prop. 7.8.4), and
satisfies the data-processing inequality (Prop. 7.9). A more comprehensive list of properties of the
minimax norm, including a geometric interpretation, can be found in Sec. 7.1.

The other important aspect of Thm. 7.13 is that there is a constructive estimation procedure,
which we call The Optimal Observable expectation value Learner or TOOL, that can achieve an
estimator error to a small constant factor of [|O]|y, 5. Given O, M, and 1 — ¢ as inputs, TOOL
constructs an estimator for the expectation value of O using convex optimization (see Box 3). The
estimator so constructed is an affine function of the observed frequencies (Prop. 5.12), and can
efficiently compute estimates from the data as a result. Since the construction procedure itself does
not depend on the experimental data, the estimator can be constructed either before or after the
measurements are performed. This gives us the flexibility to perform estimation for experiments
that will take place in the future, as well as those that have already been completed.

TOOL was introduced in [91, 92] in the context of fidelity estimation, and is obtained by
adapting results from statistics [62, 43, 61] to the problem of learning expectation values of
observables. For the general statistical problem studied by Juditsky & Nemirovski [62], we present
a simplified, less computationally intensive procedure to construct an estimator (Box 2). The
estimator we construct satisfies all the guarantees of [62] (Thm. 4.14), and is more amenable to
theoretical analysis. Additional results on the estimation procedure and estimation error for the
general statistical problem can be found in Sec. 4.3.

We study the application of TOOL to fidelity estimation in Ch. 6. Since the fidelity with a pure
state is equal to the expectation value of the projector onto that pure state, fidelity estimation (for

a pure target state) is a special case of estimating expectation values. We find that TOOL performs
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well on experimental data obtained from a trapped-ion quantum computer. The estimates computed
using TOOL agree well with maximum likelihood estimation (MLE) [53]. On the other hand, through
numerical simulations, we show that using (a variant of) bootstrap confidence intervals for MLE
can sometimes give erroneous results, unlike TOOL which is guaranteed to be correct. We also
compare TOOL with direct fidelity estimation (DFE) [33, 26]. We use a slightly different importance
sampling scheme for Pauli measurements, and show that for this sampling scheme, TOOL gives the
same or better sample complexity than DFE depending on the target state.

Since the minimax norm characterizes the optimal performance for every observable and every
measurement protocol, and TOOL achieves an estimation error to within a small constant factor
of the minimax norm, we can bound the minimax norm to understand how well one can do for
different problems of interest. A lower bound on the minimax norm will give us a limit on how well
every estimation procedure can do, whereas an upper bound will show that TOOL can achieve that
error to within a constant factor. We use this strategy to answer a few questions of interest.

We begin with the following question: what is the minimum number of samples needed to
learn the expectation value of O7 Is there a measurement protocol that achieves this lower bound on
the number of samples? The answer to these questions is what one intuitively expects — measuring
in the eigenbasis of the observables 0 gives the optimal performance. In Thm. 7.15, we derive a
lower bound on the number of samples, and in Prop. 7.16, we show that measuring in the eigenbasis
is sufficient to achieve this lower bound to within a constant factor.

Next, we fix the measurement protocol 9, and ask what are the observables whose expectation
value we can learn to within an arbitrarily small error using outcomes of 91. The answer to this
question is also intuitive and familiar to many — we can only learn the expectation values of those
observables that are in the linear span of the POVMs in 9. In Prop. 8.12, we give an explicit lower
bound on the estimation error for observables that lie outside the linear span of 9.

Next, we study focus on randomized measurement protocols, which have received much
attention in the recent literature [30]. All randomized measurements can be expressed using a single

effective POVM, as explained in Sec. 2.2. Therefore, it suffices to study measurement protocols
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where a single POVM is measured many times. Classical shadows, while originally proposed for
?%-random unitary measurements for unitaries sampled from the set %, were later generalized to all
informationally complete POVMs [2, 57]. This includes, for example, single-setting measurements
such as SIC-POVMs [83]. The definition of shadow norm for informationally complete POVMs is
given in Def. 8.4. Since TOOL is optimal for every observable and every measurement protocol, it
must, in particular, match the performance of classical shadows. We explicitly show in Cor. 8.6 that
TOOL performs at least as well as classical shadows for learning the expectation value of one or
many observables.

Since the classical shadows protocol is optimal in the worst case over observables with a fixed
bound on the shadow norm [54], there is some observable satisfying this bound on the shadow
norm for which no estimation procedure can do better than classical shadows. On the other hand,
TOOL is optimal for every observable. Therefore, we can ask the question if there are observables
for which TOOL performs better than classical shadows. For answering this question, we focus on
local non-adaptive measurements on a system of n qubits, as they are one of the easiest types of
measurement one can perform in an experiment. By local measurements, we mean that each qubit
is measured separately. For local non-adaptive measurements, [54] showed that (3% B2 log(R)/<?)
measurements are necessary to simultaneously learn the expectation values of R k-local observables,
in the worst case over all k-local observables whose operator norm is bounded above by B (see
Thm. 8.3 for a precise statement of their result). [54] also showed that by choosing the unitary
ensemble % = Cl‘?" to be the set of local Clifford unitaries on n qubits, classical shadows can
simultaneously estimate the expectation values R k-local observables to an error of € using at most
O(4%B?1og(R)/<?) samples. For this reason, we focus on the case where % is the set of local Clifford
unitaries. Since performing a #-random unitary measurement is equivalent to uniformly sampling a
weight-n Pauli operator and measuring in its eigenbasis, we refer to such measurements as uniformly
random Pauli measurements. For uniformly random Pauli measurements, we prove in Cor. 8.8
that there are many observables of interest for which TOOL can perform exponentially better than

classical shadows. This result also holds for learning the expectation values of many observables
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simultaneously. Thus, TOOL can perform exponentially better than both classical shadows as well
as the worst-case lower bound of Q(3*log(R)/e?) for local non-adaptive measurements obtained
by [54].

A frequently mentioned feature of classical shadows is that one can choose the observables whose
expectation values we wish to estimate after performing the measurements. An important aspect to
note here is that while the observables can depend on the measurement protocol (i.e., the %-random
unitary measurement that was performed), they must not depend on the measurement data. We
remark that this feature is not unique to classical shadows or -random unitary measurements, and is
a common property of many statistical procedures. For example, one can perform tomography using
any informationally complete measurement, and store a classical description of the reconstructed
state for future use. One can later choose the observables (independent of the observed data)
whose expectation values needs to be estimated, and estimate the expectation values of these
observables using the reconstructed state. TOOL shares the same feature, and works much better
than tomography for estimating expectation values. One can implement an arbitrary measurement
protocol in an experiment, and store the measurement outcomes for future use. The observables can
be chosen later (independent of the observed outcomes), and TOOL can give optimal performance
for all the chosen observables. This contrasts with classical shadows that can be far from optimal
for many observables.

Because classical shadows and the worst-case lower bounds derived in [54] can give sub-
optimal results for many observables, we are motivated to derive bounds on the optimal performance
of shadow tomography using non-adaptive measurements. First, we note that every estimation
procedure that can learn the expectation values of any given observable, and in particular TOOL,
can be extended to simultaneously learn the expectation values of many observables following the
strategy in Box 7. Box 7 is a simple application of the union bound, and many estimation protocols
used in quantum information (such as classical shadows) use such a strategy to simultaneously
learn the expectation values of many observables. We show in Prop. 7.18 that for estimation

procedures that simultaneously learn the expectation values of the observables 0y, ...,Or using the
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outcomes of a given measurement protocol 9 to a confidence level of 1 —§ € (0.5,1) using the union
bound, max; ||Oily, 5,5 characterizes the optimal estimation error. Furthermore, TOOL achieves
this estimation error to within a factor of 1/¢(d), showing that TOOL is also minimax optimal
for shadow tomography amongst estimation procedures that use the union bound (Prop. 7.17).
Similarly, we characterize the optimal estimation error for simultaneously learning the expectation
values of many observables by allowing one to implement a measurement protocol from a given set
of measurement protocols in Prop. 7.19.

Since the minimax norm can be used to characterize the optimal estimation error for learning
one or many observables for any given measurement protocol, it can be used to compare the perfor-
mance of different measurement protocols. One can also use the minimax norm to perform minimax
optimal experimental design, by optimizing the minimax norm over a given set of measurement
protocols.

The main drawback of TOOL is the computational complexity for constructing the estimator
and computing the minimax norm (estimation error). If M denotes the total number of POVM
elements in the measurement protocol and d denotes the system dimension, then in the worst case
scenario, our implementation of TOOL given in Sec. 5.4 needs O(Md?) + O(d?) time and O(Md?)
memory to perform the optimization to construct the estimator and compute the minimax norm
for a single observable. Once the estimator is constructed, the estimator can compute estimates
from N measurement outcomes in O(N) time. Since the estimator can be reused as many times as
necessary (for a given 0, M, and 1 — 0), the costly computation only needs to be performed once.

While the worst-case computational complexity of TOOL is bad, it is possible to improve the
computational complexity for special cases of interest. For example, for fidelity estimation, there is
a 2-outcome POVM (which models a large class of measurement protocols), for which TOOL can
construct the estimator and compute the minimax norm in O(1) time and memory, independent
of the system dimension (see Prop. 6.1). We leave the problem of devising efficient algorithms for
constructing the estimator using TOOL for other cases of interest as a problem for future research.

On the other hand, the worst-case computational complexity of classical shadows for a single
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observable is O(Nd?) time and O(Nd?) memory, since the d x d observable as well as the shadows
need to be stored and expectation values need to be computed. If we focus on the unitary ensembles
of global or local Clifford unitaries, then the memory can be reduced to O(d?) instead of O(Nd?)
since the shadows are stabilizer states and can be stored efficiently, and only the observable needs
to be stored. The time complexity remains O(Nd?) in this case because the observable whose
expectation values needs to be estimated may not have any classically efficient description. However,
when the observable can be written as a linear combination of polynomially many (in the number of
qubits) projectors onto stabilizer states, classical shadows can be implemented in O(N polylog(d))
time and memory.

We present a brief comparison of TOOL and classical shadows in Tab. 1.

TOOL Classical shadows [54]
Optimal for every observable 4 X
Optimal for shadow tomography v X
Optimal for every measurement 4 X
protocol
b
S log(2/8
Estimation error ~ [ llgns ~ 1l adon \/ 22
Worst-case computational complexity —~ O(Md?) + O(d?) once, O(Nd?)

O(N) afterwards

& Optimal amongst estimation protocols that use union bound to simultaneously learn in lo.-norm
b For N repetitions of an informationally complete POVM

Table 1: A brief comparison of TOOL and classical shadows. M denotes the total number of POVM
elements, d denotes the system dimension, and N denotes the number of samples. By optimal, we
mean minimax optimal in the worst case over all states.
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Chapter 2

Preliminaries

In this chapter, we review some definitions, concepts, and results that are used in this thesis.
We also introduce some notation that is used throughout this thesis.

Sets are denoted by the calligraphic upper case letters such as &, %, #. Random variables
are denoted by upper case roman letters such as X,Y,Z, while lower case letters such as x,y, z
denote the values taken by random variables. Linear and affine maps are also denoted by upper case
roman letters such as L and A. The set of natural numbers (excluding zero) is denoted by N. The
set of real numbers is denoted by R, while the set of non-negative real numbers is denoted by R.
The set of extended real-valued numbers is denoted by R = RU {#00}. The set of complex numbers
is denoted by C. Given a complex number z € C, we denote z* to be its complex conjugate. All the
logarithms appearing in study are with respect to base e unless specified otherwise. For any M € N,
we denote [M] = {1,...,M}. The Kronecker delta function is defined as §;; =1 if i = j and 0
if i # j. Given some statement P on a set {2, we denote {P} = {w € Q| P(w) is true} to be the
set of elements of {2 where the statement P holds. For example, if f is a real-valued function on
2 and a € R is some number, we write {f < a} = {w € Q| f(w) < a}. We denote an indexed
family as {O;}ics or (O;)ic.7, where the elements/objects O; (which could be vectors, matrices,
etc.) are indexed by elements of a set .#. Formally, an indexed family is a function from .# to the set
{6; | i € F}. Indexed families help to keep track of the order of elements (when ¥ is ordered) and
allow for repetitions of elements, in contrast with sets which are unordered and contain no repeated

elements. Next, we define the asymptotic order notation. Let f, g be non-negative functions on
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21 X -+ X X, where for all i € [N], Z; is either N or (0,00). We say f = O(g) if there are positive
numbers B and C' such that min; z; > B implies f(z1,...,zy) < Cg(x1,...,2N). We say f = Q(g)
if there are positive numbers B and C' such that min; z; > B implies f(z1,...,zyx) > Cg(x1,...,zN).
We say f=0(g) if f =O(g) and f = Q(g). Our definitions concerns the asymptotic behavior of f
and g as all the parameters are approaching infinity, and this may differ from the definitions in the
literature for the order notation for multi-parameter functions. Finally, we note that we use the

abbreviation “iff” to mean “if and only if”.

2.1 Linear algebra

We call a vector space over R a real vector space and a vector space over C a complex vector
space. In the following discussion, K is either R or C. An inner product on a vector space 7
over K is a function (-,-) : 7" x 7" — K such that (u,v+ w) = (u,v) + (u,w), (u,av) = a(u,v),
and (u,v)" = (v,w) for all u,v,w € 7 and a € K. When convenient (e.g., when working with pure
quantum states), we will use the Dirac notation: vectors are denoted by [¢)), and inner product
between |¢) and |¢) is denoted by (p|1)). A vector space equipped with an inner product is called
an inner product space.

Given a subset  C 7/, the span of % is span?% = {> . ciu; | (Vn € N)(Vi € [n])oy €
K,u; € #}. A (Hamel) basis & of 7' is a minimal spanning set (i.e., span % = 7" and for any
B < B, span B C 7°). The number of basis vectors is called the dimension of 77, denoted by
dim?7" = |9%|. It can be shown that the dimension is independent of the choice of basis. 7" is
said to be finite-dimensional if dim 7" < oo. All vector spaces in this study are assumed to be
finite dimensional, unless stated otherwise. Any vector v € & can be written as a unique linear
combination of basis vectors. A collection of vectors vy, ..., v, are said to be linearly independent if
Yo, a;v; = 0 implies oy = 0 for all ¢ € [n]. It can be verified that a basis % is a maximal linearly
independent set (i.e., every set strictly containing & is linearly dependent). Given an n-dimensional
inner product space 7°, an orthonormal basis of 7" is a collection of n vectors B = {e1,...,en}

that satisfies (e;,ej) = d0;; for all 4, j € [n]. It can be verified that any set of n vectors satisfying
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this property form a basis. Since 9% is a basis, there are unique numbers vy, ..., v, € K such that
v =", vie;. The number v; is said to be the ith component of v with respect to the basis {e;}! ;,
and we write v = (v1,...,v,) when the basis is understood. We use the same terminology even if
A is not orthonormal.

Given two vector spaces 7" and % over K, their direct sum 7" @ % is a vector space of tuples
(v,w) with v € 7" and w € %', with addition and scalar multiplication defined component-wise.
Inner products on 7" and 7" induce an inner product on 7 &% as ((v,w), (v, w')) = (v, ")+ (w, w’)
for v,v" € 7" and w,w’ € . The tensor product of 7 and % is denoted by 7 @ #'. The
technical definition of a tensor product is not needed for this study, and we refer the interested
reader to [11, Sec. (I.4)] for details. In practice, it suffices to look at Kronecker products as they
give a concrete way to compute the tensor product of two finite-dimensional vectors. If {ej,...,e,}
is a basis of 7" and {fi,..., fm} is a basis of 7', then {e; ® f; | ¢ € [n],j € [m]} is a basis for
7 @ W . We define the components of vectors in 7" ® %" with respect to this basis as follows. If
veE? and w € W, then (v ® w);; = v;w; are the components of v @ w for i € [n] and j € [m].
Inner products on 7" and 7 induce an inner product on 7" @ #" as (v @ w,v' @ w') = (v,v') (w,w’)
for v,v" € 7" and w,w’ € . A linear subspace % of a vector space 7 is a subset of 7" that
satisfies u + av € % for all u,v € % and all o € K. It follows that % is itself a vector space under
the addition and scalar multiplication inherited from 7°. Given a subspace % C 7, the quotient
space 7' /% consists of elements (called cosets) [v] = {v+u | u € ¥} for v € 7', with addition
defined as [v1] + [v2] = [v1 + v2] and scalar multiplication defined as afv] = [av] for v1,vs,v € 7" and
a € K. It can be verified that the quotient space is itself a linear vector space under the addition and
scalar multiplication defined above. Given any subset % C 7, the orthogonal complement of %
is defined as %+ = {v € 7 | (u,v) = 0 Vu € %}. If % is a subspace, then % is also a subspace,
and we have " = % + %+, where f + B={a+b|ac o,bc B} is the Minkowski sum of the
sets A, B C V.

A linear map L betwen two vector spaces 7° and # is a function L: 77 — % that satisfies

L(u +v) = L(u) + L(v) and L(av) = aL(v) for all u,v € 7" and a € K. We will denote L(v) as Lv
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when no confusion arises. The adjoint of a linear map L is a function LT: % — 7 that satisfies
(w,Lv) = (LTw,v) for all v € 7 and w € 7. A linear map L: " — 7 is said to be Hermitian
or self-adjoint if L' = L. If 7" has dimension n and % has dimension m, then L can be written
as an m X n matrix by choosing a basis for 7" and #°. When no confusion arises, we will use
the same notation L for the linear map as well as the matrix. In terms of matrices, LT = (L*)T
is the conjugate transpose of L. A linear map L: 7 — 7  is positive semidefinite (PSD) if
(v,Lv) > 0 for all v € 7. For K = C, it can be shown that a PSD map is necessarily Hermitian [24,
Prop. (2.12)]. The kernel of a linear map L is ker(L) = {v € 7" | Lv = 0}. The kernel is always a
linear subspace of 7°. The range of a linear map is range(L) = {Lv | v € 7'}. The image is always
a linear subspace of 7. The identity map is a linear map ly: 7 — 7" defined as ly(v) = v for
all v € 7. When 7 is clear from the context, we denote ly as I. A linear map L is said to be
an isomorphism if it is bijective. All isomorphisms are invertible, that is, there is a linear map
L' % — % such that L' oL = lyy and LoL™! = lgy. A linear map L between two inner product
spaces is said to be an isometry if it preserves inner products ((Lu, Lv) = (u,v) for all u,v € #").
A linear map U: 7" — 7 is said to be unitary if it an isometric isomorphism. This can be shown
to be equivalent to the condition UTU = UUT = I. Consequently, we have U~ = UT. Given two
linear maps LY : 77(M) — 7MW and L& : 7@ — @) their direct sum L = LY & L?) is the linear
map L: (7MW a7 @) = (7'M @ 7)) defined as L((v,v?)) = (LO(vM), LA (v?))). In matrix

form, we can write L as the block matrix

where 0 is a matrix of zeros of appropriate size.
A linear functional on a vector space 7" over K is a linear map L: 7" — K. Given a vector

space 77, the dual space 7™* is the set of all linear functions on 7°. The Riesz representation theorem
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ensures that for every v € 77, there is a unique linear functional L, € 7™* such that L,(w) = (v, u)
for all w € 7 [24, Thm. (3.4)]. In Dirac notation, we write |v) for elements of 7" and (v| elements
of 77*. If we write |v) as a column vector, (v| is the row vector obtained by taking the conjugate
transpose of |v). Given v € 7" and w € #', we will denote |w) (v|: 7~ — ¥ to be the linear
map |w) (v| (u) = (v,u) w for u € Z". This works particularly well with the Dirac notation, where
) (v] [u) = (olu) [w).

A seminorm on a vector space 7 is a function ||-|| : 7" — R that is (1) absolutely homogeneous
(llow|| = |e| |Jv]| for all & € K, v € 77), and (2) satisfies the triangle inequality (||u + v|| < ||u| +||v|]).
The above properties imply that ||0|| = 0 and ||v]| > 0 for all v € 7". A norm is a seminorm that
satisfies ||v|| = 0 if and only if v = 0. A norm induces a metric on 7" according to < (u,v) = ||lu — v||.
Every inner product induces a norm according to ||v|| = 1/(v,v). Note, however, that there are
norms that are not induced by an inner product.

A Hilbert space # over K is a complete inner product space. Recall that & is said to be
complete if every Cauchy sequence with respect to the norm induced by the inner product converges
to a point in & . All finite-dimensional inner product spaces are complete, and therefore, Hilbert
spaces. Thus, we will use the terminology Hilbert space for an inner product space in this study.

The set of n-dimensional vectors with entries from K is denoted by K”, while the set of m x n
matrices with entries from K is denoted by K™*". The set of n x n complex, self-adjoint (Hermitian)
matrices is denoted by S,,. It can be verified that S,, is a real vector space of dimension n?. Every
matrix A € S, has a spectral decomposition, i.e., we can write A = > | A\; |[\i) (\i|, where
ALy ..., A\p € R are called the eigenvalues of A and |A1),...,|\,) are the corresponding eigenvectors
(not necessarily unique). The normalized eigenvectors of an n x n Hermitian matrix form an
orthonormal basis for C". For any matrix A € S,,, we denote A\(A) = (A1(4),..., A\ (A)) to be the
vector of eigenvalues of A. Furthermore, we denote Apax(A) and Apin(A) to be the maximum and
minimum eigenvalues of A, respectively. Given a Hermitian matrix A € S,,, we define its support
as the span of eigenvectors corresponding to non-zero eigenvalues. Equivalently, the support of A is

the orthogonal complement of the kernel of A. The singular values of A € K™*™ are the eigenvalues
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of VAT A, where we note that ATA is Hermitian for any (possibly rectangular) matrix A. It can be
verified that if A is a Hermitian matrix, then the singular values of A are just the absolute values of
the eigenvalues of A. For any matrix A € K"*" we denote 0(A) = (01(A),...,0n(A)) to be the
vector of singular values of A. We denote opax(A) and opin(A) to be the maximum and minimum
singular values of A, respectively.

Given any Hermitian matrix A and a function f: R — R, we define f(A) = > f(Xi) [As) (il
The domain of the function f can be restricted to a subset of the real line depending on the scenario.
For example, we can define the square-root of a PSD matrix A € S, as VA = Y1 | VA [Ai) (Al
The trace of a matrix A € K"*" is defined as Tr(A) = > 7, (e;, Ae;), where {eq,...,e,} is an
orthonormal basis of K% It can be verified that trace is the same irrespective of the choice of
orthonormal basis, and we have Tr(A) = > ' | A;. The rank of A € K™*" is the dimension of
range(A). It can be verified that rank 1 matrices can be written as |w) (v| for some v € K" and
w € K™, We say A € K"*™ is full rank if its rank is equal to n. It can be verified that full rank
matrices are invertible.

The Euclidean or standard inner product on K" is defined as (u,v) = ufv = 3"1 | uv;, where
u=(Up,...,up),v=(v1,...,0,) € K" with respect to some fixed orthonormal basis. The Euclidean
norm on K" is defined as ||v||, = /{(v,v) = Vv, More generally, for p € [1,00), the p-norm on
K™ is defined as |[v]|, = (3271, [vi[P)Y/P, whereas ||v],, = max;c(,) |vi|. Holder’s inequality states
that | (u,v)| < ||ull, [|v]l, for any p,q € [1,00] satisfying 1/p +1/q = 1. For the case of p = ¢ = 2,
we obtain the Cauchy-Schwarz inequality | (u,v) | < |lull, [|v]]5-

The Hilbert-Schmidt (HS) inner product on K"™*" is defined as (A, B) = Tr(ATB) =
>t j=1 Aj;Bij, where A = (4;;) and B = (B;;) with respect to some fixed orthonormal basis of K.
The Hilbert-Schmidt or Frobenius norm on K™*" is defined as || A g = /Tr(ATA). The Schatten

p-norm on K™ is defined to be [[A]|, = [[o(A)],, where p € [1,00] and o(A4) = (01,...,00)

p?
denotes the vector of singular values of A. If A is Hermitian, it holds that [[A|, = [[A(A)]],,
where A\(A) = (A1,...,An) denote the vector of eigenvalues of A. The Schatten-2 norm is just the

Hilbert-Schmidt norm. Of particular interest is the Schatten-1 norm, also called the trace norm,
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which can be written as [|A]|; = Trv/ATA. Also, the Schatten-co norm coincides with the oper-
ator norm or the spectral norm of A, which is given as [[A|,, = max,,<1 [[Av[y = oOmax(A).
All Schatten-p norms are unitarily invariant, i.e., HUAUTHP = ||A||, for all unitaries U. For
matrices, we can derive a Holder’s inequality for Schatten norms. If A, B € K" " we have
Te(ATB)| < (o(A),0(B)) < llo(A)ll, lo(B)l, = 1Al IB], for any p.q € [1,50] satisfying
1/p 4+ 1/q = 1. The first inequality is a consequence of von Neumann’s trace inequality [72]
and the fact that o(A") = o(A), while the second inequality is the usual Holder’s inequality.
Finally, we make a remark on notation involving inequalities involving vectors and matrices.
For a vector x € R", inequalities such as x > 0 are interpreted component-wise. For matrices
A, B € S,,, the inequality A > B means A — B is positive semidefinite. It can be verified that these

definitions define a partial order on R™ and S,,, respectively.

2.2 Quantum states and measurements

In this section, we review some basic definitions and results in quantum information that
are used in our study. We refer the reader to [77] for a comprehensive introduction to quantum
information theory.

A d-dimensional quantum state o € C%*? is a Hermitian, positive semi-definite matrix with

C4*d ig pure if there

trace 1. A quantum state is said to be pure if it is rank 1. Equivalently, p €
is a vector |¢) € C? such that p = [) (1|. An observable is mathematically a Hermitian matrix.
Depending on the situation, an observable can describe some physical property of the system such
as energy. Given an observable 0 € C%*? its expectation value with respect to the state p is
defined as (0) = Tr(Op).

In practice, we do not know the underlying state p. Instead, we typically have access to
outcomes obtained by measuring the state p. Our goal in this study is to learn or verify properties
of p using these measurement outcomes. By a property of a state, we mean any function of the

state, as for example the expectation value of an observable.

To obtain a measurement outcome, we need to measure the quantum state according to
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a chosen measurement procedure defined by a measurement setting. A measurement setting is
described mathematically by a positive operator-valued measure (POVM), which is an
indexed family of positive semi-definite operators E = {El}f\il that sum to identity. We call an
element m € [M] a label corresponding to the POVM element E,, that can be observed upon a
measurement. Here, M denotes the total number of labels for the POVM E. If the underlying state
is p, the probability of observing the label m € [M] upon measuring E is given by Born’s rule as
pE,p(m) = Tr(Ey,p). When the POVM is understood, we denote pg,, by p,. If there are multiple
POVMs EW, ...  EW) then the kth element of the ith POVM is denoted by E(i), and we write
PEG , = pg,i) when the POVMs are understood.

We denote 1-qubit Pauli observables as X, Y, Z. The eigenstates of X with eigenvalues +1
and —1 are denoted by |+),|—) respectively, while the eigenstates of Z with eigenvalues +1 and —1
are denoted by |0) and |1). The eigenbasis of Z®™ in an n-qubit system is called the computational
basis. For an n-qubit Pauli P, the POVM that measures the eigenvalue of P is {(14+ P)/2, (I—P)/2}.

A peculiarity of quantum mechanics is that after a measurement, the quantum state is
disturbed. For this reason, to obtain several measurement outcomes, one needs to prepare many
copies of the state of interest p. Ideally, one seeks to prepare many independent and identical copies
of the state p, which are then measured one at a time. We refer to assumption that independent
and identical copies of the states are prepared as the #id assumption, in line with the independent
and identically distributed assumption used in classical statistics. While it is hard to satisfy the iid
assumption exactly, in many experiments, the iid assumption is reasonable, at least over short time
scales. Moreover, the iid assumption greatly simplifies the statistical analysis of data, especially for
the purposes of learning or verifying the properties of quantum system. For this reason, we will
work with the iid assumption in this study.

In the situation where we perform multiple measurements, there are broadly three measurement
strategies one can implement: non-adaptive, adaptive, and entangled measurements. The definitions
given below follow [108]. A measurement is said to be non-adaptive if we fix the POVMs a priori,

and each POVM is implemented on a single copy of the state. A measurement is said to be adaptive
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if we measure one copy of the state at a time, but the POVM at any given time can depend on the
past measurement outcomes. Finally, entangled measurements corresponds to jointly measuring
many copies of the state at one time. We remark that one can, in principle, mix and match these
different types of measurements. For example, one can choose to jointly measure two copies of a
state at a given time, and use the previous outcomes to inform the POVM to be implemented in
the next time step.

In this study, we focus on non-adaptive measurements. Thus, when we say a “measurement
protocol”, we mean a non-adaptive measurement protocol, unless stated otherwise. A non-adaptive
measurement protocol is simply a list of POVMs along with the number of times each POVM is
repeated. We formally define this below. Note that we assume all the measurements are performed

independently.

Definition 2.1 (Measurement protocol). A (non-adaptive) measurement protocol I is a list of
pairs, where each pair consists of a POVM along with the number of times that POVM is repeated,
ie.,

me{(50.8))", =

Here, the ith POVM E(®) = {EY), e E](\Z} has M; labels, and it is repeated IN; times. L denotes
the total number of POVMs implemented by the measurement protocol. We assume that all the
POVMs are distinct.

The total number of samples Zle N; used by the measurement protocol 91 is denoted by
N () or simply N when 9 is clear from context.

Given that the underlying state is p, we denote the joint probability distribution over the

labels determined by the measurement protocol 91 as per Born’s rule by the shorthand Pgy ,. [

Another equivalent way of thinking about a measurement protocol is as a finite sequence
of POVMSs, where elements in the sequence may be repeated. The definition of a measurement
protocol given in Eq. (2.2) avoids this repetition by listing the distinct POVMs that were/will be

measured, and saying how many times each POVM was repeated.
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To illustrate the above definition, consider the following example. Suppose that we mea-
sure Pauli X two times and Pauli Z one time on a one-qubit state p. The POVM defining X
measurement is EM) = {|4) (+],|—) (—|} (projection onto eigenvectors of X), and similarly, the
POVM defining Z measurement is E®) = {]0)(0|,[1) (1|}. The measurement protocol is then
described by the set M = {(EW,2), (E® 1)}. The labels of an experiment implementing this
measurement protocol are tuples (or strings) of the form (i, j, k) where i, € {+,—} and k € {0,1}
(since we measure X twice and Z once). Since we assume that the states are prepared inde-
pendently and identically, the joint probability distribution Py , is a product distribution, i.e.,
P (i3, K)) = Te(p|i) (i) Tr(p 1) (1) Tr(p |k) (k) for any given label (i, j k).

The above examples describe performing a fixed set of measurements. Sometimes, however,
it is advantageous to implement a randomized measurement protocol. For example, we can
randomly sample E() or E®?) and implement the sampled POVM. We formally define a randomized

measurement protocol below.

Definition 2.2 (Randomized measurement protocol). A randomized measurement protocol
consists of L POVMs EM ... E() | a probability distribution p over [L], and a positive integer
N, wherein one samples the ith POVM with probability p; and measures it, and this procedure is

repeated N times. O

Randomized measurement protocols can be described using a single effective POVM. The
most general situation is where one stores both the index ¢ of the POVM that was sampled and
the outcome j € [M;] that was observed upon measuring this POVM. In this case, the effective
POVM is given as {piEJ(-i) | j € [M;],i € [L]}. This situation occurs, for example, in direct fidelity
estimation [33, 26] and classical shadows [54]. Another situation is when M; = M, for all i € [L]
and one only records outcome observed upon measurement and not the POVM that was sampled.
This situation occurs, for example, in the randomized Pauli measurement protocol discussed in [92].
In this case, the effective POVM is given by {3°F piEJ(.i) | j € [Ms]}. Thus, when referring to the

measurement protocol 91 for a randomized measurement, it is sufficient to specify the effective
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POVM along with the number of times this POVM is measured.

Another type of measurement protocol that is important in practice is an informationally
complete measurement protocol. Such measurement protocols contain enough information to
completely reconstruct the state, and thus, are important for quantum state tomography. We

formally define these measurement protocols below.

Definition 2.3 (Informationally complete measurement protocol). A measurement protocol
M = {(ED, N;)}£_| is said to be informationally complete (IC) if for all states p,o with p # o,

there is some POVM E® for i € [L] and an index k € [M;] such that Tr(E,(j)p) # Tr(E,(j)a). O

While the above definition might look mathematically unwieldy, it turns out that a mea-
surement protocol is IC if and only if it spans the set of all Hermitian matrices of appropriate
dimension, giving a mathematically simple characterization of IC measurements. Although this
result is known in the literature [88], we include a short proof below. We use the notation
span M = span{E,(:) | k € [M;),i € [L]} for any measurement protocol M = {(E®W, N;)}X | in the

proof.

Proposition 2.4. A measurement protocol 9 = {(E(i), Ni)}z’;:1 1s informationally complete if and

only if {E,Ef) | k € [M;],i € [L]} spans the set of all d x d Hermitian matrices.

Proof. Let (span91)* denote the orthogonal complement of span ).

Suppose that 9t does not span S;. Then, we can write Sy = span 9t @ (span M)+, where
(span M)+ contains at least one non-zero element A. Since | € span, we must have (I, A) =
Tr(A) = 0. Thus, after rescaling if necessary, we can assume that Tr(A) = 0 and [|A||, < 1, where
| Al denotes the Schatten-oo norm of A. Then, p = (I1+ A)/d and 0 = (I — A)/d are density
matrices that are not equal. However, Tr((E,(f) (p—o0)) = 2Tr(E](:)A)/d =0 for all k € [M;] and all
i € [L], so that 91 is not informationally complete.

Next, suppose that 9t spans S;. Then, there is a subset % C {E,(;) | k € [M;],i € [L]}

that is a basis of Sg. Denote the elements of & as Wiy,...,Ws;. Consequently, given any two

density matrices p, o, we can write p — o = Zj a;W; for some unique numbers aq, ..., a4 € R. If
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(p— 0, Wi) = Tr((p — o) WWi) = 0 for all i, then 0 = 3=, a; (p — 0, Wy) = (p— 0, p — 0) = [Ip — o} 3s.

This implies p = o, showing that 91 is informationally complete. O

A special type of informationally completely measurements, called symmetric information-
ally complete (SIC) measurements, are of importance in quantum information [88]. A POVM E
is said to be a SIC-POVM if it is informationally complete, has exactly d? elements all rank one, and
Tr(E;Ey) = (déjp +1)/(d*(d+ 1)) for all j, k € [d?], where ;) denotes the Kronecker delta function.
Since SIC-POVMs are informationally complete, they can be used for quantum tomography [83].
Such measurements protocols are sometimes referred to as “single-setting”, since we only measure a

single POVM.

2.3 Probability theory

In this section, we review some basic concepts in measure-theoretic probability. These concepts
are useful for studying the general statistical problem in Ch. 4. That said, when we apply this
statistical framework to the problem of learning observables, we can do away with most of the
underlying measure-theoretic details.

We start with some basic concepts from measure theory (see [48] for an introduction to the
subject). Given a non-empty set 2, a o-algebra F on (2 is defined to be a collection of subsets of
Q) that is closed under countable unions and relative complements. That is, given A1, Ao, ... € F,
we have U, A4, € F, and given A, B € F, A\ B € . We work with the convention that union of
an empty collection of sets is equal to the empty set @. This implies that we always have @, € &.
We call the pair (2, #) a measurable space, and the elements of F are called F-measurable sets
or simply measurable sets if the og-algebra is clear from context. Given any collection &/ of subsets
of €, the o-algebra generated by & is the smallest o-algebra on {2 containing &, and is denoted
by o(</). In probability theory, a special class of o-algebras, called the Borel o-algebras, plays an
important role. To define a Borel o-algebra, we need the idea of a topology on 2. Moreover, we will

work with a specific type of topological spaces called Polish spaces in this study. For this reason, we
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review some basic concepts from topology.

A topology on a non-empty set 2 is a collection 7 of subsets of € that is closed under
arbitrary unions and finite intersections. The pair (£2,7) is called a topological space (see [74]
for an introduction to topology and metric spaces). The elements of 7 are called open sets, and
a complement of an open set is called a closed set. Given any subset A C €, the interior of A,
denoted int A, is the largest open set contained in A, while the closure of A, denoted cl A, is the
smallest closed set containing A. A subset A C Q) is compact if for every collection of open sets
whose union contains A, there is a finite subcollection whose union contains A. An important result
in analysis, called the Heine-Borel theorem, states that a set in a Euclidean space is compact iff it is
closed and bounded. A subset 5 C € is said to be dense in Q if ¢l = Q. A topological space
is said to be separable if it has a countable dense subset. Given a family & of subsets of €2, the
topology generated by & is the smallest topology on €2 that contains & .

While topological spaces can be very abstract, we will mainly deal with spaces that are
generated by a metric. A metric on (2 is a function «: Q x Q@ — R that (1) satisfies (w1, w2) =0
iff w1 = wo for all wy,ws € Q, (2) is symmetric (& (w1,w2) = & (w1, w2) for all wy,ws € ), and (3)
satisfies the triangle inequality (¢ (w1,w2) < & (w1,w2) + & (we,ws) for all wi,ws, w3 € Q). Using
the above requirements, it can be shown that a metric must always be non-negative. A metric gives
a way to measure distances between points of (2. The pair (€, ) is called a metric space. ({2, &)
is said to be complete if every Cauchy sequence in €2 converges to a point in 2. For any r > 0,
the set B(w,r) = {' € Q| &(w,w’) < r} is called an open ball of radius r around w € Q. The
topology on €2 generated by the open balls is called the metric topology, or the topology induced
by the metric «. A topological space (£2,7) is said to be metrizable if there is a metric « that
induces the topology 7. A Polish space is a complete separable metrizable topological space.
Polish spaces are important in the study of probability theory since they provide a way to unify
commonly encountered spaces such as discrete spaces (for “discrete probability distributions”) and
Euclidean spaces (for “continuous probability distributions”).

A Borel o-algebra on a topological space (€2, 7) is the o-algebra generated by the topology 7.
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We denote the Borel o-algebra as B(2) = o(7) when 7 is clear from context. The pair (Q, B(Q)) is
called a Borel space. When working with a topological space (€2, 7) that is a Polish space, we will
refer to the corresponding Borel space (£2, B(£2)) also as a Polish space.

A function f: Q; — Q9 between two measurable spaces (€21, %) and (€9, F2) is said to be
measurable if the preimage of measurable sets are measurable, i.e., f~1(A) = {w; € Q1 | f(w1) €
A} € & for all A € F5. Similarly, a function f between two topological spaces is said to be
continuous if the preimage of opens sets are open. A function is said to be Borel measurable or
Borel if it is a measurable function between two Borel spaces. It follows from the definitions that all
continuous functions are Borel measurable.

A measure 72 on a measurable space (£, &) is a non-negative function on & that is countably
additive, i.e., for any A, Ay, ... € F that are mutually disjoint, we have 72 (U, A,) = >, 72(A,).
We call the triple (Q, F,72) a measure space. A measure is said to be finite if 72(2) < oo, and
it is said to be o-finite if there is some sequence of measurable sets A1, Ao, ... € F that satisfies
Q CU,A, and 72(A,) < co. A Borel measure is a measure defined on a Borel space.

Given a real-valued measurable function f, we denote the Lebesgue integral of f over A € F
with respect to 7z as fA fdrme. A measurable function f is said to be integrable if fQ | fldrme < oc.
A measure 721 is said to be absolutely continuous with respect to another measure 722, denoted
my K ma, if m9(A) = 0 implies 7721 (A) = 0 for all A € F. An important theorem from measure
theory, called the Radon-Nikodym theorem, says that if 721 and 7z, are o-finite and 727 < 722,
then there is a non-negative integrable function f such that 721(A) = [, fdma. Moreover, f is
unique up to a set of zz9-measure 0 in the sense that if ¢ is another function that satisfies the above
properties, then 7zo({f # g}) = 0. The function f is called the Radon-Nikodym derivative of 72,
with respect to 729, and denoted by dmzey /dmzs.

We are now ready to use these basic definitions to define probability spaces and random
variables. A probability measure P on a measurable space (2, ) is a finite measure that satisfies
P(22) = 1. We sometimes refer to a probability measure as a probability distribution or simply

distribution. The triple (2, #,P) is called a probability space. The elements of & are called
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events in the context of probability theory. It follows from the definitions that if (A,) is a finite
or countable sequence of events, then P(U,A4,) < > P(A,). This is called the union bound. A
statement is said to hold almost surely, or a.s. for short, if it holds on an event of probability 1.
If # = %B(Q) is a Borel o-algebra on 2, then we call (2, B(P),P) a Borel probability space and P a
Borel probability measure. Every probability measure is o-finite since it is finite. If 7z is a o-finite
measure on ({2, #), called the reference measure, and if P < 72, then by the Radon-Nikodym
theorem, there is a non-negative, integrable function p on  such that P(A) = [, pdze. The function
p is called the probability density function, or simply probability density, of P with respect to
7. Since P(Q) = 1, we must have [, pd7z = 1. Observe that instead of specifying the distribution
P, one may as well specify the probability density p to define the distribution P implicitly.

A random variable is a measurable function between two measurable spaces. If X: 0 — Q9
is a random variable and P; is a probability distribution on (1, %), we call Py = X,P;, defined as
P2(B) = P1(X~1(B)) for B € %, as the distribution on (2, %) induced by the random variable
X. Thus, when we talk about the distribution of a random variable taking values in 2o, there
is some underlying probability space (21, %1,P1), and we mean the distribution P, = X,.P; on
(Qo, F2). If we only care about the distribution P2, we may omit the underlying space (21, %1, P1)
from our discussion. If 729 is a o-finite reference measure on (Q2, %3) and Py < 7729, we refer to the
probability density function dPs/d#zo as the probability density of X. The expected value or the
expectation value of a real-valued random variable X on a probability space (2, #,P) is defined as
the integral E[X] = [, XdP.

A special class of random variables, the discrete random variables, is of great importance in
statistics and also in our study. First, we recall that the discrete o-algebra on (2 is the power
set 2 = {A | A C Q} of Q. Clearly, the discrete o-algebra is the largest o-algebra one can put on
Q. Often, this o-algebra is too large for most cases of interest (e.g., when 2 = R). However, if {2
happens to be a finite or countably infinite set, the discrete o-algebra is the most natural choice
of o-algebra on Q (which perhaps motivates the terminology “discrete” for this o-algebra). In the

same vein, 2% is also a topology on § called the discrete topology. The o-algebra generated by
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a discrete topology is discrete. Observe that if P is any distribution on (€, 2%?) and © is finite or
countable, its action on 2% is completely specified by its action on elements of . In other words, if
we know P(w) = P({w}) for all w € Q, then we can calculate the probability of any event A C Q.
Such distributions are called discrete distributions. With this in mind, a random variable is said
to be discrete if it is a measurable function taking values in (£2,2%), where € is either a finite or a
countably infinite set. It can be verified that the distribution on 2 induced by a discrete random
variable is always a discrete distribution. Furthermore, observe that if 7z is the counting measure
on (2,29) and Q is finite or countable, then P < 72 for all distributions P on (£2,2%). In this case,
the probability density dP/dze is just the function that maps w € € to P(w). Thus, when working
with discrete distributions, we sometimes refer to dP/d#z as the distribution instead of probability
density. In the discrete case, we call 2 the alphabet, and the elements of ) are called symbols.
If ©Q has d symbols, we can take € = [d] without loss of generality, by relabelling the symbols if
necessary. The set of probability distributions on [d] is the standard simplex in d dimensions,
defined as Ay = {p € R | p >0, Zf-l:l p; = 1}. We define the support of a distribution p as set
suppp = {i € [d] | pi > 0}.

Finally, we discuss the notion of an f-divergence, which quantifies the distance/dissimilarity
between two distributions. They satisfy many desirable properties, and it can be shown that many
known divergences or metrics are in fact f-divergences. This makes them important in probability

theory. We borrow the following definition from [82, Ch. 7].

Definition 2.5 (f-divergence). Let f: (0,00) — R be a convex function with f(1) = 0. Let P
and Q be probability distributions on (€2, %) with densities p and g respectively with respect to a

o-finite reference measure 2. Then, the f-divergence between P and Q is defined as

Ds(P.Q) = /{ Y (5) dm + f'(00)P({g = 0}), (2.3)

where f’(c0) = limg g2 f(1/z). In this definition, we use the convention that 0 x co = 0, and

f(0) = limg o f(z). O
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Note that a reference measure 72 satisfying P,Q < 7z always exists (e.g., by taking 7 =
(P + Q)/2). Importantly, the f-divergence between P and Q does not depend on the choice of
the reference measure [82, Rem. 7.2]. Now, observe that if P < Q, then P({¢g = 0}) = 0 since

Q({g=0}) =0. As a result, for P < Q, we have

Dy(P,Q) = /{ Y (Z) dm = [ 1 (fg) aQ. (2.4)

We refer the reader to [82, Ch. 7] for a list of properties satisfied by f-divergences.
An important special case is f(x) = xlog(x). This gives rise to the well-known Kullback-Leibler

(KL) divergence. If P, Q are two distributions, then

KL(P[Q) = /Qlog (flg) P = /Qplog (5) dm (2.5)

if P <« Q and oo otherwise.

2.4 Statistics

Estimating parameters is an important task in physics, where one might wish to learn
parameters of a physical model from experimental data. The problem of estimating parameters
using observed data is an important topic in statistics, and has garnered a lot of attention in the
recent past due to interest in machine learning. In this section, we will define what we mathematically
mean by estimation, and also introduce concepts that are important in our study.

Suppose that we have an underlying probability space (2, #, Piye), and we have access to
outcomes in 2 sampled according to the distribution Pt;ye. The distribution Pyyye is not known to us,
but we are given the promise that P lies in a known set of probability distributions %y. We are
given a function p: Py — O taking values in some set O, and the quantity that we wish to estimate
is p(Pirue). In statistics, the function p is called, perhaps confusingly, a parameter (hence the symbol

p). To avoid potential confusion, we will not refer to p as a parameter in this study. To illustrate
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the meaning of p, consider the following examples. Say % is the set of Gaussian distributions on
the real line, where each P, ;o € & is parametrized by the mean p and variance 02, Then we can
define p(P, ,2) = (u,0?) to be the function that maps the distribution to its parameters. More
generally, we can suppose that each distribution P, € % is parameterized (not necessarily uniquely)
by some vector € R%. Then, we can define p(P,) = f(x) to be some function of the parameter x
characterizing the distribution. This scenario will be important in our study. We remark that the
definition of p covers more general situations, beyond the scenario where distributions in Py are
parametrized by vectors in R%. For example, if P is the set of all distributions on the real line
with finite mean, we can define p(P) to be the mean of P € 2.

The typical goal in estimation is to learn the value of p(Piyye). Since we only have access
to the outcomes in 2 sampled according to Pyrue, and we don’t know the distribution Pye itself,
we need to use these outcomes to learn the value of p(Piyye). In the remainder of this section, we
assume that © is a metric space with the metric ¢, endowed with the Borel o-algebra. A point
estimator for p: Py — O is a measurable function p: Q — ©. The idea here is that given an
outcome w € (2, sampled according to Pirue € Py, the value ﬁ(w) gives an estimate of the true value
p(Pirue). If © C R?, then the quantity p(Pirue) — Etrue[p] is called the bias of p. The estimator p is
said to be unbiased if Eirye[p] = p(Pirue) for all Pyye € Pp. Point estimators are frequently used
for estimation. For example, given n independent and identically distributed samples X1, ..., X, of
a random variable X, p = >"" | X;/n is an unbiased point estimator of the mean of X.

In practice, due to only having access to a finite number of samples, there is always some error
in estimating the true value. Thus, a point estimate by itself is not very useful, as we need to know, in
addition, what the estimation error is. This leads us to the notion of a confidence set or a confidence
region. A confidence set assignment for a confidence level of 1 —§ € [0,1] is a set-valued function
€ from () to subsets of O, such that {p(Piue) € €} € F and Piye(P(Pirue) € €) > 1 — 4 for all
Pirue € Pp. Given an observation w € €, the set € (w) is called a confidence set or a confidence
region. The definition of a confidence set guarantees that no matter what the true distribution

Ptrue 18, the true value p(Pyipye) lies in the confidence set with high probability. Thus, instead of
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a point estimate, we output a region that contains the quantity of interest with high probability.
We colloquially refer to any method that constructs a confidence set assignment as an estimation
method/protocol/procedure.

In this study, we are mainly interested in two special cases, which we describe below. First,
consider the case when the quantity to be estimated is real-valued. In this case, we construct a
confidence interval assignment &, such that €(w) is an interval for all w € €. If one has
a point estimator p for p, and there is some € > 0 (possibly dependent on the data) such that
P(lp—p(P)] <¢e) >1—§ for all P € &, then € = [p — ¢,p + ¢ defines a confidence interval for p.
For any observation w € Q, the interval € (w) = [p(w) — e(w), p(w) + e(w)] is called a confidence
interval. The second case of interest is estimating a vector-valued quantity with respect to [,.-norm.
Thus, we have © C R? and «(x,y) = ||z — y||.. As before, if p is a point estimator for p, and there
is some € > 0 (possibly dependent on data) such that P(|[p — p(P)HOO <g)>1-4¢ forall P € %,
then € = B(p, ) is a confidence set assignment, where B(x,7) = {y € © | &(z,y) < r} is the closed
ball of radius r > 0 centered around x € ©. This can be interpreted as simultaneously estimating
all the components of p(Piyye) (which are real numbers) to within error ¢ with high probability.

In general, the error € can depend on the observed data. This is often the case when
using heuristics to compute the estimation error. For example, experiments in physics sometimes
quote a standard deviation or compute bootstrap intervals, both of which compute errors from
observed data. These methods are heuristic in the sense that the true value may not lie inside the
computed interval/set with high probability, and thus, they do not give confidence set assignments
in general. When the estimation error can be bounded by a constant, we call the confidence set
assignment minimaz. Formally, we say that € is e-minimax if sup . diam & (w) < 2¢, where
diam A = sup{(z,y) | x,y € A} is the diameter of the set A C ©. In particular, if the diameter
does not depend on the data, then the estimation procedure is minimax. For the case when
€ = [p—¢&,p + €], we have diam €(w) = 2¢(w). Thus, if € does not depend on the data, the
estimation procedure is e-minimax. A similar reasoning holds for the case when € = B(p, ¢).

Minimax confidence set assignments, or minimax methods, give worst-case error bounds,
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because the same error is returned for all data points. Nevertheless, minimax methods have their
advantages. For example, since the error is independent of the data, it can be computed before
the start of an experiment. This can be particularly helpful in quantum information, where one
can determine what measurements to perform before starting an experiment so as to minimize
the estimation error. Another advantage is that we can compute the sample complexity for the
estimation method, which is the number of samples needed to estimate the quantity of interest to
a fixed error € > 0 with probability greater than 1 — §. It is helpful to know a priori the sample
complexity of estimation methods in quantum information. This is because the dimension of a
quantum system comprised of n qubits scales exponentially as 2", and thus, it is useful to know if the
chosen estimation method is implementable for large system sizes. We note that many estimation

methods proposed in the quantum information literature are minimax methods.

2.5 Convex analysis and optimization

Let 77 be a finite dimensional vector space. A set o C 77 is said to be affine if for all
z,y € o and all A € R, we have Az + (1 — \)y € &. It can be shown that an affine set is
the translation of a linear subspace in the sense that there is a linear subspace % C 7" such
that o = % + a for all a € o, where 4 +a = {u+a | uw € %}. The affine hull of a set
K C 7, denoted aff #, is the smallest affine subset of 7° containing % . It can be shown that
af ' ={> " Avi|neNA,...,.n eR YT Ni=1v,...,0, € X}

A set € C R? is said to be convex if for all 2,y € € and A € [0, 1], we have Az + (1 —\)y € G.
All affine sets are convex, but the converse need not be true. The convex hull of a set & C 77,
denoted conv %, is the smallest convex subset of 7° containing #. It can be shown that conv % =
Do Avi [ neN AL A €[0,1],3°0 N =1, v, € H T

An important notion in finite-dimensional convex analysis is the notion of a relative interior.
To motivate the definition, consider the d-dimensional standard simplex Ay = {z € R? | 2 >
0, Zle x; = 1}. Tt can be shown that the interior of A4 in R? is empty (think of a simplex

in 3 dimensions for visualization). However, it still makes sense to look at the interior of Ay
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with respect to the affine subspace containing Ay, and this is exactly the notion of relative
interior. Formally, if % C R? is any set, then we define the relative interior of ¥ as the set
relint # = {x € | (3e > 0) B(x,e) Naff  C K}, where B(z,¢€) is the lp-ball of radius e around
x. Topologically, one can think of the relative interior of & as the interior of & with respect to the
subspace topology induced by aff #. # is said to be relatively open if & = relint #. It can be
shown that relint Ay = {zx € I | z > 0, 25:1 x; = 1}, which we call the relatively open simplex.
Importantly, if € C R? is a non-empty convex set, then relint € # @ [8, Fact 6.14].

A function A: 7" — % from a vector space 7" to a vector space %  is said to be an affine
function if for all x,y € 7" and A € R, we have A(Az + (1 — \)y) = AA(x) + (1 — A\)A(y). It can
be shown that an affine function is just the translation of a linear function, that is, there is some
linear map L: 7" — %" and a vector w € %" such that A(z) = L(z) +w for all x € 7. An extended
real-valued function f: € — R defined on a convex set € is said to be a convex function if for all
z,y € € and A € [0,1], we have f(Ax + (1 — N)y) < Af(x) + (1 — ) f(y). A function f is said to be
concave if —f is convex, while it is said to be log-concave if log(f) is concave. Every concave
function is log-concave but the converse need not be true. A real-valued affine function is both
convex and concave.

A function f: % — R defined on a set % C R? is said to be a proper if f never takes the
value —oo, and there is some point % at which f is finite. A function f: % — R is said to be lower
semi-continuous or Isc at a point z, € & if liminf,_,,, f(z) > f(z,). A function f: ¥ — R is
said to be upper semi-continuous or usc at z, € ¥ if limsup,_,, f(z) < f(xo). f is said to
be lsc/usc if it is Isc/usc at every point in #. A function f: % — R is said to be coercive if for
every sequence (z,) in & with ||z,|| — oo, we have f(x,) — oco. It is well-known that if # is a
closed convex set, and f is a proper, Isc, convex, coercive function on &, then f has a minimizer

over & [8, Thm. 11.15].
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Given a set %, its characteristic function is defined in convex analysis as

0 ifzred,
X (z) = (2.6)

oo  otherwise.

We note that the definition of a characteristic (or indicator) function in convex analysis is different
from that used in probability theory and representation theory. Observe that x s just encodes the
set X as a function. It can be verified that if % C R? is a non-empty convex set, then xy: R? — R
is a proper convex function. If & is a closed set, then yg is lower semi-continuous. Another
important function is the support function of a set. Given # C R?, its support function is defined

as

S (x) = sup{(z,y) |y € S}. (2.7)

It can be verified that Sy is always a convex function, irrespective of whether or not % is convex.
If % is a closed convex set, then Sy is Isc, and if # is a bounded convex set, then Sg does not
take the value co. The characteristic function and the support function of a set are dual to each

other in the sense defined below.

Definition 2.6 (Convex conjugate). The convex conjugate or the Legendre-Fenchel transform

of a function f: &' — R defined on & C R% is defined as

f*(y) = sup ({y,z) — f(x)) (2.8)

x€Rd

for y € R, O

Convex conjugate generalizes the notion of Legendre transform that is frequently used in
physics, especially thermodynamics and classical mechanics. It can be shown that f* is a convex
function even when f is not. If f is a proper Isc convex function, then f* is also a proper Isc convex
function and we have f** = f [8, Cor. (13.38)]. One can verify that if # is a non-empty closed

convex set, then Sy = x5 and x» = S%. Thus, for a closed convex set, its support function
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encodes the set as a function, just as the characteristic function does.

Finally, we define another useful transformation that will appear later in our study. Given
a proper function f: R — R, its perspective is the function pr: R? x (0,00) — R defined as
pr(x,t) =tf(x/t). It can be shown that if f is a convex function, then p; is also a (jointly) convex
function.

We now turn our attention from convex analysis to convex optimization. The discussion below

follows the exposition in [17]. Consider the following optimization problem in the so-called standard

form:
(P) min o)
st fi(z) <0, i€ n (2.9)
hj(x) =0, je€[m)].
The function fj is called the objective function. The functions f1, ..., f, define inequality constraints,
while the functions hq, ..., h,, define equality constraints. 2 C R? is a set over which all of these

functions are well-defined. The optimization problem written above is called the primal problem,
in contrast with its dual problem we will define below. If the functions fy, fi1,..., fn are convex,
hi,..., hy,, are affine, and the set & is convex, the above problem is called a convex optimization
problem. This is because it amounts to minimizing the convex function fy over a convex set
determined by the constraints. The optimal value p* of (P) is called the primal optimal value.
An important property of convex functions is that all local minima of a convex function are
also global minima. Thus, it suffices to compute the local minima of convex functions. Usually,
this is done by looking at the points where the gradient of fy is zero, but this does not account
for the constraints in the optimization problem. To remedy this, one defines a function called
the Lagrangian that explicitly depends on the functions fi,..., f, and hi,..., h,;, defining the

constraints. The Lagrangian for the primal problem (P) is defined as

LA v) = folx) + D Nifi+ ) _wihy. (2.10)
i=1 j=1
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The variable = € R? is called the primal variable, while the variables A € R” and v € R™ are called
dual variables. The (Lagrange) dual function for the problem (P) is defined as

h(Av) = 2&1[13(33 A V). (2.11)

The dual function is a concave function of (A, v), even if the primal optimization problem is not
convex. Importantly, one can show that h(A,v) < p* for all A > 0 and v € R™. Using this

observation, we define the (Lagrange) dual problem of the primal problem as

(D) max h(A,v)
Y (2.12)
A>0.

The optimal value d* of (D) is called the dual optimal value. Since h(\,v) < p* for all A > 0 and
v, it follows that d* < p*. This is called weak duality. The difference p* — d* is called the duality
gap. When d* = p*, or equivalently, when the duality gap is zero, we say that strong duality
holds.

We now describe first-order optimality conditions, called Karush-Kuhn-Tucker (KKT)
conditions. Suppose that fo,..., f, and hy,..., h,, are differentiable on an open set containng Z'.
Then, the points z* € 2 and A* € R?, v* € R™ are said to satisfy the KKT conditions if the

following hold:
(1) (Primal feasibility) f;(z*) <0 for ¢ € [n] and hj(z*) = 0 for j € [m].
(2) (Dual feasiblity) \* > 0.
(3) (Complementary slackness) A} fi(z*) = 0 for all i € [n].

(4) (Stationarity) The gradient of the Lagrangian vanishes at (z*; \*,v*), i.e.,

V fola +Z>\*Vf, +Zyw (2.13)
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It can be shown that if 2* € 2 and \* € R} and v* € R™ are primal and dual optimal points with
zero duality gap, then (x*; \*, v*) necessarily satisfy the KKT conditions. The converse need not
hold. That is, KKT conditions are, in general, not sufficient to ensure optimality.

However, if the primal problem (P) is convex, then it can be shown that KKT conditions are
sufficient. Thus, for a convex optimization problem, KKT conditions are necessary and sufficient if
strong duality holds. A condition that guarantees strong duality for convex problems is Slater’s
condition. Slater’s condition says that if the primal problem (P) is convex and there is at least
one feasible point z, € relint 2 satisfying f;(x,) < 0 for all ¢ € [n], then strong duality holds. Thus,
if we can show that Slater’s condition holds for a convex problem, we can use KKT conditions to

find primal and dual optimal points.
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Chapter 3

Classical and quantum distance measures

We begin our study by defining some distance measures for classical probability distributions
and quantum states that are relevant to our study. When we say “distance measure”, we mean some
function that says how close or similar two probability distributions/quantum states are. Given a
measurement protocol and a quantum state, one obtains classical probability distributions for the
observed outcomes through the Born’s rule. We call the distance measure one can define between
two quantum states through such classical probability distributions as a classical distance measure
on quantum states. A quantum distance measure can be obtained by optimizing the classical
distance measure over all measurement protocols.

The main distance measure of interest in our study is the average Bhattacharyya distance
between two quantum states determined by a measurement protocol. We will study the relation of
this measure to its quantum counterpart, (half) negative log-fidelity, as well as other well-studied
classical and quantum distance measures. Many of the results we present in this chapter review
known results in the literature, though possibly in a different form. Two results that we would like
to highlight in this chapter, which may find applications elsewhere, are (1) a closed-form expression
for the convex conjugate of Bhattacharyya distance for a special case of interest (Prop. 3.9), and (2)

a continuity bound for quantum fidelity (Prop. 3.17).
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3.1 Bhattacharyya distance and quantum fidelity

We start the discussion with the familiar notion of Bhattacharyya coefficient between two

classical probability distributions [12].

Definition 3.1 (Bhattacharyya coefficient and classical fidelity). The Bhattacharyya

coefficient (or Hellinger affinity) between two probability distributions p and ¢ over M symbols is

defined as
M
BC(p,q) = Z VPigi- (3.1)
i=1

The classical fidelity between p and ¢ is defined as

FC(p,q) = (B(p.q))*. (3.2)

The Bhattacharyya coefficient is the classical counterpart of square-root fidelity [36]. It
is a number between 0 and 1, equal to 1 iff p = ¢, and equal to 0 iff p and ¢ have disjoint
support. Furthermore, it is a jointly concave function of its arguments [106, Cor. 3.26]. While the
Bhattacharyya coefficient itself is not a metric, one can define different metrics using it. In our

study, the closely related notion of Bhattacharyya distance [12, 63] is important.
Definition 3.2 (Bhattacharyya distance). The Bhattacharyya distance between two proba-

bility distributions p and ¢ is defined as

BD(p,q) = —log(BC(p, q))- (3.3)

O]

Note that the Bhattacharyya distance is not a metric. However, it has some useful properties,

which we list below.
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Proposition 3.3 (Properties of Bhattacharyya distance). 1. For any distributions p, q, we
have 0 < BD(p, q) < oo, with BD(p,q) =0 iff p = q and BD(p,q) = oo iff p and q have disjoint

support.
2. BD is a proper jointly convex function.

3. BD is additive for product distributions. That is, given p,q € Ay and p', ¢ € Ay, we have

BD(p®p',q®q') =BD(p,q) + BD(q,q).

Proof. 1. Follows from the definition of BD and properties of BC.
2. Since BC is concave, and hence log-concave, BD is convex. It is proper because BD > (
and BD(p,p) = 0 for any distribution p.

3. Observe that

BC(p@p,q®q) =Y vpigi Y \/Pid; =BC(p,q)BC(,q). (3.4)
i i

The additivity of BD follows by taking negative logarithm on both sides of the above equation. [

Since independent random variables give rise to product distributions on the large (product)
space over which all the random variables are defined, the Bhattacharyya distance gives us additivity
for distributions obtained from independent measurements. The Bhattacharyya coefficient, on the
other hand, is multiplicative. This motivates us the define the following classical distance measures

between two quantum states determined by a measurement protocol.

Definition 3.4 (Average Bhattacharyya distance). Given a measurement protocol 9 =
{(E(i),Ni)}iL:l, the average Bhattacharyya distance between two quantum states p and o

determined by 9 is defined as

“BD(p", p{"), (3.5)

==

L
BD(p,0) =
=1
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where pg) is the probability for the ith POVM with respect to the state p given by Born’s rule, and

N = Zz‘L:1 N; is the total number of samples.
Similarly, we define the geometric-average Bhattacharyya coefficient between p and o

determined by N as
L

BCam(p. ) = [T (BCwL, pi)

=1

)N”N. (3.6)

O

We define the geometric-average classical fidelity determined by 9t as the square of
the geometric-average Bhattacharyya coefficient, i.e., FCo(p, o) = BCay(p, o) for p,o € L. Thus,
the statements concerning the Bhattacharyya coefficient can be translated to classical fidelity and
vice-versa. As for the case with classical probability distributions, the average Bhattacharyya
distance and geometric-average Bhattacharyya coefficient do not define a metric on the set of
quantum states. Nevertheless, they are closely related to distance measures on quantum states
that are pseudometrics. Thm. 7.13 shows that the average Bhattacharyya distance determines the
optimal performance one can get for estimating expectation values of observables using outcomes
of the measurement protocol 91, which underlines the importance of this distance measure. This
motivates us to study its properties and its relation to other distance measures commonly used in
the quantum information literature.

We begin by studying the quantum counterparts of BCgy and BDgy. To that end, we recall

the definition of fidelity between two quantum states.

Definition 3.5 (Fidelity). The fidelity between the quantum states p and o is defined as

F(p,0) = (Tr(W))Q. (3.7)

O]

We denote the square-root fidelity as v/F and log fidelity as log F. We review some basic

properties of fidelity that are well-known in the literature. See [68, 106, 107] for other properties.
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Proposition 3.6 (Properties of fidelity). Let p,o be two quantum states. The following

statements hold.

1. F(p.0) = |lypval;.

2. F(p,o) lies between 0 and 1. It is equal to 1 iff p = o and equal to 0 iff Tr(po) = 0.
3. F(p,0) = F(o,p).

4. VF is jointly concave, while F is jointly log-concave.

5. If p or o is pure, then F(p,o) = Tr(po).

6. If p and o commute, then F(p,0) = FC(A(p), (o)), where X(p), A(c) denote the vector of

etgenvalues of p, o respectively.

Proof. 1. Follows from definitions.

2. By the Fuchs-van de Graaf inequality [36] (see Eq. (3.35)), we have F(p,0) = 1 iff
lp—oll, = 0iff p= 0. On the other hand, F(p,0) = 0 iff \/py/o = 0 iff po = 0 iff Tr(po) = 0.

3. This follows from Uhlmann’s theorem [102], [77, Thm. 9.4].

4. [106, Cor. 3.26] shows that \/F is concave, from which it follows that log F' is concave.

5. If p = [¢) (¥|, then \/po\/p = (|o|v) [¢) (| = Tr(po)p. It follows that F'(p, o) = Tr(po).

6. If p and o commute, then \/po\/p = po and /pc = |/py/o. The latter claim can be verified
by squaring both sides and using uniqueness of matrix square-root. Then, F(p,0) = (Tr(y/py/7))>.
Since p and o commute, they can be diagonalized in a common orthonormal basis. Evaluating the

trace in this basis gives the desired result. O

We saw in Prop. 3.6 that when p and o commute, the fidelity between p and o coincides
with the classical fidelity between the spectrums of p and o. When p and o commute, they can
be simultaneously diagonalized, and therefore, A(p) and A(o) are just the probabilities observed
upon measuring p and ¢ in their common eigenbasis. Thus, we have shown that when p and o

commute, the fidelity between them can be realized as the classical fidelity between the outcome
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probabilities for a particular measurement. Now, the question arises whether this observation can be
generalized to the case when p and o don’t commute. This question was answered in the affirmative
by [35, 34], who showed that the fidelity is the minimum of the classical fidelity between the outcome
probabilities over all measurements, and that there is some POVM that achieves this minimum. We
can use this observation to give the quantum counterparts of average Bhattacharyya distance and

geometric-average Bhattacharyya coefficient.

Proposition 3.7. If p and o are two quantum states, then the following hold.

1.
VF(p,0) = mmitn BCo(p,0). (3.8)

2.
F(p,0) = min FCox(p, o). (3.9)

3.
—% log F(p,0) = ma%xBng(p, o). (3.10)

There is a measurement protocol that achieves the minimum in all the above equations.

Proof. 1. From [35, 34], we know that v'F(p, ) = ming BC(pg ,, PE,), where the minimization is
over all POVMs. In particular, BC(pg,p, PE,0) > VF(p, o) for every POVM E. It then follows from
the definition of BCgy that BCop(p, o) > VF(p, o) for any measurement protocol. Since there is a
POVM E, such that VF(p,0) = BC(pE. p, PE. ) [34], the measurement protocol 9, = {(E.,, 1)}
achieves the minimum in Eq. (3.8).

2. Since FCyy is the square of BCoy and BCgy is non-negative, the result follows by squaring
both sides of Eq. (3.8).

3. Since BDyy is the negative logarithm of BCgy, and — log(xz) is a strictly decreasing function,

we obtain Eq. (3.10) from Eq. (3.8). Note that both sides of Eq. (3.10) can be infinity. O
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Next, we list some basic properties of average Bhattacharyya distance and geometric-average

Bhattacharyya coefficient following Prop. 3.6.

Proposition 3.8 (Properties of average Bhattacharyya distance). Let p, o be quantum states,

and let M be a measurement protocol. Then, the following statements hold.

1. BCor(p, o) is bounded between 0 and 1. p = o implies BCop(p,0) = 1, while BCon(p,0) = 0

implies Tr(po) = 0.

2. BDon(p, o) is bounded between 0 and co. p = o implies BCop(p, o) = 0, while BDgy(p, o) = o0

implies Tr(po) = 0.
3. BDgp(p,0) = BDgn(o, p) and BCon(p, o) = BCop(a, p).
4. BDgy is a proper convex function, while BCoy is a log-concave function.

Proof. 1. BCyy is the geometric mean of numbers bounded between 0 and 1, and hence also bounded
between 0 and 1. Direct computation shows that p = o implies BCon(p, o). If BCon(p, o) = 0, then
by Prop. 3.7, we have F(p,o) = 0. By Prop. 3.6, this implies Tr(po) = 0.

2. Follows from (1).

3. Follows from the definitions.

4. Follows from the definitions and Prop. 3.3. O

The converse of Prop. 3.8.1 and Prop. 3.8.2 does not hold in general. It can be shown, however,
that if 9 is informationally complete, then BCyon(p,0) = 1 implies p = 0. On the other hand,
informational completeness is not sufficient to ensure the claim that Tr(po) =0 = BCyy(p,0) = 0.
To see this, take p = |0) (0] and o = |1) (1] for a 1-qubit system. If 9 corresponds to randomly
sampling from {X,Y, Z} and then measuring it, it can be checked that BCon(p, o) # 0, even though
I is informationally complete.

Before ending this section, we note down some properties of the convex conjugate of the

Bhattacharyya distance. We use the following notations. For any vector u € RM, we write
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Umax = Max; u; and Upyi, = min; u;. We denote argmaxu = {i € [M] | u; = Umax} and argminu =
{] € [M] | U; = umin}-

Proposition 3.9 (Convex conjugate of Bhattacharyya distance). The convex conjugate

BD*: RM x RM — R of Bhattacharyya distance satisfies the following properties.

1. Foruw € RM denoting T = tUmax — Umin, we have

/1+2T2—2\/1+4T2 4 %log (\/1+2%2—1) T >0

BD*(u, —u) = (3.11)
0 if Y =0.

Furthermore, BD*(u, —u) > 0 and BD*(u, —u) is a convex function of u € RM.
2. For all u,v € RM | we have BD*(u,v) = BD*(v, u).

3. For u,v € RM we have

1( max  (u4v);+  max (u+v)j>+BD*<(“;“),_(“_”)>

2 \icargmax(u—v) j€argmin(u—v) 2
< BD*(u,v)
< (4 )max + BD” <(U;U),—(U;U)>. (3.12)

4. For all p,q € Ay and all u,v € RM, we have BD(p, q) + BD*(u,v) > (u,p) + (v, q).

Proof. 1. Since BD is only defined on the set of probability distributions, the expression for BD*

according to Def. 2.6 becomes

BD*(u,—u) = sup ({(u,p) — (u,q) +log(BC(p,q)))

PgEA M
1
=5 sup (2{u,p) —2(u,q) +1og(FC(p,q))), (3.13)
PgEANM
where we used the fact that FC = BC? to obtain the second equality. Denote z—a = (z1—a, ...,z —

a) for a € R and 2 € RM. Then, for all distributions p, g, we have (u,p — q) = (4 — Umin, P — q).
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Now, denote ¥ = {i € [M] | (p; —q) > 0. Since 0 < wu; — upmin < T for all i, we have
(U — Umin,» —q) < Y e (Wi — umin)(Pi — @) < T ,cs(pi — @;). Since > ,(pi — ¢;) = 0 and
>icr i — @) = Xicpups i — @) = [lp— qlly, we have 3, ;(pi — @i) = [[p— qll; /2. Thus, we
obtain (v — Umin,p — ¢) < T ||p — ¢||; /2. Furthermore, by Fuchs-van de Graaf inequality [36], we

have ||p —ql|; /2 < /1 —FC(p, q). Thus, we obtain the inequality

1
BD*(u, —u) < 5 sup (27+/1—FC(p,q) +1og(FC(p,q)))
2 pqeAy (3.14)
< % sup (2TV1 — x + log(z)),

where the last inequality follows from the fact that FC(p, q) € [0, 1] for all p,q € Aps. If T =0, then
the maximum is achieved at £ = 1, and the maximum value is equal to 0. This can be achieved in
Eq. (3.13) by choosing p,q € Aps with p = ¢, and therefore, BD*(u, —u) = 0 in this case. Thus, we
assume that T > 0. The function f(z) = 2Tv/1 — x + log(z) takes the value —oo at x = 0 and the
value 0 at = 1. The derivative of f is given by f'(z) = =Y /v/1 —z + 1/, so that f'(1) = —oo0.
Thus, the maximum cannot occur at either x = 0 or x = 1. Since f is a strictly concave function, it
has a unique maximum in (0, 1), which can be obtained by setting its derivative to 0. Rearranging
f(x) = 0, we obtain

Y22+ —1=0. (3.15)
After discarding the negative solution, we obtain

. 14+ VI+4T?
r = 2T2 .

(3.16)

It can be verified that z* € (0,1). Now, choose p*,¢* € Ay as follows. Fix i € argmax(u) and
j € argmin(u), and take pf = (1 + /1 —12%)/2, p; = (1—+1—2%)/2, p; =0 for k # i,j, and
¢ =0-v1-2%)/2, g = (1+ V1—12%)/2, q; = 0 for k # i,j. For this choice of p*,¢*, we
have (u,p* — ¢*) = T+/1 — x* and FC(p*,¢*) = z*. Thus, substituting p*, ¢* in the objective of

Eq. (3.13) gives (2Yv/1 — x* + log(2*))/2, ensuring that p*, ¢* attains the maximum in Eq. (3.13).
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It also follows that BD*(u, —u) > 0. Since BD*(u,v) is a convex function of (u,v) and u +— (u, —u)
is a linear function of u, BD*(u, —u) is a convex function of w.
2. Follows from the fact that BD(p, q) = BD(q,p) for all p,q € Ayy.

3. Observe that we can write

po o) = sup (5D pa)+ (U g) +hogBOGa)). 1)

P,gEA N

Since sup(f+g) < sup f+sup g for any real-valued functions f and g, and sup,, ,ea,, ((u +v), (p +q)/2) =

(U + V)max, We obtain

BD*(u,v) < ( + )max + BD* ((“;”),—(“ 3 “)>. (3.18)

On the other hand, when Y = ((¢ — ¥)max — (4 — ¥)min)/2 > 0, the choice of p*, ¢* in the proof of

Prop. 3.9.1 corresponding to the input ((u —v)/2, —(u — v)/2) gives the lower bound

(u+v)7;—12-(u+v)j 1 BD* <(U;U)7_(U;U)> < BD*(u, v) (3.19)

for all ¢ € argmax(u — v) and j € argmin(u — v). When T = 0, we can take p} = p; = 1/2 and
q; = ¢; = 1/2 for any i € argmax(u — v) and j € argmin(u — v).

4. This follows from the definition of convex conjugate. It is called the Fenchel-Young

inequality [8, Prop. 13.15] in the general scenario. O

The convex conjugate of Bhattacharyya distance will be used later in our study. We note
that the above results can be generalized to obtain the convex conjugate of —(1/2)log F(p, o).
Here, the vectors u,v are replaced by observables 01, 0>, and for an observable O, we define
T = Amax(0) — Amin(0O) to be the difference between its maximum and minimum eigenvalues. This
can be shown by following the proof above, and using ideas from the proof of Lem. 7.14 to replace

the l1-norm with the Schatten-1 norm and classical fidelity with quantum fidelity. We leave the
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details as an exercise to the interested reader. We move on to studying other distance measures and

their relation to the average Bhattacharyya distance.

3.2 Other distance measures
We study a few classical distance measures on states that are used in quantum information.
We start be reviewing some definitions from classical statistics.

Definition 3.10 (Metrics on probability distributions). Let p and ¢ be two probability

distributions over M symbols.
(1) The total variation distance (TVD) between p and ¢ is defined as

Zpi - ZQi

1
= 2 lp =l (320)
€A 1€A

lp = dllpy = sup
AC[M]
(2) The Hellinger distance between p and ¢ is defined as
1
HD(p,q) = v/1=BC(p,q) = NG VP =Vl - (3.21)

(3) The classical sine distance between p and ¢ is defined as

SDC(p,q) = /1 —FC(p,q). (3.22)

O]

All the above distance measures are metrics on the set of probability distributions on a fixed
number of symbols. [39] proved that the sine distance, defined in Eq. (3.31), is a metric on quantum
states. That the classical sine distance is a metric on probability distributions follows from this
result.

Motivated by the discussion in the previous section, we define these distance measures on

quantum states, as determined by a measurement protocol. Unlike the previous section, where
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we only studied the average Bhattacharyya distance, we will look at both average and worst-case

distance measures in this section.

Definition 3.11. Let p and ¢ be two quantum states and let 9t = {(E®), N;)} £ | be a measurement

protocol with total number of samples N = Zle N;.

(1) The average total variation distance between p and o determined by 9 is defined as

L

o= lonas = 3= 7 [ =587 (3.23)
while the maximum total variation distance is defined as
0=l e = 102 prf’ =8| . (3.24)
(2) The average Hellinger distance between p and o determied by 91 is defined as
HDy g () Z NeJ1-BeEd o), (3.25)
i=1
while the maximum Hellinger distance is defined as
HDgy max (p, p) = max \/1 — BC(py, ), (3.26)

1€[L]

(3) The average classical sine distance between p and o determined by 9 is defined as

SDC s, 0 Z N1 - Feel) o), (3.27)

while the maximum classical sine distance is defined as

SDCEIYZ,maX(p7 ) max \/1 —FC pg))vpf(f))' (328)
i€[L]
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O

The average and maximum total variation distance between quantum states has been studied
in the quantum information literature (see, for example, [70, 71]). While the distance measures
defined above are not metrics on the set of quantum states in general, they are pseudometrics. A
pseudometric on Z is a function «: X x £ — R that is non-negative, satisfies ¢ (z,z) = 0 for
all x € &', is symmetric, and satisfies the triangle inequality. Observe that « is a metric if for all

z,y €L, (x,y) =0 implies x = y.

Proposition 3.12. The functions @1(p,0) = |p = 0llonave: @2(p:0) = [lp = 0llog max: @3 =
HDm,avg(pa U); d4(P7 U) - HDf)ﬁ,maX(p7U)7 d5 == SDCE))T,avg(P7 U); and dG(P: U) == SDCS)T,max(p7U)
are pseudometrics on the set of quantum states. Furthermore, if M is informationally complete,

then <1, ..., dg are metrics.

Proof. It can be directly verified from respective definitions that «/1,..., g are non-negative,
symmetric, and vanish when both input arguments are equal. It remains to prove the triangle
inequality.

Since TVD, Hellinger distance and the classical sine distance are metrics on the set of
probability distributions, they satisfy the triangle inequality. It immediately follows that the average
distance measures 1, ¢3, 5 satisfy the triangle inequality. To see that the maximum distance
measures o, 4, dg also satisfy the triangle inequality, we use the fact that max;(u; + v;) <
max; u; + max; v; for any real vectors u,v. Therefore, 1, ..., s are pseudometrics.

If 9 is informationally complete, then for any p # o, there is some i € [L] and k € [M;] such

that p (k) # p5 (k). Thus, Hpﬁ) —

>0 HD (P, p) > 0, and SDC(p”, pi) > 0, since
TVD, Hellinger distance, and the sine distance are metrics on the set of probability distributions on

[M;]. Tt follows that 1, ..., @s > 0, showing that they are metrics on 2. O
Finally, we define the quantum counterparts of these distance measures.

Definition 3.13. Let p and o be two d-dimensional quantum states.
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(1) The trace distance between p and o is defined as
1
lp =0l =5 llp=al;- (3.29)

(2) The Bures distance between p and o is defined as

Dpu(p, o) = /2 = 2VF(p, 0). (3.30)

(3) The sine distance between p and o is defined as
SD(p,0) =+/1— F(p,0). (3.31)

O]

These quantum distance measures are metrics on the set of quantum states [68]. We show
that these quantum distance measures can be obtained by optimizing the corresponding classical

distance measures over all measurement protocols.

Proposition 3.14. For any two states p,oc € L, we have

o= 0l = max 10— o = 810~ 0l (3.52)
Dpuc(p,0) = ﬂmmz%x HDop ave(p, 0) = ﬂmmz%x HDoy max (0, 0), (3.33)

and
SD(p,0) = max SDCop ave(p, 0) = max SDCop max(p; 7). (3.34)

Proof. From [107, Lem. 9.1.1], [50, 36], we know that ||p — ||, = maxg ||pE,, — PE,o|/1y, Where the
maximization is over all POVMs. In particular, ||pg,, — pEo|y < |lp — o, for every POVM E.

Then, from the definition of average and maximum TVD, we have that [[p — ooy ove < [l0 — ||y,



Docusign Envelope ID: 3AE25DC6-0FF1-4FFD-BDBE-A4F50E 159038

93

and [|p — olgp max < [lp — oll,- Since there is a two-outcome POVM E, such that [|p —ol|;, =
IPE,.p — PE. ollpy [107, Lem. 9.1.1], [50], the measurement protocol M, = {(Ex, 1)} achieves the
maximum in Eq. (3.32).

From Eq. (3.8), we know that for all i € [L], BC(pE,i),p((,i)) > /F(p,0). Therefore, HDoy avg(p, o) <
HDgt max(p, @) < /1 — VF(p,0) = Dpur(p,7)/v/2. Since there is a measurement protocol M, for
which BCop, (p,0) = VF(p,0) (Prop. 3.7), Eq. (3.33) holds. The same arguments show that

Eq. (3.34) also holds. O

3.3 Relation of Bhattacharyya distance with other distance measures

In this section, we derive some inequalities between the geometric-average Bhattacharyya
coefficient and the other classical distance measures introduced in the previous section. Most of
these inequalities are straightforward generalizations of well-known inequalities in the literature.

We first note down the well-known Fuchs-van de Graaf inequality.

Proposition 3.15 (Fuchs-van de Graaf inequality [36]). For all quantum states p,o, we have
1= VF(p,0) <|lp—olly, < V1-F(p,0). (3.35)
Specializing to classical distributions, for all p,q € Ay, we have

1 —-BC(p,q) < llp —qllrv < V1 —-FC(p,q). (3.36)

Now, we generalize the Fuchs-van de Graaf inequality to the classical distance measures
defined in the previous sections. Since these classical distance measures are just distance measures
on the probability distributions associated with a measurement protocol, we only need the classical

version of Fuchs-van de Graaf inequality noted in Eq. (3.36) for proving the proposition below.

Proposition 3.16. Let p and o be any quantum states, and let M be any measurement protocol.
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Then, we have
(HDotavg(p; ) < 1 = BCoi(p, 0) < (HDat mmax (p, )
(3.37)
< HP - UHW,max < SDCE)JZ,max(py 0') < \/5 HDSDT,maX(pv U)
and
(HDfm,an(pa U))2 <llp- U||Dﬁ,avg < SDCDﬁ,avg(pa o)
(3.38)
< /1 —=FCo(p,0) < V2y/1 —BC(p,0)
Proof. Let 9 = {(E®W, N;)}£ | be the given measurement protocol. For i € [L], denote A; = N;/N,

where N = 25:1 N; the total number of samples. We have A1,...,Ar > 0 and ZZ-LZI Ai = 1. Define
x; = FC(pSJ),pg)) and y; = ||pg) - Pz(ri)”Tv for ¢ € [L]. Then, by Fuchs-van de Graaf inequality

(Eq. (3.36)), 1 — /z; <y; <+/1—x; for all i € [L]. Observe that

L
BCm(p, 0 H N FOm(p, o) = [] =
=1
||p70-||mvan - Z)\lyl ”pio-HDﬁ,max m?f](yl
(3.39)
HDgp avg (0, i ;. HDop max (P, ;
mavg(Ps 0 Z — V@i HDapmax(p, 0 = max /1 — Vi
L
SDCon avg (0, & Z/\,m SDCon max(p, 7) = m&xm
1€

We first prove each inequality in the chain of inequalities of Eq. (3.37). The proofs are in the

following list, where each item is titled by the inequality to be proven.

(1) (HDm,avg(p70))2 <1l- ch(pvg):

ZAMM—\/ES\/ZAZ-Q—\/@: 1—2&-\/:?,-3 1—]‘1@*%‘, (3.40)

where we obtained the first inequality by concavity of the square-root function, and used

the AM-GM inequality [T, /Z:" < 2%, Ai/@; for the last inequality.

(2) 1 —BCam(p,0) < (HDat max(p,))* Note that [], x;\L > min; ;. Then, since x; > 0 for all
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i, we have
llfH\/xT-)‘i <, /1-— \/mjnxi = \/lfm.in\/xj: \/max(lf\/xj-) =max /1 —/z;.
(3.41)

(3) (HDonmax(p: 0))* < [P = ollon max’

2

2
(max 1-— \/557> = max ( 1-— \/E> < max y;, (3.42)
7 (2 2

where the last inequality follows from Fuchs-van de Graaf inequality.

(4) ||p - U||9ﬁ7max § SDCEIR,maX(p> G):
maxy; < maxy/1 —x; (3.43)
(2 (2

by Fuchs-van de Graaf inequality.

(5) SDCDﬁ,max(pa U) < \/§ HDm,maX(pa O') (as well as SDCfm,avg(pv U) < \/§ HDE)JT,avg(pv O-)): For

all i € [L], we have

\/1—:Ui:\/1+\/557\/1—\/:7¢§\/§\/1—\/57i, (3.44)
where we used the fact that x; € [0, 1]. Taking the maximum (or average) gives the desired
inequality.

We first prove each inequality in the chain of inequalities of Eq. (3.38). As before, the proofs

are in the following list, where each item is titled by the inequality to be proven.

(1) (HDonavg(p,))? < [|p = 0 llgn et By convexity of the square function a + a* and Fuchs-van
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de Graaf inequality, we have

2 2
(Z Am) <D\ <W> < (3.45)

(2) [lp = ollon.avg < SDConavg(p; 0): By Fuchs-van de Graaf inequality, we have

S i <> AVI—a. (3.46)

(3) SDConavg(p;0) < y/1 —FCon(p,0):

S A —w < \/Z (1 ) = \/1 Y hm< 1[N, @47
where we used AM-GM inequality to obtain the last inequality.

(4) /1 —FCm(p,0) < V24/1 —BCa(p,o): Writing 2 = FCyp(p, o) and noting that = € [0, 1],
we have 1 —z = /1 + /1 — /x <V2/1 - /. O

We can use the definition BDgy(p, o) = —log BCon(p, o) to derive inequalities for the average
Bhattacharyya distance from the above relations.

We end this chapter by giving a continuity bound for quantum fidelity. It is known that the
fidelity is a continuous function. A continuity bound quantifies how close the fidelity between two

pairs of states (p,o) and (p/,0’) must be in terms of a distance between these states.

Proposition 3.17 (Continuity bound for fidelity). For all quantum states p, o, p’,c’, we have

|F(p, o) — F(p/val)‘ <2 (SD(p, p') +SD(o, J,))

< 2 (DBur(p7 P/) + DBUT(U’ U/))

<4 /1p =l + o = 0l (3.48)

Proof. To obtain Eq. (3.48), we prove the following chain of inequalities.
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(1) [F(p,0) = F(p',0")| < 2(SD(p,p') + SD(0,0")): Note that [F(p,0) — F(p',0")] = |(1 -

F(p,0))— (1 —F(p',0"))|. Also note that for all 0 < x,y < 1, we have

2 =yl < Vo = VyllVe + vyl < 21Ve - vyl (3.49)

Then, taking x =1 — F(p,0) and y = 1 — F(p/, 0’) in this equation, we obtain

|F(p7 U) - F(pl7ol)| < 2’SD<p70) - SD(pIJUI)" (350)

Since the sine distance is a metric, we can use the triangle inequality and the reverse triangle
inequality to obtain

ISD(p, ) — SD(p',0")| < [SD(p,0) — SD(p’,0)| + |SD(p’,0) — SD(p', 0")|
(3.51)

< SD(p, p') + SD(o, o).

(2) SD(p,p’) < Dpuc(p,p’) for all states p,p’: Writing x = F(p,p’), we have SD(p,p’) =

VI—z = 1+z/1—-Vr < V21— = Dgpu(p, p’), where we used the fact that
€ [0,1]. We similarly obtain SD(c,¢’) < Dpy (0, 0’), from which SD(p, p’) + SD(o,0’) <

Dur(p, ') + Dpur(c, o’) follows.

(3) Deuw(p, ') + Dpuw(o,0’) <2(\/lp— ¢l + llo — o'||,,): First, we obtain

DBur(p7 pl) + DBur<07 UI) < \/5 <\/Hp - letr + \/”U - OJHtr) (352)

using Fuchs-van de Graaf inequality (Eq. (3.35)). Then, the desired inequality follows from

concavity of the square-root. O

Note that similar ideas can also be used to give continuity bounds for square-root fidelity.
These bounds can also be specialized to classical probability distributions to get continuity bounds

for the Bhattacharyya coefficient. Note, however, that the Bhattacharyya distance is not continuous
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on the set of classical probability distributions on a fixed alphabet.

o8
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Chapter 4

Statistical problem

We begin by describing the mathematical problem studied by Juditsky & Nemirovski [62] in
Sec. 4.1. We then discuss the results of [62], including their estimation procedure and theoretical
guarantees in Sec. 4.2. In Sec. 4.3, we discuss some drawbacks with the estimation procedure
of [62], and subsequently, propose a simplified estimation procedure. We show that our estimation

procedure satisfies all the theoretical guarantees of [62], and derive some additional results.

4.1 Mathematical formulation

Suppose that we have a set of “states” & C RP, which is assumed to be a compact and
convex set. We imagine that there is some state xtqe € 2 that is the “true state” of the system,
but is unknown to us. We are given some vector g € RP, and our goal is to estimate the linear form
(g, Tirue) = ngtrue. For intuition, one imagine the state ;4o to be the quantum state p and the
vector g to be the observable O.

Now, the question arises as to what data we have available for estimating this linear form. We
suppose that we have access to a single outcome of a random variable determined by t;ye, chosen
from a family of random variables described below. This random variable can be defined a over a
joint space that contains all the data from the experiment, and therefore, a single random variable
is sufficient to develop the general theory. The details of how data from many random variables can
be incorporated into a single random variable is discussed at the end of this section.

Consider a family of random variables Z,,, parameterized by p € # for some subset /4 C RM,
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Each Z,, take values in a Polish space (£, B(12)), equipped with a o-finite measure 72 that is not
identically zero. Z, is assumed to have the probability density p, with respect to the reference
measure 7z. Mathematically, p, is a non-negative, %(2)-measurable function satisfying fQ pudm =1,

so that

Pu(B) = /B pudm (4.1)

for B € 9B(§1) defines a probability distribution on (£2, %(€2)). [62] call the mapping D (u) = py,
from parameter pu € . to the density function p,, a parametric density family. The state
Ttrue € 4 determines the random variable Zy (4,,,.) through an affine function A R4 — RM satisfying
A(X) C M, and we are given one outcome of this random variable for the purpose of estimation.
We will denote the affine map as A: & — M to avoid writing /() C M repeatedly. The reason
we use A(Zyye) instead of zye as the parameter is to model situations where we don’t have or
need the full knowledge of x¢ye. For example, if we want to estimate the expectation value of an
observable, it suffices to perform measurements that are informative enough to learn the observable
but not perform full quantum tomography.

Our goal is to construct an estimator that uses an outcome of Z A(ztrue) 1O estimate (g, Ttrye)-
We define an estimator to be any real-valued Borel measurable function on (£2,%(2)). In practice,
working with arbitrary measurable functions is challenging, from a theoretical as well as compu-
tational point of view. For this reason, [62] restrict their attention choosing an estimator from a
set F that satisfies two properties: (1) it is a finite-dimensional vector space of Borel measurable
functions on (€2, B(2)), and (2) it contains all the constant functions. Any estimator from the set
F is called an affine estimator. We note at this point that the functions in &% need not be affine
functions, as {2 might not even have a linear structure. Nevertheless, this terminology is motivated
by the later observation that for many problems of interest, the estimators in & turn out to be
affine functions. In fact, we will see in the quantum case (Sec. 5.3.2), where € generally does not
have a linear structure, that it is still possible to express our estimator as an affine function.

To be able to choose an appropriate estimator in & given outcomes from py , we need to

xtrue)
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make sure that the set of affine estimators & “interacts well” with the parametric density family 9.

[62] formalize this idea by defining a good pair of parametric density family and affine estimators.

Definition 4.1 (Good pair). We call a pair (2, %) of parametric density family & and finite-

dimensional space & of Borel functions on €2 a good pair if the following conditions hold.
(1) A is a relatively open convex set in R™.
(2) Whenever p € M, we have p,(w) > 0 for all w € Q.
(3) Whenever u,v € M, g(w) = log(pu(w)/pu(w)) € F.

(4) Whenever g € &, the function

Fy(p) = log ( /Q exp (g(w)) pu(w)dm) (4.2)

is well-defined and concave in u € /. O

Note that the second condition that p, > 0 is essential, for otherwise log(p,) is ill-defined.
We will discuss the implications of this assumption later, and also show that it does not restrict the
power of our results in the quantum case.

We are now in a position to introduce the main objective of this section, which is to find an
estimator that minimizes the estimation error. For this purpose, we need to formalize what we
mean by estimation error of an estimator, since the error generally depends on the method used
in the statistical analysis (for example, a specific concentration inequality). To circumvent such
ambiguities, we focus on the smallest possible error of the estimator that one can achieve using any

statistical method.

Definition 4.2 (J-risk of an estimator). Given a confidence level 1 —§ € (0,1), the J-risk of an

estimator g is defined as

2(3.0) = int {< | inf Pagy (7 (90) | <) > 10 (43)
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We refer to the d-risk as risk when the confidence level is clear from context. O

Since the error %(g, ) does not depend on the state or the data, it is minimax in the sense
we defined in the preliminaries. Since we want the smallest possible error that any estimator can

achieve, we can minimize the d-risk over all estimators, which leads us to the following definition.

Definition 4.3 (Minimax optimal risk). Given a confidence level 1 — ¢ € (0,1), the minimax
optimal risk is defined as

%.(6) = inf &(5,0), (4.4)

where the infimum is over all measurable functions g on (Q, B(Q)). O

)

The term “minimax” alludes to the fact that we are looking for the best performance

(“minimum over all estimators”) in the worst case scenario (“no matter the state x”).

Now, we study the situation where we estimate (g, Ztrye) using the outcomes of L independent

random variables Z(l) Z(L)

AD (o) 7 LAD) () As before, we suppose that for ¢ € [L], we have a

Polish space (%), B(Q")), equipped with a o-finite measure 72(%). For each i € [L], we also have
a set of parameters (), and we have a family of random variables {Z;(L? | i € MW} that takes

values in Q). The random variable ZE}; has probability density pf}? with respect to the reference

measure 72, We call the mapping 2 (i) = pfi.) as the ith parametric density family. For each
i € [L], we are given affine mappings AW & — @ that map the state Zirue to the corresponding

parameter in (@),

We suppose that we get one outcome each from the random variables ZS()l) (Teewe)? " Ef()L) (Terne)
for estimation. We need an estimator to process the outcome of the random variable 7 . For

AD (zrue)
this purpose, we suppose that we have a set of estimators % (), which is a finite-dimensional linear
vector space of measurable functions on (Q(%), %(Q(?))) that contains constant functions. As before,
any function in ) is called an affine estimator, and we use it to process the outcome obtained
from ZX%i)(fEtrue). For this to work well, we assume that (2, () is a good pair (see Def. 4.1).

At this point, we have L good pairs of parametric density families and set of affine estimators.

For the theory developed for a single random variable to hold for many random variables, we need a
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way to combine these L good pairs into one “large” good pair. This would enable us, in particular,
to combine the L affine estimators into a single affine estimator for (g, Zrue). [62] show how such a

construction can be done, which leads us to our next definition.

Definition 4.4 (Direct product of good pairs). Considering the following quantities for ¢ € [L].
Let (), ¥®) be a Polish space endowed with a Borel o-finite measure 7). Let @) (y;) = pffi) be
the parametric density family for p; € #®. Let @ be a finite-dimensional linear space of Borel
functions on Q) containing constants, such that the pair (Q(i), F (i)) is good. Then, the direct

product of these good pairs, (2, %) = ®f:1(9(i), F @), is defined as follows.

(1) The large space is the Cartesian product Q2 = QW x...xQ@) | endowed with the product Borel

o-algebra B(Q) = BOW)®- - @ B(QWP)) and the product measure 7z = 721 x - - - x 72(F).

(2) The set of parameters is M = MDY x --- x M), and the associated parametric density

family is D(u) = p, = HiL:1 pﬁ? for p = (p1,...,pL) € M.

(3) The linear space & comprises of all functions g defined as g(wy,ws,...,wr) = 25:1 7D (wy),

where g € F@ and w; € QW for i € [L]. O

In the above definition, we used the fact that the Borel o-algebra on §2 is the product of Borel

o-algebras on Q@) since each Q) is a Polish space [64, Lem. 1.2]. The first and the second conditions

) (L)
(1>(Itrue), T ZA(i)(-rtrue)

affine mapping A: & — A to be the direct sum A = EBiLZIA(i) of A, ... AL The third condition

are chosen so that the random variables ZS are independent. We choose the
is chosen such that the pair (2, %) satisfies the conditions of Def. 4.1, and is therefore itself a
good pair. Thus, we have a good pair (2, %), and consequently, the theory developed for a single
random variable also applies to this case. For this reason, we will focus on explaining constructing
estimation procedures for the case of a single random variable.

Before we present the estimation procedure of [62], we present a general definition of the
Bhattacharyya coefficient. The Bhattacharyya coefficient will be particularly important in the

estimation procedure we develop in Sec. 4.3.
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Definition 4.5 (Bhattacharyya coefficient). Given probability densities p,,p, with respect to
the reference measure 7z on (2, %(12)), the Bhattacharyya coefficient between the probability

distributions P, and P, is defined as

BC(u, v) :/Q\/Mdm. (4.5)

The Bhattacharyya distance between P, and P, is defined as

BD(p,v) = —log(BC(pu, v)). (4.6)

Since the Bhattacharyya coefficient and the Bhattacharyya distance are defined between
probability distributions, we should technically write BC(P,,P,) and BD(P,,P,). We shorten this
to BC(u,v) and BD(u,v) in Eq. (4.5) and Eq. (4.6) to avoid cumbersome notation in Sec. 4.3.

Observe that if ) is a finite set with discrete o-algebra, 7z is the counting measure, and ./ is
the standard simplex, then p, = p is a discrete probability distribution for u € ., and we have
BC(u,v) = >, \/iiv;. This coincides with the definition for Bhattacharyya coefficient for discrete
distributions that we saw in Def. 3.1. Moreover, we have the multiplicative (additive) property for

Bhattacharyya coefficient (distance) for product distributions, as in the discrete case.

Lemma 4.6. Suppose that fori € [L], we have N; independent copies of a random variable Z,,; taking
(4)

values in a Polish space (Q( i) 93(9( )) having density p,; with respect to a o-finite reference measure
m @, and p; € MDD . Then, for Q = HZ QNN 5 = H C D and pv € M = H,L NO/AAN
the Bhattacharyya coefficient between the distributions P, and P, on (Q,%B(Q2)) with densities

Py = HiL:1 Pu; and p, = H,L-Lzl Dy; with respect to 772 satisfies

L
= [[ BC(ui,vi))™ (4.7)
=1
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and the Bhattacharyya distance satisfies

L

BD (1, v) = Y NiBD(pus, v4). (4.8)
i=1

Proof. Since (), B(Q®)) is a Polish space for each i € [L], B(Q) = L (B(OQW))2N: [64,

Lem. 1.2]. Then, by Fubini-Tonelli’s theorem [64, Thm. 1.27], we have
N, L
BC / dm = </ ”dm()) =TT BC(u, vV . 4.9
(1, v) = | pp H Qi M E( (pi5vi)) (4.9)

Eq. (4.8) follows from the definition of Bhattacharyya distance and Eq. (4.7). O

4.2 Juditsky and Nemirovski’s estimation procedure

The main result of Juditsky & Nemirovski [62] is a procedure to construct an affine estimator
whose error is within a small factor of the minimax optimal risk. As a result, their estimation
procedure cannot be improved upon by any method by more than a small constant factor under the
mathematical setting described in Sec. 4.1.

[62] propose the following procedure to construct an estimator for (g, x;ye) using an outcome
of a single random variable.

Box 1: Juditsky & Nemirovski’s estimation procedure [62]

(1) For r > 0, define the function ®,: (¥ x ) x (F x (0,00)) — R as

log < / xp(—¢/ a)pA(x)dm>

(I)r(l“ay; ¢704):<9,$>—<g,y> + « Qe
+ log < /Q exp(¢/ a)pA(y)dm>

+2ar. (4.10)
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(2) Denote the saddle-point value of ®, by 2®,(r):

1
D, (r) =7 sup inf @.(z,y;¢,a)=

inf  max ®.(x,y; ¢, a). 4.11
;o X O (2.5 da)  (411)

1
2 peF,a>0 x,yed

(3) Given a confidence level 1 — ¢ € (0.75,1) and a positive number €,r > 0, find ¢, € F

and a, > 0 such that
max Pioq2/5) (T, Y5 P, ax) < 204 (log(2/6)) + €int. (4.12)

RTISA

This is achieved by minimizing the convex function
q)log(2/6) (¢7 Oé) = xrgfé)éﬂ q)log(2/5) (xa v; 9, a)' (413)
(4) The estimator g, € F is then defined as

where the constant c is obtained by solving the optimization problem

c= %rxng [(g, z) + o log (/Q exp (—¢*/a*)p.4(x)dm)]
1
— 5 max [— (9,y) + aslog </Q exp (sb*/a*)pA(y)dm)] : (4.15)

Given an observation w € Q of Z 4(4,,,.), the estimate for (g, Tirue) is given by gi(w) with an
additive error of ®,(log(2/0))+ 2€iy¢ for a confidence level of 1 —¢. The number €;,¢ > 0 is introduced
because there may not exist points a, > 0 and ¢, € F achieving the minimum in Eq. (4.11). Note
that computing the estimator g, requires one to perform optimization and can be computationally
costly. However, once the estimator has been computed, the estimates can be obtained using g,

efficiently, assuming that ¢,(w) is easy to compute for all w € Q.



Docusign Envelope ID: 3AE25DC6-0FF1-4FFD-BDBE-A4F50E 159038

67

[62] prove the following results concerning the estimation procedure in Box 1. For all the
results discussed below, we assume that the mathematical premise of Sec. 4.1 holds. In particular,

(D, ) is a good pair (Def. 4.1).

Proposition 4.7. 1. The function ®, defined in Eq. (1.10) is continuous and concave in (x,y) €

X x X, and continuous and convez in (¢, o) € F x (0,00).
2. ®, has a well-defined saddle-point value, 2®.(r), that satisfies . (r) > 0.

3. The estimator g, constructed in Eq. (4.14) satisfies

PA(@iue) (¢ = (95 Torne) | < Pu(l0g(2/0)) + 2€ing) > 1 -6 (4.16)

for all xirye € X and 1 — 6 € (0.75,1).

The main result of [62] is that the estimator g, is minimax optimal up to a small constant

factor in the sense noted below.

Theorem 4.8 (Lem. 3.2, [62]). For § € (0,0.25), the estimation error ®,(log(2/d)) satisfies

- 21log(2/9)

2. (108(2/9)) < {7/ 149)

R.(5), (4.17)

where R,(6) is the minimaz optimal risk defined in Eq. (4.4).

Thm. 4.8 guarantees that ®,(log(2/0)), which is the estimation error of g, is within a
multiplicative factor of 21og(2/d)/log(1/(49)) of the smallest possible error, given the mathematical

premise of Sec. 4.1. Finally, we note a useful expression for ®,(r) given by [62].

Proposition 4.9 (Prop. 3.1, [62]). The saddle-point value of the function ®, in Eq. (4.10) can

be expressed as

20,(r) = ﬁg@;ﬂm@ —{9,y) | BC(A(z),A(y)) > exp(—7)}. (4.18)
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Moreover, the Bhattacharyya coefficient BC(u,v) is a continuous and log-concave function of

(n,v) € M < M.

Since the Bhattacharyya coefficient is a log-concave function, the optimization defining ®, in
Eq. (4.18) is convex, as we can take logarithm on both sides of the constraint. In the next section,
we discuss some drawbacks of the estimation procedure given in Box 1, and subsequently, we propose

a different estimation procedure with the same guarantees as [62].

4.3 Simplified estimation procedure

In this section, we present a slightly modified version of the estimation procedure devel-
oped in [89], and prove that it satisfies the same guarantees as the estimation procedure of [62].
Subsequently, we present some new results concerning this estimation procedure.

We begin by presenting the motivation for developing a different estimation procedure instead

of using the procedure given in Box 1.

(1) The space of affine estimators & can be high-dimensional, especially when we have many
outcomes from different random variables. This can make the minimization

inf>0,¢cs Elog@/é)(d), a) in Box 1 costly to implement.

(2) When & is high-dimensional, the computation of the function
610g(2/5)(¢, a) = maxy yeg Pog(2/6)(T,y; ¢, ) can be costly, since for each ¢, o, one needs

to maximize ®jo5(9/5) (7, y; ¢, ) over X x X

(3) Since 610g(2/5)(¢>,a) = maxy yeg Prog(2/6)(T,y; ¢, ) is itself a maximum of the function
DPiog(2/5) (7, Y5 ¢, ), gradient based methods can be difficult to use for performing the
minimization mingso ez alog@/(;)(gb, a) over ¢ € F and a > 0, even when the function
Piog(2/5) (T, Y5 ¢, ) is smooth in ¢ and a. While subgradient methods can be used, they

typically a take longer time to converge than gradient based methods.

(4) The estimator constructed in Eq. (4.14) is hard to study analytically because it depends
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on ¢, which is defined implicitly through optimization, and the constant ¢ is computed by

solving a different optimization problem.

Our approach to constructing the estimation essentially amounts to solving the saddle point
problem in Eq. (4.11) by first minimizing over ¢ € %, then maximizing over z,y € &, and finally,
minimizing over o > 0. This is motivated by the observation that the minimization over ¢ can be
calculated analytically. Thus, we circumvent the optimization over ¢, which eliminates a costly part
of computation compared to the estimation procedure of [62]. Moreover, the estimator we construct
is more amenable to analytical treatment. We present our estimation procedure below, assuming
the premise of Sec. 4.1.

Box 2: Estimation procedure proposed in [89]

(1) For r > 0, define the function ®.: (2 x ) x Ry — R as

P (z,y; ) = 2ar + (g,z) — (g, y) + 2alog(BC(A(z), A(y))), (4.19)
and denote
/ o 1 . / .
(1) = 5 min max & (z,y; a). (4.20)

(2) Given a confidence level 1 — ¢ € (0, 1), find a,, > 0 attaining the minimum in

20 (log(2/4)) = min | 2alog(2/0) + max ({g,z) — {g,y) + 2 log(BC(A(x), AY)))) |

RIS
(4.21)

and find points z*,y* € Z that attain the maximum in

max, yeg ((9, ) — (g,y) + 2a: log(BC(A(x), A(y)))), so that

2(1); (log(2/5)) = (I)iog(Q/é) (JI*, y*; a*)' (422)
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(3) Define
Oy PA(z)
¢ = — log < ) . 4.23
2 PAw) 42
(4) The estimator g, is then obtained by setting
~ 1 * *

Observe that our algorithm does not require one to compute the minimum over ¢ € %, thus
reducing the computational cost compared to the procedure of [62]. Furthermore, the estimator given
in Eq. (4.24) is appealing from a theoretical standpoint because we have a closed-form expression
in terms of the saddle-points (z*,y*) and a*. The main difference between the procedure given in
Box 2 and the procedure given in [89] is that we allow « > 0 in Box 2, as opposed to a > 0 in [89)].

Since the estimation procedure in Box 2 is different from the estimation procedure of [62]
given in Box 1, we need to prove that the estimator constructed in Box 2 satisfies all the guarantees

of [62]. We begin by proving that ®’,(r) defined in Eq. (4.20) is equal to ®,(r) defined in Eq. (4.11).

Proposition 4.10. The following results hold for all r > 0.
1. log(BC(u,v)) is well-defined for all p,v € M. It is continuous and concave in (u,v) € M X M.

2. The function ®.(z,y; ) is continuous and concave in (x,y) € X for a fivzed o > 0, and is
continuous and convex in « > 0 for a fived (x,y) € L. The inner maximization over x,y € L in
Eq. (4.21) is a convex optimization problem for each o > 0, and the outer minimization over

a > 0 18 convex.

3. The optimization problem in Eq. (4.20) is the dual problem of the optimization problem in

Eq. (4.18) and strong duality holds, so that

O (r) = 0, (r). (4.25)
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Proof. 1. Since for all u,v € M, we have BC(u,v) = [, /PuPvdrn and py, p, > 0 on 2 by definition
of a good pair, we have BC(u, ) > 0. Consequently, log(BC(u,v)) is well-defined for all u,v € /.
The continuity and concavity of log(BC(u,v)) follows from Prop. 4.9.

2. The continuity and convexity properties of ®/ can be directly verified. The inner
maximization in Eq. (4.21) over (z,y) € & x & is convex for each o > 0 because the ob-
jective function (g,z) — (g,y) + 2alog(BC(A(z),A(y))) is concave in (z,y) and & is a convex
set. Since the maximum of a family of convex functions is convex [8, Prop. 8.16], 2alog(2/0) +
maxy yeq ((9,2) — (9,y) + 2alog(BC(A(x), A(y)))) is a convex function of a. It follows that the
outer minimization over > 0 in Eq. (4.21) is convex.

3. First, rewrite the maximization problem in Eq. (4.18) as

20.(r) = £g§{<g,x> —(9,u) | —2log(BC(A(x),A(y))) < 2r}. (4.26)

We add the factor of 2 to the constraint to ensure that the dual variable for this constraint coincides
with the variable a in Eq. (4.19). The Lagrangian of the concave maximization problem in Eq. (4.26)

is given by

Z(z,y;a) = (9,7) — (9,y) + 2a (log(BC(A(z), A(y))) +7) = (2, y; ), (4.27)

where z,y € & are the primal variables and o > 0 is the dual variable. Since & C RP is a non-empty
convex set, it has a non-empty relative interior [8, Fact. 6.14]. Taking any z € relint 2 and setting
y = x, we have BC(A(x),A(y)) =1 and 0 = —2log(BC(A(x),A(z))) < 2r, so that Slater’s condition
holds. Therefore, strong duality holds, and we have

— i . — 3 / . _ !
2(1)*(T) - ég% ;22};3(377 Y; Oé) - olzg% 3;2}5, (I)r(x7 Y; Oé) - 2(1)*(T) (428)
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Next, we prove that @/ in Eq. (4.19) has a saddle point in (z,y) € 2 and a > 0, and that

the a-component of the saddle point is unique.
Proposition 4.11. For r > 0, the following statements hold.

1. There is some a > 0 that attains the minimum in Eq. (4.20).
2. The minimum over o > 0 in Eq. (4.20) is attained at a unique o, > 0.

3. @/ defined in Eq. (4.19) has a saddle point (z*,y*; ), where z*,y* € L and o, > 0. Conse-

quently, 29 (r) = ©p.(z", y; o).

4. (z*,y*; an) is a saddle point of ®!. if and only if x*,y* € X attain the mazimum in Eq. (4.18
'

and o, > 0 is a dual optimal of the optimization problem in Eq. (4.18). Consequently, we have

PL(r) =5 (g, 2%) — (9,97)) - (4.29)

1
2
Proof. 1. Eq. (4.28) shows that we can write 29/, (r) = inf,>¢ maxy yeq ®,.(z,y; ). It remains
to show that the infimum over o > 0 can be replaced by a minimum. Denote f.(a) = 2ar +
max, yezr ((9,2) — (9,9) + 20 10g(BC(A(x), A(y)))) and write 20 (r) = infaso f, (@)

Since log(BC(A(z),A(x))) = 0 for all z € 2, we have the lower bound f,(«) > 2ar. Therefore,
limg 00 fr (@) = 00, from which it follows that f, is a coercive function. Since log(BC(A(x), A(y))) <
0 for all z,y € & and o > 0, we have f,.(«) < 2ar +maxg yea ({9, ) — (g9,9)), so that f, is a proper
function. f, is a convex function since the supremum of a family of convex functions is convex [8,
Prop. 8.16]. Similarly, f, is Isc because the supremum of a family of lsc functions is Isc [8, Lem. 1.26].
Then, by [8, Prop. 11.15], we can infer that f, has a minimizer in [0, c0).

2. If the minimum of f,(a) over o > 0 occurs at o, = 0 and it is unique, then the statement
holds. Thus, assume that there is at least one o, > 0 that attains the minimum. Note that the set
[0, 00) is strictly convex in the sense that for all «, 5 € [0, 00) with « # 3, we have (a4 3)/2 € (0, c0).
Then, by [8, Prop. 11.8], f.(a) has at most one minimizer in [0, c0), which implies that «, must be

unique.
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3. By Prop. 4.10.1, ®/.(z,y; ) is continuous and concave in (z,y) € £ x I for all a« > 0,
and continuous and convex in o > 0 for all z,y € . Since & is compact and convex and [0, 00) is
convex, by Sion-Kakutani minimax theorem [97], we have 2®/,(r) = miny>o max, yeq ®)(z, y; ) =
max, yeg infa>0 ®,.(x,y; ). By Prop. 4.10.3, we have 2®/,(r) = 2®,(r). It can be verified that
29! (r) = max, yeg infa>0 ).(z, y; ) gives Eq. (4.18) after performing the minimization over a > 0,
since infy> a(r 4+ log(BC(A(z), A(y)))) = —oo if log(BC(A(x),A(y))) < —r. Since the maximum
of a continuous function on a compact set is attained at a point in the compact set, the set
{(z,y) e T x X | —1log(BC(A(z),A(y)) < r} is compact (since the intersection of a compact and
a closed set is compact), and (g,x) — (g,¥y) is a continuous function of (x,y), the maximum in
Eq. (4.18) is always attained. Let z*,y* € 2 be points that attain the maximum in Eq. (4.18), and
let a, > 0 be the (unique) point that attains minimum in ming>o max, yeq ®,.(z,y; ). Then, we
have min,>o max, yeg ®).(z,y; @) = maxy yey P (x,y; ax) > Ph(x*, y*; o) > infa> (2%, y*5 ) =
max, yeg infa>0 ®,.(z,y; ). Since ming>omax, yeg ). (z,y; ) = max, yeg info>o P (z,y;0) =
29’ (r), we can conclude that (z*,y*; au) is a saddle point of @/ with 2®/,(r) = @/ (z*, y*; o).

4. TIf (z*,y*; ) is a saddle point of @/, then z* y* attains the maximum in 2®,(r) =
max, yeg infa>0 ®).(x,y; ). Since performing the minimization over a > 0 in
max, yeg infa>0 ®).(z,y; a) gives Eq. (4.18), we can conclude that z*,y* €  attain the maximum
in Eq. (4.18). Since ay > 0 attains the minimum in min,>o max, yeg ®;.(x,y; ), by Prop. 4.10.3,
can infer that a, > 0 is the dual optimal of Eq. (4.18).

Now, suppose that z*,y* attains the maximum in Eq. (4.18). Then, z* y* attains the
maximum in max, yeg info>0 ®;.(z,y; @), so that it is a valid (x, y)-component of the saddle point of
®/. By Prop. 4.10.3, a dual optimal a, > 0 of the optimization in Eq. (4.18) attains the minimum

in ming>o max, yeq P.(z,y; o), so that it is a valid a-component of the saddle point of ®.. ]

Owing to Prop. 4.10.3, we can use any primal optimal points xz*,y* € 2 that attain the
maximum in Eq. (4.18), and the (unique) dual optimal point a, > 0 for the optimization in

Eq. (4.18) to compute the estimator in Box 2. We have also shown that ®/ defined in Eq. (4.19)
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has a well-defined saddle-point value that is equal to 2®,(r). Next, we need to find a ¢ € F so as to
construct a nearly-optimal affine estimator for (g, Ztyye). For this purpose, we show that for a fixed
z,y € L and fixed o > 0, the function @/, is obtained as a minimization of ®, defined in Eq. (4.10)
over all ¢. Using this observation, we can find a suitable ¢, using the saddle point (z*, y*; a.) of
®!. Before constructing such a ¢., we present the following useful characterization of coercivity for
proper, lIsc, convex functions on a finite-dimensional space. The version of this result for real-valued

convex functions is stated in [43] without proof.

Proposition 4.12. Let 7" be a finite-dimensional real vector space and let f: ¥ — R be a proper,
Ise, convex function. Let xo € 7" be a point where f(xq) is finite. Then, f is coercive if and only if
for all non-zero x € 7", we have lim;_, f(xo + tz) = 00.

In particular, if f: 7" — R is a convexr function, then f is coercive if and only if for all

non-zero x € 7", we have limy_, o, f(tx) = oo

Proof. Given n € R, denote lev<,f = {x € 7" | f(z) < n} to be the sublevel set of f at height
n. It can be verified that lev<,f is convex for all n € R. A set K C 7  is said to be a cone
if for all x € K and all a > 0, we have ar € K. Given a non-empty convex set C C 7/, let
recC ={z € 7 | x + C C C} denote the recession cone of C. See [8, Prop. 6.49] for a proof that
rec C' is a convex cone.

It follows from the definition of coercivity that if f is coercive, then lim;_,~ f(zo+tx) = oo for
all non-zero x € 7°. Therefore, suppose that for all non-zero x € 7", we have lim;_,o f(zo+tx) = 0.
Let £ = f(xo) € R, so that xg € lev<¢ f. Assume, towards a contradiction, that lev<¢ f is unbounded.
Then, by [8, Cor. 6.52], there is some non-zero y € reclev<¢ f. Since reclev<¢f is a cone, we have
ty € reclev<c f for all £ > 0. Because xg € lev<¢f, by the definition of a recession cone, we have
xo + ty € leveef for all t > 0. But limy_o f(xo + ty) = oo by assumption, which contradicts
xo +ty € lev<e f for all t > 0. Therefore, lev<¢ f must be bounded. It follows from [8, Prop. 11.13]
that f is coercive.

Now, if f is real-valued and convex, then it is proper and continuous [8, Cor. 8.40]. Then,
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taking zg = 0 gives the desired result. O
We now show how to construct a ¢..
Lemma 4.13. Let o > 0 be fired. Then, for r > 0, the function
5 (0.:0) = (0.0) ~ {ov) -+ o | 10g ( [ expl=o/apaim )
+ log (/Q exp(qﬁ/a)pA(y)dm) + 2ar (4.30)

defined on (X' X L) x F has a saddle point (x*,y*; ¢.) for x*,y* € L and ¢ € F. ¢, can be chosen

as

a pA(x*)>
« = —log | ——= | . 4.31
¢x = 5 log (pA(y*) (4.31)

Furthermore, (x*,y*) is the (z,y)-component of the saddle point of ®% if and only if it attains the
mazimum in maxy yeg (200 + (g, ) — (9,y) + 2alog(BC(A(x),A(y)))), and therefore, the saddle-

point value of @ is equal to
T (2", y"; ¢x) = 201 + (g,2%) — (9,y") + 2alog(BC(A(2"), A(y))). (4.32)

Proof. We adapt the proof of [43, Thm. 2.1] to show this result. From Prop. 4.7.1, we know that
O is continuous and concave in (z,y) € & x 2 and continuous and convex in ¢ € F. Then, since
Z is compact and & is a finite-dimensional vector space, it follows from Sion-Kakutani minimax
theorem [97] that ®¢ has a well-defined saddle-point value

Jnf max @ (z,y;0) = Sup [nf & (2,95 9). (4.33)

Since @& (x,y;¢) is continuous in z,y € X for each ¢ € F, infyecg P (x,y; ) is upper semi-
continuous in (z,y) € ' xX (8, Lem. 1.26]. Then, since X" is compact, the maximum max, yecq infyez *(z,y; @)

is attained in & x . Therefore, to show the existence of a saddle point, it suffices to show that
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the minimum infgcg max, yeq *(x,y; ¢) is attained in F. To avoid technicalities concerning zero
m-measure sets, in the remainder of the proof, we identify functions in & that are equal upto
m-measure zero, and redefine # accordingly. This does not affect any calculations because ¢
appears in ®%(x,y; ¢) only through integrals with respect to 7.

Observe that for all s € R and all z,y € &, we have ®%(x,y; ¢ + s) = ®¥(x,y;¢). Thus,
we restrict our attention to the subspace % = {¢ € F | fQ opydrme = 0} for a fixed v € M.
Since, by the definition of a good pair, fQ opvdme is well-defined for all ¢ € &, the existence
of a minimum of ®%(x,y; ¢) over ¢ € F; implies an existence of a minimum of ®%(x,y; ¢) over
¢ € F. Because max, yeg ®*(z,y; ¢) is a well-defined, convex, Isc function of ¢ € Fy, to show that
inf yez, max, yea P(x,y; ¢) has a minimum in Fy, it suffices to prove that max, yeq O (x,y; @) is
coercive in ¢ € Fy [8, Prop. 11.15]. To that end, we show that for all x,y € X, ®*(z, y; ¢) is coercive
for ¢ € Fy. Since O (x,y; ¢) < max, yex P (x,y; @), this also shows that max, yeq P (z,y; @) is
coercive in ¢ € .

For x,y € &, write ®%(x,y; ¢) = (g,x) — (9,y) + 2ar + a©®*Y(¢/a), where

0" (¢) = log ( /Q exp(—¢)pA(x)dm> + log ( /Q exp(¢)pA<y)dm> : (4.34)

Since ©%¥(¢) is a real-valued convex function on %y, to show that it is coercive in ¢, it suffices to
prove that ©%¥(t¢) — oo as t — oo for all non-zero ¢ € Fy (see Prop. 4.12). For all non-zero ¢ € Fy,
we have [, max{¢,0}p,dm = [, max{—¢,0}p,dm > 0 since p, > 0 on €. Then, because e* >
max{z,0} for all z € R, we have ©%¥(¢$) > log( [, max{—¢, 0}pa ) drz)+log( [, max{p, 0}pa,drz).
Since pa(z), Pa(y) > 0 on Q for all 7,y € &, we can conclude that ©%Y(t¢p) — oo as t — co. It
follows that ©%Y(¢), and therefore, ®(x, y; ¢) is coercive in ¢ € Fy for all z,y € L. Therefore, P
has a saddle point.

Now, suppose that (z*,y*) is the (x,y)-component of the saddle-point of ®% (i.e., attains the
maximum of the function inf, ®%(z, y; ¢)). Then, if ¢, is the ¢-component of the saddle point (i.e.,

attains the minimum of the function max, , ®%(x,y; ¢)), it minimizes the function ®¢ («*, y*; ¢). This
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is because O (z*, y*; ¢«) > infy O (2", y*; ) = max, , infy P (x,y; ¢) = infy max, , P (x,y; ¢) =
max, , P (z,y; ¢) > P (z*,y*; ¢u). It follows that ¢, /o minimizes the function O ¥ (¢/a). Thus,
we compute the minimum of ©%Y(¢) over ¢ € F following [43, Thm. 2.1] and [62, Prop. 3.1].

For a given x,y € ', denote ¢, = (1/2)log(pa(z)/Pay)) € F. Write any given ¢ € F as

¢ = ¢zy + A. Then, by Holder’s inequality, we have

eXP( Y () > = / /PA(z)PA(y)dr

:/Q [(pA(x)pA(y))l/Zle_A/Q} [(pA(z)pA(y))l/4€A/2] dm

(4.35)
< \//Q (pA(x)pA(y))l/Qe_Adm\//Q(pA(x)pA(y))l/2€Adm
1
= exp (2@’”’1’((;5)) .
Since equality in Holder’s inequality holds if and only if (pA(x)pA(y))l/ze*QA = C(pA(x)pA(y))l/QeQA

for some ¢ € R, A must be constant for equality. Therefore, every minimum of %Y is of the form
¢™Y + s for s € R. Since ®%(z,y; ¢) is invariant under translations of the form ¢ — ¢ + s for s € R,

we can choose ¢, as

P _ 1y, (pA‘“> . (4.36)
« PA(y)

Since ¢y = (1/2)10g(Pa(x)/PA(y)) minimizes O (¢) for all x,y € ', we can verify by direct
substitution that max, yeq infyez O (2, y; ¢) = max, yex (200 + (9, 2) — (9, y) + 2alog(BC(A(z), A(y)))).
Since @& has a well-defined saddle-point value, (z*,y*) is the (z,y)-component of the saddle point if

and only if it attains the maximum in max, yeg infyeg % (z, y; ¢), from which Eq. (4.32) follows. [

We are now in a position to show that the estimator constructed using Box 2 has the same

estimation error as the estimator constructed using Box 1.

Theorem 4.14. Given a confidence level 1 — § € (0,1), let oy > 0 attain the minimum in

29, (log(2/9)) mln 2alog(2/0) + Iga)ugr((g,m) —{g,y) + 2alog(BC(A(z),A(y)))) (4.37)



Docusign Envelope ID: 3AE25DC6-0FF1-4FFD-BDBE-A4F50E 159038

78

and x*,y* € X attain the mazimum in max, yeq ((9,z) — (9, y) + 2, 1og(BC(A(z), A(y)))). Define

Qix p (a:*))
= —log | ——= | . 4.38
0. = 5 tog (27 (4.38)
Then, the estimator
-~ 1 * *
satisfies
PA@ire) (G« = (9 Ttrue) | < Ps(log(2/6))) 21— (4.40)

for all xirye € X

Proof. For a, = 0, we have g, = ((g,2*) 4+ (g9,y*))/2 and ®.(r) = ({(g,2*) — (g,y*))/2. Then, since

x*,y* attain the maximum in max, yeq ((g,2) — (9, 7)), for all Tirue € X, we have

b\* - <g7xtrue> = <g,$*> - <gvxtrue> - Q)*('r‘) < (<g,55*> - <guy*>) - (I)*(T) = q}*('r')

<g;xtrue> - Z]\* = <gaxtrue> - <g,y*> - ‘I)*(T> < (<g,$*> - <g7y*>) - (I)*(T) = (I)*(T)

Therefore, |G« — (g, Ttrue) | < Px(r) always holds. Thus, for the remainder of the proof, we take
oy > 0.

Since (z*,y*) attains the maximum in maxg yeq ({9, ) — (9, y) + 20, log(BC(A(x), A(y)))),
by Lem. 4.13, (x*,y*; ¢«) for ¢, defined in Eq. (4.38) is a saddle point of <I>1°c‘)*g(2/5) defined in

Eq. (4.30). Consequently, the points z*, y* achieve the maximum in max, ycg @ﬁ)"g@/é)(x, Y; ¢x), SO

that
B o) (@475 65) < Bl (%, 575 04) = 204 (log(2/6)) (Vo € X) )
B o (5 0) < B0y (773 02) = 20, (108(2/8)) (v € ).

Next, we rewrite the constant term in the estimator g, in Eq. (4.24) in a convenient form.

Since [q, exp(—d«/x)Pa () d772 = [ exp(ds/as)pa(y+ydre holds for ¢, given in Eq. (4.38), we have

({9, 2") +(9:¥")) (4.43)

N | =

Cc =
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DN | =

(.0%) + artog ([ exp(-oufapagenydon ) + o log(2/0)]

_ % [_ (g,y") + v log </Q eXp(¢*/a*)pA(y*)dm) + log(2/5)}

= %@%2(2/5)(3:*,y*; Gx) — [— (9,9") + ax log </Q exp(¢*/a*)pA(y*)dm> + o log(2/5)] (4.44)

1
= (1927 + o [ exp=0./adpaemydon ) + . 08(2/0)| - G0 " 570 (15

We have g, = ¢, + c.
We now prove a slightly more general statement than Eq. (4.40) following the ideas in [62,
Lem. 3.1]. To that end, let ¢ > 0 be any non-negative number and define ¢ = ®,(log(2/4)) + €. For

all Zyrye € X, using Eq. (4.44) and taking x = xpye in Eq. (4.42), we have

(9, Tirue) + ua log ( / exp(—@/m)pA(Me)dm) + o log(2/9)

= () + 108 ([ xp(oufaageydon ) + s og(2/6) —
Q

a . L o _— 4.46
= (I)log(g/(;) (Ttrue, Y5 Px) — §(I)1og(2/5)(1' Y5 Px) ( )
< P, (log(2/4))

6/
=& — 5
Similarly, using Eq. (4.45) and taking y = ze € 2 in Eq. (4.42), we find that
6/
— (g, Ttrue) + o log (/Q exp(ﬁ*/a*)pA(xtme)dm) + a log(2/6) <e— 7 (4.47)

Denoting &' = de¢/2% and Jo FPA @) @72 = Bz [f] for any (Q, B(w))-measurable function

f, we can divide Eq. (4.46) and Eq. (4.45) by a. > 0 and rearrange terms to obtain

~ 5 €in 5,
lOg (EA(ztruc) [exp(((g, xtrue> — gx — 5)/04*)]) < 10g (2) _ 2af = lOg <2>

log (Engar) [e5D((— (g Z1aue) + G — )/as)]) < log (5) Sl g (5) .

(4.48)

2 20, 2
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Then, from Markov’s inequality, we have
5/
PAGruue) ({9 Torue) = G =€ 2 0) < B (ape) [XP(((9: Tirve) — G5 =€) /)] < 5 (4.49)
4.49
N . o'
PA(iwe) (— (9 Ttrue) + G5 —€ > 0) < EA(xtruc)[eXp((_ (9, Ttrue) + Gx — €) /)] < 9"
Using the union bound and ¢ = ®,(log(2/0)) + €, we obtain
PA(mtmc) (|§* - <g7$true> | = (I)*(log(Q/(s)) + 6/) < & (450)

for all ¢ > 0 and all 24y € 2. For all € > 0, we have &' < §, and for ¢ = 0, we obtain

Eq. (4.40). O

Therefore, the estimator g, constructed using Box 2 has the same estimation error as the
estimator constructed using Box 1. Consequently, by Thm. 4.8, the estimator obtained using Box 2
is also minimax optimal under the premise of Sec. 4.1. Since ®,(log(2/§) is within a constant factor
of the minimax optimal risk, we can use it as a proxy to study the optimal estimation error. We

give two additional results for the estimation procedure given in Box 2 and ®,(log(2/6)).

Proposition 4.15. Let r > 0 and let (z*,y*; ) be computed according to Box 2. Then, the

following statements hold.

0< @u(r) < OP*(r) = 5 max ({(g,7) — (9,)) (4.51)

1
2 T, YyeX
2. ©,(r) = 2*(r) if and only if a, = 0.

Proof. 1. ®,(r) > 0 was noted in Prop. 4.7.2. The upper bound is obtained from Eq. (4.18) by
dropping the constraint.

2. By Prop. 4.10.3, we have 2®,(r) = 2®/(r) = min,>o max, yeq ®}(z,y; @), where @/ is
defined in Eq. (4.19). Since o attains the minimum in min,> max, yeg ®).(z,y; ), for a, = 0,

we obtain 2®,(r) = max,yeg P (z,y;0) = 207 (r). Conversely, if ®.(r) = ®**(r), then
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200 (r) = 2P, (r) = ming>omax, yeg P (z,y;0) < maxy yeq O (z,y;0) = 207*(r). Thus,
a, = 0 is a point that attains the minimum in 2®/(r) = min,>omax, yecg ®,.(z,y; ), and by

uniqueness of o, shown in Prop. 4.11.2, o, = 0 is the only such point. O

Finally, we give an alternate expression for the saddle-point value 2®,(r), obtained using
Fenchel-Rockafellar duality. Specifically, we convert the maximization in Eq. (4.18) into a minimiza-

tion problem, from which we also derive upper bounds on @, (r).

Proposition 4.16. Let £ C R? and M C RM. Suppose that A is linear. Then, for r > 0, the

following statements hold.

1. For all g € R, we have

£g§(<g,x> —(9,y) +1log(BC(A(z), A(y))))

(4.52)
~ min (sg(g — Alu) + Sg(—g — Afv) + BD*(u, v)) ,
u,ve
where Sq is the support function of I .
2. The saddle-point value ®.(r) can be written as
- (5 (2 4) 50 (40 £
D,(r) ér;fo uglelélM e (Sg[ <2a Alu) + Sy 5 A'v) +BD*(u,v) +71). (4.53)
3. The saddle-point value ®.(r) is bounded above as
@, (r) < inf min «a(BD*(u,—u)+r).
a=0ueRM (4.54)
st. Afu=2
2a

Furthermore, if A is injective, then we have

0.(r) < inf o (BD" (A%)1 (L), —(an) (L)) +7). (4.55)

a>0 2 2
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where AT = (ATA)"TA' is the Moore-Penrose pseudoinverse of A.
Proof. 1. First, we note that
Jnax ({9, 2) = {g,y) + log(BC(A(2), A(y))))
= max [{g,7) = {9,4) = (BD(A@), AY)) + X (@,9))] (4.56)

= (xaxz +BDo (A® A))*(g9,—9).

Now, xoxg is a proper, Isc, convex function since & is a compact and convex set. Moreover,
from Prop. 4.10.1, we have that —log(BC) is well-defined, convex, and continuous on /# x /.
From [8, Cor. 6.15], we have that relint A(2) = A(relint ') and relint (M x M — (ADA) (X x X)) =
relint(M x M) — relint(A & A)(Z x X). Since M is relatively open, the latter set is equal to
M x M —relint A(X) x relint A(Z'). Since I is a non-empty convex set, it has non-empty relatively
interior [8, Fact 6.14]. Picking a point z € relint 2, we have A(x) € A(relint 2°) = relint A(Z’). But,
by definition, A(z) € M = relint /. It follows that 0 € relint(M# x M — (A & A)(X x X)). Note
that in finite dimensions, the notion of strong relative interior and relative interior coincide (see [8,

Fact 6.14]). Thus, by [8, Thm. 15.27], we have

(xaxa +BDo(A®A)) (g, —g) = min (x?xm(g — Afu, —g — Afv) + BD*(u, v)) - (4.57)
u,v
Since the convex conjugate of characteristic function is the support function, and xoxo(z,y) =
xa () + xa(y) for z,y € RY, we obtain x%. o-(a,b) = Sy (a) + Sg(b) for all a,b € R. Combining
these observations gives Eq. (4.52).
2. From Prop. 4.10.3, we have
20.(r) = inf |27 + muax ((9,) ~ (9.5) + 20 log(BC(A (), A1)

a>0 RS

(4.58)
— inf 2a [r + max (<%x> - <%y> + log(BC(A(x),A(y))))} .

a>0 z,yed
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Then, using Eq. (4.52), we obtain
20,(r) = inf 2« |:7" + min (Sg[(g — ATu) 4 Sg(—g — ATv) + BD*(u,v))] , (4.59)
a>0 u,vERM

from which Eq. (4.53) follows.

3. Since Sy (0) = 0, taking choosing u,v € RM satisfying ATu = g/2a and v = —u, we obtain
the upper bound in Eq. (4.54). If, in addition, A: R? — RM is injective, then ATA is invertible,
and A has a Moore-Penrose pseudoinverse A*: RM — R? given by A* = (ATA)~!AT [79, Sec. 3.6].
Moreover, (AT)T = (AT)* for any linear map A [79, Sec. 3.6]. Thus, if we take u = (A*)Tg’ for
g = g/2a, then ATy = AT(A*)Tg’ = (ATA)Tg’ = ¢/, since ATA = I. We obtain Eq. (4.55) from

Eq. (4.54) for this choice of wu. O

In Eq. (4.53), the minimization over w, v is unconstrained, while the minimization over a > 0,
while constrained, is one-dimensional. Thus, if we have an expression for the convex conjugate BD*
of the Bhattacharyya distance, we can use Eq. (4.53) to compute the saddle-point value. If Q is a
finite set equipped with the discrete o-algebra, the distributions are discrete, and therefore, we can
use the closed-form expression for BD*(u, —u) given in Eq. (3.11) to compute the upper bounds in

Eq. (4.54) and Eq. (4.55).
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Chapter 5

TOOL: A minimax optimal procedure for learning expectation values

Our goal in this chapter is to develop an estimation method that can learn the expectation
values of observables using a measurement protocol specified by the experimentalist. We will focus on
the case of learning the expectation value of a single observable here, since we can use this procedure
with the union bound to learn the expectation values of many observables simultaneously in the
lso-norm. We formulate the quantum problem of learning the expectation value of an observable in
Sec. 5.1, and show how it relates to general statistical problem studied in Ch. 4. In Sec. 5.2, we
adapt the results of Sec. 4.3 to develop an estimation procedure for learning the expectation values.
We call the estimation procedure so obtained The Optimal Observable expectation value Learner, or
TOOL. We then discuss some properties of the estimator constructed by TOOL in Sec. 5.3. Finally,
in Sec. 5.4, we present a convex optimization algorithm, along with convergence guarantees, that

can be used to construct the estimator and estimation error for TOOL.

5.1 Mathematical formulation

Suppose that 2 is the set of d-dimensional density matrices. The state p € & is prepared by
a quantum device, but is not known to us. We are given an observable 0, whose expectation value
(0) = Tr(Op) we wish to learn. Since we do not know the true state p, we perform measurements on
it. Suppose that M = {(E®), N;)}E | is the measurement protocol that was, or will be, implemented
in the experiment. For each i € [L], measuring the ith POVM gives an outcome k € [M;]

with probability pg,i)(k) = Tr(E,ii) p) according to Born’s rule. Since we only have access to the
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measurement outcomes, we need to construct an estimator that uses the outcomes observed in
the experiment to give an estimate for (0). An estimator in this context is a real-valued function
that takes the observed measurement outcomes as input and outputs an estimate for (0). Given a
confidence level 1 — ¢ € (0, 1), our goal is to find an estimator that estimates the expectation value
of 0 using the outcomes of 9 with a confidence level of 1 — § no matter what state p is prepared by
the device, such that the estimation error is as small as possible.

To proceed, we need to formalize what we mean by “smallest possible estimation error”. For
a given estimator, the error constructed can depend on the statistical method used, such as the
specific concentration inequality used to derived confidence intervals. To avoid such ambiguities, we

look at the smallest possible estimation error for a given estimator, as defined below.

Definition 5.1 (4-risk of an estimator given a measurement protocol). Given an observable
0, a confidence level 1 — § € (0,1), and a measurement protocol I, the J-risk of the estimator 6

for learning the expectation value of @ with confidence level 1 — ¢ is defined as
R(6,0,9M,8) = inf {5 > 0| inf Poyo (15— Tr(00)| < 5) >1- 5} : (5.1)
(e
where Poy - is the joint probability distribution over the labels determined by 90t and the state o as

per Born’s rule. O

Since the risk %(5, 0,9, ) does not depend on the underlying state or the data, we are
working with minimax procedures in the sense defined in Sec. 2.4. Then, we can define the minimax

optimal risk, which is obtained by minimizing the risk of an estimator over all estimation procedures.

Definition 5.2 (Minimax optimal risk given a measurement protocol). Given an observable

0, a confidence level 1 — 6 € (0,1) and a measurement protocol 9, the minimax optimal risk for
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learning the expectation value of @0 using outcomes of 9 to a confidence level of 1 — § is defined as
R.(0,9M,8) = inf Z(0,06,M, ), (5.2)
6

where the infimum is over all estimators. O

The minimax optimal risk #, (0,9, 0) is the main quantity of interest in practice, as we usually
know the measurement protocol 9t that was/will be implemented in an experiment. %.(0,90, )
can also help us determine whether implementing the measurement protocol 9 for learning (0) is a
scalable as we increase the system size. Note that when we talk about scalability with the system
size, we look at measurement protocols 9t and observables @ that have a suitable definition as a
function of the system size. For example, O can be the projector onto an n-qubit GHZ state, and 9
can be the measurements of the stabilizer group of ©. Then, the number of qubits n gives a natural
notion of system size, and we can study the scaling of the minimax optimal risk with respect to n.

In addition to such practical considerations, it is also useful to know from a theoretical
standpoint what measurements are the best to implement for a given observable. For if such
measurements happen to be implementable in an experiment, we can implement them to get
optimal performance. Thus, we also define the minimax optimal risk that is obtained by minimizing

R(0,0,9) over all measurement protocols that use a fixed number of samples N.

Definition 5.3 (Minimax optimal risk over all measurement protocols). Given an observable
O and a confidence level 1 — § € (0, 1), the minimax optimal risk for learning the expectation value

of O to a confidence level of 1 — ¢ using N samples is defined as

R(0O,N,0) = ial}tf R (0, M, 0), (5.3)
N()=N
where the infimum is over all measurement protocols that use N copies of the state. O

The main quantities of interest in this study are Z.(0,M, ) and %.(O, N, ). Our goal for

this chapter is to construct an estimator that can achieve an estimation error to within a constant
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factor of %.(0,9M, ). The problem of finding a measurement protocol that achieves the smallest
possible error for a given observable is postponed to Ch. 7.

Now, from Ch. 4, we know that the estimation procedure given in Sec. 4.3 achieves the
minimax optimal risk to within a small constant factor, which follows from the results of [62]. Thus,
we wish to use this statistical framework to construct an estimator and estimator error for learning
the expectation value of @. However, it is not possible to directly apply this framework because a
key requirement of [62] is that all the probability densities must be strictly positive. To circumvent
this problem, we suppose that for any given measurement protocol 9, we instead implement the

perturbed measurement protocol M(e,) defined below.

Definition 5.4 (Perturbed measurement protocol). Given a measurement protocol I =
{(BW, N;)}E | and a positive number €, > 0, we define the perturbed measurement protocol

M (e,) as the measurement protocol where the POVM

ED v et/ BV el /M,
lte, 7 11e

is measured N; times, for ¢ € [L]. O

Observe that for all ¢, > 0, the outcome probabilities obtained by implementing M(e,) is
strictly positive for every state. Moreover, for ¢, < 1, these probabilities are very close to the
probabilities obtained by implementing 9. Furthermore, the perturbed measurement protocol is
trivial to implement in an experiment for any given ¢, > 0, either by randomly sampling POVMs
from 9 and measuring them, or by post-processing the measurement outcomes of 9. For the
random sampling strategy, for each i € [L] and r € [V;], at the rth repetition of the ith POVM, we
sample the POVM E®) with probability 1/(1+4€,) and measure it, or with probability e, /(1+€,), we
(uniformly) randomly choose a number in [M;] and output it. This randomized strategy implements
the measurement protocol M(e,). If the measurement protocol M has already been implemented in
an experiment, we can post-process the observed outcomes to obtain outcomes from 9t(e,) as follows.

For each i € [L] and r € [N], if we observe the outcome o) € [M;] after the rth repetition of the
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ith POVM E® we output og) with probability 1/(1 + €,), or we output a (uniformly) randomly
chosen number in [M;] with probability €,/(1 + €,). Therefore, from a practical point of view, we
don’t lose much by assuming that we measure 9(e,). However, from a theoretical point of view, it
is important to know that the theoretical guarantees for the estimator as well as the optimality
results can be derived for 9 instead of M(e,). We will show in Ch. 7 that all our guarantees and
optimality results are valid for 9 by choosing a sufficiently small ¢, > 0. It is therefore sufficient to
obtain results in this chapter for any given ¢, > 0.

In the remainder of this section, we formally map the problem of learning the expectation
value of an observable to the statistical problem studied in Sec. 4.1. For readers who wish to skip
the details, we provide a quick summary of this mapping in Tab. 2. The first quantity of interest
is the set of states 2. In the statistical problem, this is a compact and convex subset of RP. On
the other hand, in the quantum case, the set of quantum states, while compact and convex, is a
subset of C%*?. This, however, is not a problem, since we can construct an isometric isomorphism
from the set Sy of Hermitian matrices in C?*¢ to R% (i.e., D = d? in the quantum case). The
image of compact and convex sets under a linear map are compact and convex. It can be verified
that 7 : Sy — RY defined as F(P) = ((Pi)1<i<d, (V2 Re(Pij))1<icj<d, (V2 Im(Pij))1<icj<a) for
P € S, an isometric isomorphism, where the notation (F;;)1<j<q means Pjq,- - , Pgq and so forth.
Since all the matrices in Sy appear in our construction only through inner products, we can directly
work with S; instead of = Thus, we omit the map ¥ in the construction for brevity.

We take the vector g in Sec. 4.1 to be the observable O € S;. Thus, our goal is to estimate
(g, Ztrue) = Tr(Op) in the quantum scenario. For this purpose, we need to incorporate data obtained
from an experiment. Recall that this is done in Sec. 4.1 by considering random variables Z(® for
i € [L], taking values in a Polish space (), B(Q®)). The random variable Z(® is assumed to

(4)
A(Z) (xtrue)

probability densities p,(f) are parameterized by u € M @) where ) is a relatively open convex set

have a density p with respect to a o-finite reference measure 72 on (%, B(Q®). The

in a finite-dimensional space, and A®: & — 4@ is an affine map that determines the parameter

given the true state Ti;ye-
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In the quantum scenario, our data corresponds to measurement outcomes. Upon measuring
the ith POVM E® we observe an outcome in the set [M;]. Thus, for each i € [L], we define
00 = [M;], and equip 0 with the discrete topology 22 1t can be verified that Q) is a separable
complete metric space (and thus a Polish space), where the underlying metric is the discrete metric
d(i,7) = 0 iff i = j. The Borel o-algebra generated by the discrete topology is also discrete. We
equip (20, B(QM)) with the counting measure 72, i.e., 72 (E) = |E| for any E C Q. The
probability density functions with respect to 7z are just the discrete distributions on Q). Since
the probabilities must be strictly positive, we take 4 = {z € RMi | (Vi)z; > 0, >,z = 1}
to be the relatively open simplex in M; dimensions, and map p € A#® to the density function
pﬁ) = ({1, ..., pnr,). Since the density function is just a discrete distributions over M; symbols, we
view it as a vector in the standard simplex Ay, .

Next, we need to construct an affine map A®) that maps the state p € X to a parameter
A@(p) € D, which in turn determines the distribution pgzi) )" Since this distribution determines
the probability of measurement outcomes given a state, this is given by Born’s rule. Therefore, given

the parameter €, > 0 (for the perturbed measurement protocol), we define the affine map A ag

AO(p) - (Tr(E§i)p)+eo/Mi TF(E%P)“O/M%’) (5.5)

1+ e ’ ’ 1+ ¢
on X.

Next, we need to choose a set F (@) of affine estimators. In Sec. 4.1, this is a finite-dimensional
space of real-valued measurable functions on (Q(%), %(Q")) that contains constant functions. Since
Q0. B(Q9)) is a discrete space, every function on Q* is measurable. Moreover, since Q) is
a finite set, real-valued functions on Q) can be viewed as M;-dimensional real vectors. This is
because any function ¢(* on Q) can be identified with the vector (¢ (1), ..., ¢ (M;)). Thus, we
choose F() = RM: to be the set of all functions on Q) or equivalently, all M;-dimensional vectors.

We verify that each (Q(i), F (i)) is a good pair, by checking that it satisfies the requirements

of Def. 4.1. The first two conditions of Def. 4.1 hold by construction, and the third condition holds
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because F @ is the set of all functions on Q#). The last condition holds because for ¢(9) ¢ F ),
we have Fyq) (n) = log(z:k]\/[:i1 exp(qﬁ,(j))uk), which is a concave function of . We have thus verified
that (2, F®) is a good pair for i € [L]. At this point, we have a set of estimators for the ith
POVM for each ¢ € [L]. According to the measurement protocol 9, for each i € [L], the ith POVM
is measured N; times. Thus, we need a way to construct an estimator that accounts for multiple
measurement outcomes for every POVM measurement. For this purpose, we use the direct product
of good pairs (Def. 4.4) to construct a large space that accounts for all the measurement outcomes.

The large space €2 is given by = HZLZI(Q(i))Ni, which we equip with the Borel o-algebra
AB(2). The reference measure on (2, B(2)) is the product measure 7z = Hle(m(i))Ni. The set of
parameters is given by M = (M) x --- x (Mr)NE. The affine map A: & — A is given by the
direct sum A = oL, EB?]y:il A®_ Specifically, the ith map A® is repeated N; times to incorporate Nj
outcomes for the ith POVM. The set of affine estimators & on the large space is defined as all the
estimators of the form ¢ = Zle Zivél #7) where ¢(") € F for all r € [N;] and acts on the rth
outcome of the ith POVM. However, for a fixed 4, since we receive many outcomes from the same

distribution, by [62, Rem. 3.2], it suffices to take ¢("?) = ¢(®) for all » € [N;] and all i € [L]. Therefore,

given outcomes w%i), . 7w§\2 e 0 sampled according to the distribution pX%i) () for i € [L], the
estimate computed by ¢ using these outcomes is qﬁ(w%l), . ,w%ﬁ) = ZZ'L:1 Zivzll s (wﬁi)).

For convenience of the reader, we summarize the mappings defined in this section in Tab. 2.

5.2 Estimation procedure

In this section, we introduce The Optimal Observable expectation value Learner (TOOL)
for estimating the expectation value of a given observable using the outcomes of the specified
measurement protocol. Formally, TOOL consists of two parts: (I) a procedure for constructing the
estimator and estimation error (Box 3), and (II) a procedure for estimating expectation value from
measurement outcomes (Box 4). In part (I), TOOL takes the observable 0, the measurement protocol
I, the confidence level 1 — §, and the parameter ¢, > 0 as input, and constructs an estimator 5*

and the associated estimation error ,. This construction is done by solving a convex optimization
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VA Set of density matrices

Q@ Measurement labels {1,...,N;}

) Counting measure on (Q®), B(Q®)) with B(Q®) = 20
M Relatively open simplex {z € RM: | (Vi) 2; >0, 3, z; = 1}
Pu Pu= (.o png), p €MD

AD (A (), = TELEE ¢ g, e, > 0

F®  Real-valued functions on Q) identified with M;-dimensional real vectors

g Observable O

Table 2: A dictionary mapping the quantities for the statistical problem given in Sec. 4.1 to the
corresponding quantities for the quantum problem of estimating expectation values. The index ¢
varies from 1 to L, where L denotes the number of measurement settings.

problem (see Sec. 5.4), and is usually the most computationally intensive part of the estimation
procedure. The estimator 5* and the estimation error €, can be stored classically, and reused as
many times as necessary for the same input configuration (observable 0, measurement protocol
M, confidence level 1 — 4, and parameter €,). Importantly, the construction of the estimator and
estimation error in part (I) does not depend on the measurement outcomes, and therefore, it can be
done either before or after the measurements are performed in an experiment. In part (II), we discuss
how to use the estimator 0, to estimate the expectation value of O given the measurement outcomes
obtained after implementing 91 in an experiment. The estimator 0, can compute the estimate
efficiently from the data, and runs very fast in practice. Since part (II) is fairly straightforward, we
will use TOOL synonymously with part (I) in practice.

We now discuss part (I), which is construction of the estimator and estimation error. This
estimator construction is performed by adapting the results of Sec. 4.3 to the problem of learning
expectation value of an observable. Note that the construction we describe below differs from the

construction given in [92], in that we allow a, = 0 in Box 3.
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O
Box 3: TOOL estimator construction

Input: Observable 0, measurement protocol 9, confidence level 1 — 4§ € (0,1),

parameter 0 < €, < 1

Estimator construction:

(1) Find a > 0 that achieves the minimum in

. 2 1
€+« = min []C\); log (5) + max <2 (Tr(Ox1) — Tr(Ox2)) — OéBDmt(eo)(Xl,XQ))} ,

a>0 X1,x26€d
(5.6)
and x7,x5 € X that achieve the maximum in
1
max, (3 (TO0) = TOW) - 0B ()
X1,x2€Z \ 2

Here, N = Zle N; is the total number of samples used by 9, M (e, ) is the perturbed
measurement protocol defined in Def. 5.4, and BCgy.,) is the average Bhattacharyya

distance defined in Def. 3.4. See Eq. (5.10) for an explicit expression for BCyp/c,)-

(2) For i € [L], set

i Qs Tr(E()X )+ €/M,
ol (k) = " log o / (5.8)
Tr(E,'x5) + €/M,
where k € [M;].
(3) Define the estimator 0, to be the function
1
0. =% SN 6l + (Tr(6X%) + Tr(6x3)) (5.9)
i=1 r=1

where the rth copy of ¢Sf) accepts the outcome observed in the rth repetition of the

ith POVM as input, for r € [N;] and i € [L].

Output: estimator O,, estimation error €,

In practice, we can store the elements ¢() (k) for k € [M;] and i € [L], the constant (Tr(Ox?) +
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Tr(0x3))/2, and the estimation error €, computed in Box 3 in memory for future use. This takes at
most O(M) memory, where M = Z{;l is the total number of POVM elements. While it may not
be obvious from Eq. (5.9), 0, is actually an affine function of the observed frequencies, which we
show in Prop. 5.12. Importantly, the estimator 6, and the estimation error &, satisfy the rigorous
guarantee that for all states p, the true expectation value Tr(0Op) lies within an error of e, to the
estimate with confidence level of 1 — §. To show this, we need the following result connecting the
average Bhattacharyya distance between two states determined by the measurement protocol (e, )
(defined in Def. 3.4), and the Bhattacharyya distance (defined in Eq. (4.6)) between the parameters

defined by the mapping in Tab. 2.

Lemma 5.5. For the mapping given in Tab. 2, the Bhattacharyya distance between the parameters

A(x1) and A(x2) for states x1,x2 € X is given by

BD(A(x1), A(x2)) = N BDon(e,) (X1, X2)

— Y Nilog [ 3 (TI(E’(“)X”“"/MZ‘) (Tf(Ez(c)mHeo/Mi)
=1

=1 1+€o 1+€O

(5.10)

Furthermore, BDoy(c,)(x1, X2) s well-defined, continuous, and jointly convex for all x1,x2 € X .

Proof. We use the definitions in Tab. 2 in this proof. For i € [L], we have BC(pu®, () =

Zgﬁl u,(j)z/l(j), where p(), v are elements of the relatively open standard simplex .#(®). The

N;

map A is given by A = @{;1 D, A® | where A®: & — #%). Then, by multiplicativity of the

Bhattacharyya coefficient (Lem. 4.6), for all states x1, x2 € 2, we have

i

TI'(E Xl) + EO/M»L‘ TI“(E XQ) + EO/MZ‘
mcat. A =TT 32 (552 o) )
i=1 | k=1 ° °
Since
(4) (4)
Tr(E o/M; E o/ M;]
By ) Feo/Mi g, (‘“ * o/ Xl) : (5.12)
1+ e 1+ e

and BD = — log(BC) by definition, we obtain Eq. (5.10) from the above equations and Def. 3.4. From
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Prop. 4.10.1, we have that —log(BC(A(x1),A(x2))) is well-defined, continuous and jointly convex,

from which it follows that BDgy(c,)(X1, x2) is well-defined, continuous, and jointly convex. O

The estimator and estimation error constructed by TOOL satisfies the rigorous guarantee

noted below.

Proposition 5.6. The estimator 6, and error e, constructed by TOOL for learning the expectation

value of O using outcomes of M satisfy
Ponea) o (162 = Tr(0p)| < &) 21— (5.13)

for all p € I, where e, > 0 is the parameter used in the construction.

Proof. From Thm. 4.14, the optimal points a/, > 0 and z*,y* € X of

20, (log(2/9)) = min 20" 10g(2/9) + ax ((9,2) = (9,y) + 22" 1og(BC(A(x),A(y))))|  (5.14)

can be used to construct the estimator g = ¢L+({g, 2*)+(g,y*))/2, where ¢, = (c,/2) 10g(pA(2+)/PA(y*))-
This estimator satisfies the guarantee Pa(q,,,.)([gx — (9, Ttrue) | < Px(log(2/5))) > 1 — 6 for all
Ztrue € L. To derive Eq. (5.13) from this guarantee, we use the mapping given in Tab. 2, and the
fact that BD(A(x1), A(x2)) = NBDgy(c,)(x1, X2) (Lem. 5.5). Additionally, we identify ®.(log(2/4))
with €,, map & to a/N in Eq. (5.6), and map ¢, to ¢./N in Eq. (5.8). Then, the estimator g,

becomes 0, in Eq. (5.9) under these mappings. O

Now, we move on to part (II), where we show how to use the estimator constructed in Box 3

on experimental data.

Box 4: TOOL estimation procedure

Input: Observable 0, measurement protocol 9, confidence level 1 —§ € (0.75,1),

parameter 0 < €, < 1, outcomes o = (ogl), .. ,0%3, .. ,ogL), .. ,O%L)) of

M(eo)
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Estimation procedure:

(1) If the estimator 5* and the error ¢, in Box 3 have been pre-computed for the input
configuration (0,9, 1—4, €,), then proceed to (2). Else, compute 0, and e, according

to Box 3.

(2) Compute the estimate for (0) using the outcomes o observed in the experiment as
N;

L
%z z 5 (T(OX}) + Tr(0x3)). (5.15)

Here, o&i) € [M;] denotes the outcome observed in the rth repetition of the ith POVM,

for r € [V;] and i € [L].

Output: estimate 5*(0), estimation error e,

\. J

Step (2) of Box 4 requires O(N) time to implement on a computer, where N = S>% 'Nj is the
total number of samples, since the entries of ¢>(ki) and the constant term in é\* are computed before
step (2) in Box 4. In practice, we see that computing an estimate from the observed outcomes is

very fast.

5.3 Properties of the estimator

In this section, we prove some properties for the estimator @\* and the estimation error &,
constructed by TOOL. In Sec. 5.3.1, we use the result of [62] to show that the estimator constructed
by TOOL is minimax optimal to a constant factor under the premise of Sec. 5.1. This shows that
the estimation error €, is an important quantity to study in its own right. We therefore derive
alternate expressions for €, and bounds on it. In particular, we show that under certain conditions,
€« is related to an f-divergence. In Sec. 5.3.2, we show that the estimator 0, can be expressed as an

affine estimator of the observed frequencies. Subsequently, we compute the bias of this estimator.
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5.3.1 Minimax optimality

We begin by showing that the estimator 0, constructed by TOOL is minimax optimal to a

constant factor in the following sense.

Proposition 5.7. The estimation error €, of the estimator 5* constructed by TOOL with parameter
€ > 0 to learn the expectation value an observable O using the outcomes of M to a confidence level

of 1 — 6 € (0.75,1) satisfies

21og(2/9)

R(0,M(e,),0) < e, < log(1/(49))

R (0, M(e5), 0), (5.16)

where R (0,M(es),0) is the minimax optimal risk defined in Eq. (5.2).

Proof. This follows from Thm. 4.8 under the mappings defined in Tab. 2 and in the proof of

Prop. 5.6. 0

As in the case of the theoretical guarantee derived in Prop. 5.6, the above optimality result
applies when the measurement outcomes are obtained from the perturbed measurement protocol
M(e,). We prove in Thm. 7.13 that we get optimality guarantees for TOOL even for the case of

€, = 0. Observe that
21og(2/96)

og(1/(45)) < 654 (5.17)

for confidence levels greater than 90%. Thus, the multiplicative factor in Eq. (5.16) is small for
large enough confidence levels.

The estimation error e, is therefore an important quantity that needs to be studied in its
own right, as it can help understand the optimal performance for learning the expectation values of
observables. While a detailed study of €, is postponed to Ch. 7, where we relate €, to the minimax
norm, we note down some additional expressions for e, in this section. We begin with the following
expression for €,, which is helpful in computing it analytically as well as numerically. Additionally,
we show that solving the optimization problem in Eq. (5.18) is sufficient to compute the estimator

5* in Box 3.
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Proposition 5.8. The estimation error e, of the estimator constructed by TOOL with parameter
€c > 0, for learning the expectation value of O using outcomes of M, can be expressed as
1
&= max o (Tr(Ox1) — Tr(Ox2))

X1x2 €T (5.18)

1 2
s.t. BDm(eo)(Xl,XQ) < Nlog <5> .

Furthermore, if xi,x5 € & are the points achieving the mazimum in Eq. (5.18), and a, > 0

denotes the optimal value of the dual variable for the constraint BDoy(c,y (X1, x2) < (1/N)log(2/9)

in Eq. (5.18), then (X}, X5; o) can be used to construct the estimator O, in Box 3.

Proof. Tt follows from Prop. 4.9 that

(Tr(Ox1) — Tr(Ox2))

1
£y = max —
X1,X26X 2

(5.19)
s.t. BC(A(Xl),A(XQ)) > <g> )

where we use the fact that €, is equal to ®,(log(2/9)). Since
BD(A(x1),A(x2)) = —log(BC(A(x1),A(x2))), Eq. (5.18) follows from Lem. 5.5.

Next, from Prop. 4.11.4, it follows that (x7, x5; @) as defined in the statement of Prop. 5.8 is
a saddle point (maximum in x1,x2 € £ and minimum in a > 0) of the function

o 2 1
Prog(2/5) (X1, X25 0) = 7 log <5> + max, (2 (Tr(Ox1) — Tr(Ox2)) — aBDSﬁ(eo)(X17X2)> . (5.20)

Note that by Prop. 4.11.3, a saddle point for the function ®yug(2/s) (x1, X2; @) always exists. Moreover,
a > 0 is unique (Prop. 4.11.2). Tt is shown in Prop. 4.10.3 that Eq. (5.6) is the dual optimization
problem of Eq. (5.18), which shows that a, is the dual optimal. Since (x7, x4; ax) is a saddle point
of @j6(2/5) (X1, X2; @), @« achieves the minimum in Eq. (5.18), and x7, x5 € & achieve the maximum
in max,, y,ex ®1Og(2/6)(X1,X2;Oé*). It follows that (x7,x5; @) can be used for constructing the

estimator in Box 3. O
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We now give another expression for the estimation error in terms of the saddle points of
Eq. (5.6). This expression shows that, under some conditions, the error e, is proportional to an

f-divergence. We first define this f-divergence below.

Definition 5.9. Given probability distributions p,q on M symbols, define

W= Y LW (5.21)
1ESUpp p pigi

if p, ¢ have the same support, and oo otherwise. ]

We can, in fact, extend the definition of 0 to an f-divergence between arbitrary probability

distributions, which we show below.

Proposition 5.10. The function f: (0,00) — R given by

r—1)2
f(@) = (2\/%) (5.22)

defines an f-divergence 9(P,Q) = D¢(P,Q) between probability distributions P,Q on a measurable
space according to Eq. (2.3). 0 is symmetric in its arqguments. For discrete probability distributions

p,q on M symbols, 0(p,q) is equal to Eq. (5.21).

Proof. We can write

1
:ﬁ_ﬁ+

Since 1/y/z, —/z, and z%/? are convex on (0,00), f is convex. We also have f(1) = 0. Thus,

%m3/2. (5.23)

f(z)

0 = Dy as defined in Eq. (2.3) is an f-divergence. ? is symmetric because xzf(1/x) = f(x) for all
x € (0,00) [82, Rem. (7.3)].

It remains to verify that we obtain Eq. (5.21) for discrete distributions. For that purpose,

observe that f’(oco) = lim,_oxf(1/2) = co. Thus, if p is not absolutely continuous with respect to

q, then ?(p, q) = oo. Since p, q are discrete, p is absolute continuous with respect to ¢ iff the support

of p is contained in the support of g. Since d(q,p) = 0(p, q), it follows that d(p, q) < oo only when
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the supports of p and ¢ are equal. O

The f-divergence 0 is closely related to the x2-divergence. The x2-divergence (or Pearson
divergence) is an f-divergence defined by fp(z) = (x — 1)?/2 according to Def. 2.5, while the
reverse x2-divergence (or the Neyman divergence) is an f-divergence defined by fy = (x —1)?/2x
(see [94, Sec. (2.3)]). The x2-divergence is an important quantity in statistics, as it bounds the
performance of statistical methods for hypothesis testing and estimation (see, for example, [21],
where the y2-divergence is relevant for estimating the expectation values of Pauli observables).
defined in Eq. (5.21) is a symmetrized version of the x2-divergence, obtained by taking the geometric
mean of fp and fy, since f(x ﬁ for all x € (0,00).

Below, we give bounds on the estimation error ¢, in terms of the optimal points x7, x5 and
as of Eq. (5.6). When these optimal points satisfy some conditions, we can show that the error can

be expressed in terms of 0.

Proposition 5.11. Let x7,x5 € L and o, > 0 be the primal and dual optimal points respectively
for the optimization in Eq. (5.18). Fori € [L], let A be the linear map defined in Tab. 2. Then,

the following statements hold.

1. The error €, can be expressed as

. = 5 (TR(OX) ~ TH(0x3)). (5.24)

2. The error e, satisfies the bound

L . .
Ni oAV (x1), AV (x3))
— . < &4. 5.25
= 2 N BOAO () AD g 529
3. If the points x7, x5 are full rank and o, > 0, then we have
L
Zla ) (). A () 520
— N BC(AD(x]), AD(x3))’ '
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Proof. 1. The estimation error ¢, corresponds to the saddle-point value ®,(log(2/6)) in Eq. (4.20).
From Prop. 4.11.3, we know that Eq. (4.20) has a saddle point. Moreover, from the proof of
Prop. 4.11.3, we know that this saddle point attains the maximum in Eq. (4.18). From these
observations, we can infer that Eq. (5.6) has a saddle point (x7, x5; o), with x7, x5 € & and a, > 0.
The equation e, = (Tr(Ox7) — Tr(0x%))/2 then follows from Eq. (5.18).

2. From Eq. (5.18), we can infer that £, > 0 since any x; = x2 satisfies the constraint of the
optimization. Furthermore, 9(A® (x1), A®¥(x2)) < 0o and BC(A® (x1), A®D(x2)) > 0 for all i € [L]
and all x1, x2 € Z, since A®(y,) lies inside the relatively open simplex. Thus, if oy, = 0, then
Eq. (5.25) holds trivially. We therefore take a, > 0 for the remainder of the proof.

From Eq. (5.6), we can write

QU 2 1
T [N o (5) T s <2 (Tx(Ox1) = Tr{0x2)) = @« BDune 1, Xz))] oA

where x7, x5 attain the maximum. Slater’s condition holds for this optimization problem since
it is convex and relint  # @. Thus, KKT conditions are necessary and sufficient for optimality
(see Sec. 2.5 for details). In particular, the gradient of the Lagrangian with respect to the primal
variables vanishes at the optimum. The Lagrangian for the optimization problem, after converting

it to a minimization problem by changing signs of the objective function, can be written as

1 1 Oty 2
Z (X1, X2; K1, K2, V1, V2) = —§TF(0X1) + §T1"(@X2) - QW (Bng(eo)(Xl, x2) + log <5>>
(5.28)

+v1(Tr(x1) — 1) + va(Tr(xe2) — 1) — Tr(k1x1) — Tr(k2xe),

where 11,15 € R are the dual variables for the constraints Tr(x1) = 1 and Tr(x2) = 1 respectively,
and k1, kg € Sg are positive semi-definite matrices that are dual variables for the constraints x; > 0

and yo > 0 respectively. The gradient of & with respect to x1 and x» is given by

1 Oly
Vi Z(x1, x2; K1, Ko, V1, v2) = — -0 — 2—V, BDgp(cy (X1, X2) + V1 — K1,
, 2 N (5.29)
(6%
Ve Z(X1, X2; K1, K2, V1, V2) = 5@ - QN* V2 BDan(eo) (X1, X2) + v2 — Ka.
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To proceed, we evaluate the gradient of BDgy(,) using Eq. (5.10). Denoting E‘,EZ) = (E,(f) +

eol/M;)/(1 + €), we obtain

L M; =(2) 7=(7)
1 E Tr(E; " x2)
Vi BDon(eo) (X1, x2) = 5 ) N k. & A2
) 2 Z kZ BC(A® (x1), AD (x2)) \| Te(ED xy)
S (5.30)
L M; (%) m(2)
1 E Tr(E; " x1)
V2 BDop(eoy(X1,Xx2) = 5 ) Ni Tk —k A2
X2 ) 2 Z 2 BO(AD (x1), A (x2)) \| Tr(ED xo)
Using the definition of A® in Tab. 2 and N = Zle N;, we obtain
N
Tr(x1 Vi BDan(eo) (X1, X2)) =
o (5.31)
Tr(x2 Vi, BDan(eo) (X1, X2)) = -
Furthermore, we have
1
N (Tr(x2 Vy, BDan(e,) (X1, x2)) + Tr(x1 Vy, BDange,y (X1, x2))) — 1
L 7(i) (1)
1 () TI‘(Ek, X2) TI“(Ek 1)
= — Tr(E Xl X2 )< + -2
2N ; BC(AL )(X1 Z \/ ‘ T(Ev)  Te(EYx2)
L 7(4) (%)
1 ; Tr(E) "x1) — Tr(Ey
_ ﬁZBqu o Zﬁr B0y ) (50 yg) kN(i)> ( Ef x2))?
1 X1), (x2)) Tr(Ek Xl)Tr(Ek X2)
_ i Ni 2(AD (1), A (o))
“— N BC(AD(x1), A (x2))
(5.32)

Denote the dual optimal points as k], k3, V], V5. Then, using the above gradient calculations, the

fact that V,, & =0 and V,, & = 0 at optimality, and Tr(x]x}) = Tr(k3x3) = 0 by complementary
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slackness, we obtain

* * * 1 * *
0="Tr(x1Vy, Z(x1,x32)) = *§Tr(@><1) — s+

. 1
0=Tr(x3 Vi, Z(X1,X2)) = iTr(@xé) — o vy

* * * ]- * Q. * * * * * %k
0="Tr(x3 Vy, Z(X1,X2)) = —§T1"(@X2) - QWTr(XQ Vi BDope) (X1, X3)) + 1 — Tr(kix3)

* * * 1 * Ay * * * * X %
0="Tr(xi Vy, Z(X1,Xx32)) = iTr(@XO - 2NT1"(X1 Ve BDon(eo) (X1, X3)) +v5 — Tr(xix71)-
(5.33)

Solving for v{, v5 from the first two equations, and rearranging the last two equations, we obtain

L (i) ()
Z % AAu XQ)AA(S (Xi))) = Ex — % (Tr(kix3) + Tr(k3x7)), (5.34)
=1

where we used the fact that e, = (Tr(Ox}) — Tr(Ox3))/2. Since Tr(k]x3), Tr(k5x;) > 0, we obtain
Eq. (5.25).

3. By complementary slackness, we have Tr(k}x}) = 0 and Tr(x3x5) = 0. If x7 and x5 are
full rank, then we must have k] = k35 = 0 for complementary slackness to hold. When a.. > 0, we

also have Eq. (5.34). From these observations, we obtain Eq. (5.26). O

Numerically, we observe that the optimal points x7, x5 are full rank when we measure all
the Pauli operators, but not necessarily full rank when we measure only some Pauli operators.
Motivated by this observation, we hypothesize that x7, x5 are full rank when the implemented
measurement protocol is informationally complete. Further investigation is necessary to determine
whether or not this claim holds, and more generally, to characterize the conditions under which

X7, x5 are full rank.

5.3.2 Bias

We show in this section that the estimator 5* constructed by TOOL is affine in the observed
frequencies. We begin by defining what we mean by observed frequencies. Suppose that upon

implementing the measurement protocol M = {(E®, N;)}X | in an experiment, we observed the
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outcomes o) € [M;] for r € [N;] and i € [L]. Then, for each i € [L], the fraction of N; outcomes
that are equal to a particular label k € [M;] is called the observed frequency f,gi) of label k of

the ith POVM. Mathematically, this can be expressed as

(i _ HrelNi o = k)|

W N, (5.35)
We denote the vector of observed frequencies for the ith POVM as
FO= (1 D), (5.36)
and the large vector containing the observed frequencies of all the POVMs is denoted
f=0W, . 5, (5.37)

We show below that we can think of 0, as a function of f instead of the measurement outcomes,

and show that it is affine in f.

Proposition 5.12. Let 0, be the estimator constructed by TOOL to learn the expectation value of O

using outcomes of M. If o = (ogl), . ,05\1,1), . ,ogL), ... ,O%L)) denotes the outcomes observed upon

implementing M, and f denotes the corresponding vector of observed frequencies, then we have

0.(0) = 6.(f) = 3 (@ £D) + S (Te(0x7) + Tr(0x)) (5.38)
=1
where we denote
) = (69 (1),..., 60 (M), (5.39)

fori e [L].

Proof. For i € [L] and k € [M;], denote e*) to be the M;-dimensional vector with the kth

component equal to 1 and zero elsewhere. Then, we have d)ii)(k) = <¢Sf), e(i’k)>. Consequently, the
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estimator 5* in Eq. (5.9) can be written as

1 1
6.(0) = = 33 (8, el 1 (Tr(oxi) + Tr(0x3)) (5.40)
=1 r=1
Now, observe that we can write

Z (ot (5.41)
for all ¢ € [L]. From the above equations, we obtain Eq. (5.38). O

Using the above result, we can compute the bias of the estimator constructed by TOOL.

Corollary 5.13. If the true quantum state is p, then the bias of the estimator 5* constructed by

TOOL with parameter €, > 0 for learning the expectation value of O using outcomes of M is equal to

1 * *
TH(0p) — 5 (TH(OX}) + Tr(0XE)) + 52 (KL(Pon pIPoes) ;) — KL [P )+ (5:42)

2N

where M(es) is the perturbed measurement protocol defined in Def. 5./

Proof. Note that for all i € [L], we have E[f(?)] = p,(,), where (p( ))k = Tr(El(C ),0) for k € [M;]. Then,

denoting El(;) = (El(;) + el /M;) /(1 + €) for i € [L], from Eq. (5.38), we obtain

=6 =307 (047) + 5 (10D + TOx)

RSV THEXD) | 1
2N ZNz ZTI k P log ~(2) + 5 (Tr(@XI) + Tr(@XQ))

i=1 k=1 Tr(Ek Xg)
L M; (i) M, (i)
. . Te(E . Tr(E
- OSN3 THEY ) og (Qf)m) S (D) g (ﬁgg”)]
i1 k=1 Tr(E,"x3) k=1 Tr(E,"x7) (5.43)

+ 5 (TH(0x3) + TH(0x3))

L
o 2o [KLG1AC )~ KLGPIAD ()] + 5 (Tr(0x) + Tr(0x3)

(o7

1 . )
= 57 [KL(PwiplPanic)s) = KL(PonplIPom(ey )| + 5 (Tr(0XD) + Tx(0x5))
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where to obtain the last equality, we used the fact that KL(p ® ¢||p’ ® ¢') = KL(pl|lq) + KL('||¢")
for probability distributions p,p’, q,¢’. Since the bias of 0, is defined as Tr(Op) — E[@], we obtain

Eq. (5.42). O

Thus, the estimator constructed by TOOL is biased in general.

5.4 Optimization algorithm

To construct the estimator given in Box 3, we need to perform the optimization given
in Eq. (5.6). For this, we present the approach described in [92, App. B] for performing this
optimization.

Eq. (5.6) has two optimizations — an inner optimization over density matrices x1, x2, and an
outer optimization over o« > 0. Both these optimization problems are convex, and therefore, can be
solved with rigorous convergence guarantees.

Input: Observable O, measurement protocol M, confidence level 1 —§ € (0.75,1),

parameter 0 < €, < 1

Optimization algorithm:

(1) For a given v > 0, define the function f,: & x £ — R as

1
fa(X1,X2) = —5 (Tr(Ox1) — Tr(Ox2)) + aBDay(c,) (X1, X2)- (5.44)
Then, solve the inner convex optimization problem in Eq. (5.6)

1
max_ |5 (Tr(Ox1) — Tr(Ox2)) — aBDoy(e,) (X1, X2)
X1,X2€X | 2 (5.45)

= — min 1, X2
Al o Ja(x1, x2)

using the version of Nesterov’s second method [76] given in Ref. [101].
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(2) Perform the outer convex optimization over « in Eq. (5.6) using any algorithm that

can find a local minimum of a real-valued function on [0, c0).

Nesterov’s second method [76, 101], used for optimizing the function f, defined in Eq. (5.44)
over  x X, is an accelerated version of proximal gradient descent with the property that each iterate
lies in & x X. Nesterov’s second method is, therefore, suitable for optimizing convex functions of
the density matrix. Nesterov’s second method requires the Lipschitz constant of the gradient of the
objective function. When this Lipschitz constant is not known explicitly, one can use a backtracking
scheme to estimate the Lipschitz constant [101]. For implementing Nesterov’s second method for the
inner optimization in Eq. (5.45), one needs to be able to project a given Hermitian matrix onto the
set of density matrices. This can be done, for example, by diagonalizing the Hermitian matrix, and
projecting the eigenvalues onto the standard simplex using [104]. This is one of the computationally
costliest parts of the algorithm since diagonalizing a d x d matrix requires O(d?) time in the worst
case. Additionally, because we need to compute Tr(E,(:) x1) and Tr(E,(:) x2) for k € [M;] and i € [L]
to evaluate BDoy(c.)(x1, x2), We have an extra time cost of O(Md?), where M = S F | M; is the
total number of POVM elements. Similarly, since we need to store all the POVM elements in
memory, we also use O(Md?) memory. The outer optimization over « in Eq. (5.6) is convex and
one-dimensional. Therefore, the optimization algorithm given in Box 5 takes a total of O(d® + Md?)
time and O(Md?) memory. Finally, we remark that while theoretically €, can be an arbitrarily
small positive number, from a practical perspective, a very small value of ¢, can lead to numerical
issues since the gradient of f, can be very large. We leave the problem of devising methods to
circumvent such numerical issues for future work.

Since the outer optimization over a > 0 is one-dimensional and convex, off-the-shelf routines
work well because it suffices to find a local minimum (recall that every local minimum of a convex
function is a global minimum). The inner optimization over £ x 2, however, can be high-dimensional,
and one needs a convergence guarantee. Below, we show that the inner optimization problem satisfies
the requirements that guarantee the convergence of Nesterov’s second method to within a specified

precision.
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Proposition 5.14. 1. The objective function f, defined in Eq. (5.44) is convexr and smooth on an

open set containing X X I .
2. The gradient of fo is a Lipschitz continuous function on & X X .

3. Nesterov’s second method for optimizing f over & X & is guaranteed to converge to the optimum

to within the specified precision.

Proof. 1. To define the derivatives of f, on & x X, f needs to be well-defined on an open
set 9 containing & x 2. For that purpose, denote 7 = €,/(2max;cr) M;) and define @ =
conv(Uy, yoex B1(x1,7)xBi(x2,7)), where Bi(x,7) = {x' € X | |[X' — xll; < r}. Since Uy, yoeaBi(x1,7)x
Bi(x2,7) is open, it is contained in int @. Since 9D is convex, so is int P [8, Prop. (3.45)]. But 9 is
the smallest convex set containing Uy, y,ea B1(x1,7) X Bi(x2,r), implying that @ = int @, so that
D is open. Furthermore, £ x £ C @ by construction. Now, for all x; € 2 and all x € By(x1,7),
we have Tr(E,(:)X) = Tr(E,(f)xl) + Tr(E](:)(X —x1))- We have 0 < Tr(E,(:)Xl) < 1, and by matrix
Holder’s inequality, we have |Tr(E,ii) (x—x1))| < HE,(:)HOO X —xally <, since HEIE:Z)HOO < 1 for each
POVM element E,(f). A similar statement holds for all yo € 2 and all x € By(x2,r). It follows from
Eq. (5.10) that BDgy,), and therefore, f,, is well-defined on . Furthermore, it can be verified
from Lem. 5.5 that BDgy(,) is convex and smooth on 9, and thus, f, is convex and smooth on <.

2. Since f, is smooth on 9, its derivatives are continuous. In particular, its Hessian is
continuous on X" x X, and since & is compact, the Hessian is bounded on & x 2. Then, from the
mean value theorem, it follows that V f, is Lipschitz continuous.

3. Since f, is convex with a Lipschitz continuous gradient, and 2 x & is a compact and

convex set, Nesterov’s second method for minimizing f, over &' x & is guaranteed to converge

(see [100, Sec. 3] and [101, Thm. 1(c)]). O

An open source implementation of the algorithm in Box 5 can be found in [90].
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Chapter 6

Application to fidelity estimation

In this chapter, we apply TOOL to the problem of estimating the fidelity with a pure state.
The results presented in this chapter are borrowed from the papers [91, 92|, albeit with some
modifications to fit the presentation of the previous chapters. We begin by presenting the motivation
for studying the problem of fidelity estimation.

A typical goal in experiments and applications is to prepare a pure quantum state piarget,
which we call the target state, as a resource for other quantum information tasks like computation
and communication. However, due to noise and experimental imperfections in the current quantum
devices, one usually ends up preparing a mixed state p, which we hope is close to the target state.
A commonly used measure in experiments to check whether two states are close to each other is the
quantum fidelity (Def. 3.5). When the target state prarget is pure, the quantum fidelity between the
experimentally prepared state p and the target state prarget is equal to F'(prarget, p) = Tr(prargetp)
(Prop. 3.6.5). Thus, estimating fidelity with piarget is equivalent to learning the expectation value of
Prarget, Which allows us to use TOOL for this problem.

In Sec. 6.1, we apply TOOL on experimental data to learn the fidelity with a desired target
state. We also compare the fidelity estimates given by TOOL with those obtained from quantum
tomography performed using maximum likelihood estimation (MLE). In Sec. 6.2, inspired by direct
fidelity estimation (DFE) [33, 26], we study a randomized Pauli measurement scheme, where the
probability of sampling a Pauli operator is determined by piarget. We show that TOOL can give

better guarantees than DFE for this sampling scheme, and it is also possible to construct exact



Docusign Envelope ID: 3AE25DC6-0FF1-4FFD-BDBE-A4F50E 159038

109

confidence intervals for fidelity.

6.1 Comparison with maximum likelihood estimation

In this section, we test the estimator constructed by TOOL on experimental data from a
trapped-ion quantum processor [84] for the task of estimating fidelity with a quantum state. We
consider data for three different 4-qubit target states: a GHZ state, a W-state, and a locally-rotated
linear cluster state. Each dataset consists of 81 Pauli measurements, with 100 repetitions of each
Pauli measurement.

TOOL is used to construct an estimator for each of the target states we consider (GHZ state,
W state, locally-rotated linear cluster state) for a confidence level of 95% following Box 3. We fix the
parameter €, = 107° in Box 3. The estimates and the errors are computed using the experimental
data following Box 4.

For comparison, we also perform Maximum Likelihood Estimation (MLE) [53, 59] to recon-
struct the quantum state, as it is a popular tool that is used in many experimental studies. The
fidelity is estimated from the reconstructed quantum state p by computing Tr(piargetp). Since
MLE only provides a point estimate, we need some method to obtain uncertainty bound for the
computed estimate. For this purpose, we use a variant of the bootstrap method [27] for computing
confidence intervals. To construct a bootstrap confidence interval, we “artifically” generate outcomes
according to the observed frequencies in the experiment (these artificial outcomes are generated
using a classical computer). The state is reconstructed using the artificially generated outcomes,
which then gives an “artificial” estimate for fidelity. This process is repeated many times, and we
construct a (possibly asymmetric) confidence interval at the specified confidence level around the
median of the artificial estimates. The confidence interval is then shifted from the median to the
original MLE estimate computed from the experimental data. Note that the confidence intervals so
constructed are heuristic, and generally does not satisfy the guarantee that the true value lies inside

the computed confidence interval at the specified confidence level. For comparison purposes, we

define the error for bootstrap as half the size of the bootstrap confidence interval. We call this error
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the “bootstrap error”.

In Tab. 3, we list the fidelity estimates obtained from TOOL and MLE, along with the
respective errors. When we compare the error given by TOOL with the bootstrap error, it should be
understood that we are comparing the size of the respective confidence intervals. We can see from
Tab. 3 that the estimates obtained from TOOL and MLE agree well with each other. The error
e« computed from TOOL, however, is about 2.5 times the size of bootstrap error. There are two
main reasons for this discrepancy. One, the bootstrap error depends on the state that is prepared,
unlike TOOL which gives worst-case (minimax) errors by construction. Two, the bootstrap error is
heuristic, and not always guaranteed to be correct. This is especially true when the fidelity is high,
as we get close to the boundary of the set of quantum states. In addition, MLE is prone to several
problems, which have been well-documented in the literature [67, 85, 87, 32, 15]. In contrast, TOOL

comes equipped with rigorous guarantees, and is minimax optimal (see Thm. 7.13).

TOOL MLE

Estimate Ex Estimate Bootstrap error

GHZ 0.84 0.053 0.84 0.023
W 0.89 0.049 0.88 0.019
Cluster 0.79 0.048 0.79 0.021

Table 3: Fidelity estimates and estimation error for a 4-qubit GHZ state, W state, and a cluster
state obtained from experimental data for a confidence level of 95%. Estimates are calculated using
TOOL and MLE. The error for MLE is obtained from Monte-Carlo (MC) resampling.

To study the claim that MLE with bootstrap can give incorrect results, we consider a numerical
example. Our goal is to estimate the fidelity with a 3-qubit W-state. For this, we measure the
eigenvalues of all the non-identity Pauli operators that have non-zero overlap with the W state.
Each of these Pauli operators is measured 100 times. In order to perform these measurements
numerically, we choose a true state p that has a fidelity of 0.991 with the target state. Such a high

fidelity means that the true state is close to the boundary of the set of density matrices. We perform
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a total of 150 simulations, where the state p is prepared, the Pauli measurements are performed, the
fidelity is estimated using MLE, and confidence intervals are constructed using bootstrap. We find
that MLE with bootstrap gives an empirical coverage probability of 72%, which is much smaller
than the chosen confidence level of 95%. This means that the error reported by bootstrap is too
small. Therefore, for a realistic situation that one may encounter in practice, we find that MLE
with bootstrap gives incorrect results.

In addition to the statistical correctness of TOOL compared to MLE and bootstrap, TOOL has
the advantage that it is less computationally costly to implement compared to MLE and bootstrap.
This is because the costly optimization to compute the estimator only needs to be performed
once for TOOL, whereas one needs to repeatedly reconstruct the state for constructing bootstrap
confidence interval. Moreover, TOOL can construct the estimator independently of the experiments,
so that the estimator construction does not lead to a bottleneck. MLE, on the other hand, can
only be performed after the experiment is completed, which can lead to a computational bottleneck
in the characterization process. Finally, since the estimator constructed by TOOL can be reused
and can also efficiently compute estimates from data, this estimator may be used for uncertainty
quantification in place of the MLE estimator. This might be useful, for example, in situations where

we wish to model and understand the effects of noise on the computed estimates.

6.2 Comparison with direct fidelity estimation

Direct fidelity estimation (DFE) [33, 26] is a technique that estimates the fidelity with a
given target state without reconstructing the state (hence “direct”). This is achieved by judiciously
sampling Pauli operators based on the specified target state and measuring them. In this section,
we introduce a slightly different importance sampling scheme for Pauli operators for estimating the
fidelity with a given target state, and show that TOOL gives improves upon the performance of
DFE for this sampling scheme. We show that TOOL can use outcomes of the modified importance
sampling scheme to get a significant improvement in the dependence of the sample complexity on §

over a biased version of DFE, in the worst case over all target states. Note that we compare with a
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biased version of DFE because the sample complexity of the commonly used unbiased version of
DFE in the worst case over all target states is infinity. For well-conditioned states, the performance
of TOOL for the modified importance sampling scheme matches with the performance of DFE.

We begin by describing the DFE measurement protocol. Let piarget be an n-qubit pure
target state and denote d = 2. For i € {0,...,d?> — 1}, the Pauli P; is sampled with probability
(Tr(P;prarget))?/d, and subsequently we measure the POVM {(I + P;)/2, (1 — P;)/2}. This procedure
is repeated many times, and the outcomes are used to learn the fidelity with ptarget according to the
estimation procedure given by [33, 26]. This estimation procedure constructs an unbiased estimator
for fidelity in terms of the expectation values of Pauli operators that are sampled according to the
DFE sampling scheme (we refer the reader to [33, 26] for details). The sample complexity of DFE
in the worst case over all target states is equal to infinity. This is because there are target states for
which there is an arbitrarily small (but non-zero) probability that we sample Pauli operators which
have an arbtirarily small overlap with the target state, which in turn leads to an arbitrarily large
sample complexity for DFE. That said, since the probability of sampling such Pauli operators is very
small, it is perhaps unfair to study the performance of DFE in the worst case over all target states.
For this reason, we focus on comparing with a biased version of DFE that was noted in [33, 26],
which avoids sampling Pauli operators that have too small an overlap with the target states. [33, 26]
show that the number of samples required to learn the fidelity to an error € > 0 and confidence
level 1 — 4 > 0 using biased DFE is bounded above by

o(Lue(2) 4 4) o

in the worst case over all target states.

If instead of looking at the worst-case performance over all target states, we look at “well-
conditioned” target states, the performance of DFE can be significantly improved. piarget is said
to be well-conditioned with parameter 3 > 0 if for all k € {0,...,d? — 1}, we have either

Tr(Pyprarget) = 0 or | Tr(Prprarget)| > B [33]. Many interesting states, such as stabilizer states and
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Dicke states, are well-conditioned [33, 26]. Observe that well-conditioned target states avoid the
problem of having arbitrarily small (but non-zero) overlap of Pauli observables with the target state,
and therefore, there is no need to truncate the sampling probabilities and introduce a bias. For

target states that are well-conditioned with parameter (3, the sample complexity of DFE is [33]

0 ( 62152 log (;)) | (6.2)

If 5 scales polynomially with 1/n, then DFE can efficiently estimate the fidelity with prarget-

Importantly, for all stabilizer states, we have 8 = 1, which means that we can estimate the fidelity
with a pure stabilizer state with a number of samples that does not scale with the dimension of the
system.

We work with a slightly different sampling scheme for estimating the fidelity with piarget
that gives the same or better guarantees than DFE. This importance sampling scheme was studied
in [98, 92].

Box 6: Importance sampling-based Pauli measurements

Input: Pure state piarget, total number of samples V.
Procedure:

(1) Sample a non-identity Pauli operator P; for i € [d* — 1] with probability

p; = ‘Tr(PiPtarget)’
i = 2 .
Z?:l ! |Tr(Piptarget)|

(6.3)

(2) Measure the eigenvalue of the sampled Pauli, and record the measurement outcome.
(3) Flip the measurement outcome £1 — F1 if Tr(Piprarget) < O.
(4) Repeat the procedure N times.

Output: Post-processed measurement outcomes
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Because we flip the measurement outcome in step (3) of Box 6 depending on the sign of
Tr(P;prarget ), we are effectively measuring S; = sign(Tr(P;p))P;. We seek to measure S; because we

can write the state parget as

| TI'(Ppt T t)
Ptarget = g + v ZTagePi
el (6.4)
=3t7 Z pilSi,
=1
where
d?—1
N = ITr(Piprarget)| (6.5)
i=1

is the normalization factor in Eq. (6.3). Moreover, if the true state is p, then the probability of

obtaining +1 outcome in the measurement protocol defined in Box 6 is equal to

dQZ_:lpiTr <I 4—251- p) : (6.6)

=1

Thus, the effective POVM describing the measurement protocol in Box 6 is {©g, | — O}, where

00— S n (52) = (555 ) s+ (55 ) 0= b (01

=1

Motivated by this observation, we compute the sample complexity of TOOL for estimating the fidelity
with ptarget by measuring the POVM {wlptarget +wa(l— ptarget)a (1- wl)ﬂtarget +(1—w2)(1— ptarget)}v
where wy,ws € [0,1]. The case of w1 = wy gives a trivial POVM, and can therefore be discarded.
Consequently, there is no loss of generality in taking w; > ws. The following result is a modified

version of [92, Thm. C.1].

Proposition 6.1. Given a pure state piarget, consider the measurement protocol M = {({O,1 —
©},N)}, where

O = W1 Ptarget + U-)Q(I - ptarget) (68)
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for wi,ws € [0,1] with wy > wa. Given €, > 0, denote W} = (w1 + €/2)/(1 + €) fori=1,2. Then,

the following results hold.

1. The error e, of the estimator constructed by TOOL with parameter €, > 0 using the outcomes of

M to a confidence level of 1 —§ € (0,1) can be written as

1
€y = a —(A1— A
)\1,1;\265[%),1} 2( ! 2)

st —log (\/0u§4—(wi——ué)Al)Qu§4—(wi——ué)A2) (6.9)

= )~ M = )+ o~ D)) 2 1o (3).

Furthermore, the estimator in Box 3 can be constructed in O(1) time and memory irrespective of

the system dimension.

2. The number of samples needed by TOOL to estimate Tr(prargetp) to within an error of € € (0,0.5)
and a confidence level of 1 — & € (0,1) using the outcomes of M and parameter e, > 0 is at most

(14 €)% log(2/9)

o o (6.10)

Proof. 1. For every state x, there is a number X € [0, 1] and an observable O+ such that Tr(6+) = 1,
Tr(ptarget@L) = 0, and

X = Mtarget + (1 — N0+ (6.11)

The number A is uniquely determined by x. Using this fact along with Eq. (3.8), it can be verified

that

BCon(x1, x2) =/ (@ + (@} — wh) M) (wh + (w] — wh)Ay)

/(0 = ) + (wh = wM)((1 = wh) + (wh — wf)Ao)

(6.12)

for all x1,x2 € X, where A1, \y € [0, 1] are determined by x1, x2 according to Eq. (6.11). Then,
Eq. (5.18) gives Eq. (6.9). Eq. (5.6) is just the dual problem of the optimization in Eq. (6.9)

(see Prop. 4.10.3), and therefore, the primal optimal (A}, \5) and dual optimal (a.) points can be
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computed in O(1) time and memory. It can be verified that ¢, in Eq. (5.8) depends only on A}, A%
and a, and therefore, the estimator in Eq. (5.9) can be computed in O(1) time and memory.

2. From Eq. (5.18) and Prop. 4.15.2, for £, < 0.5, we must have a, > 0. By complementary
slackness, this implies BCon(x¥, x5) = (6/2)Y/N, where x*, x5 denote the states attaining the
maximum in Eq. (5.18). Let A}, A5 € [0,1] be determined by x7, x5 as per Eq. (6.11). Therefore,

denoting v = (§/2)%", there is some a* € [0,1] such that

V(@ + (@] — Wh)XD) (wh + (wf — wh)Ng) = a* /7

(6.13)
V(=) + (@) = WDAD((1 - wh) + (@ — wh)X3) = (1= a")y/7
and e, = (A] — A3)/2. Solving for A}, A5 in terms of a*, we obtain
2a* — 1 1 — 2w) V1—
y= QDA Z 2, \/1 —1)%y
2(w) — wy) 2(w) — wh) (6.14)
2a* — 1 1 — 2w} VI= '
o Q02 VI g,
2(w) — wy) 2(wy — wp)
Thus, we have the bound
V1I—r V1I—7
<Y A (e — 1)y < T 6.15
Using v = (6/2)%N and Eq. (8.17), we obtain
1 21og(2/9)
< . 6.16
TEa VTN (0:10)
Setting €, = ¢ and solving for N gives Eq. (6.10). O

We now compute a bound on the sample complexity of TOOL for the measurement protocol

described in Box 6. The following result is a modified version of [92, Thm. I1.2].

Corollary 6.2. TOOL can estimate the fidelity with a pure target state piarget to an error of
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€ (0,0.5) and a confidence level of 1 — 6 € (0,1) using

o((7) 2 ()

outcomes of the measurement protocol in Box 0, where N is given in Eq. (6.5). Furthermore, for all

Prarget, we have N </ d+1(d — 1), and if prarget s well-conditioned with parameter 3 > 0, then

o (Lame (2)). o)

Proof. From Eq. (6.7), the effective POVM of Box 6 can be written as {w1 ptarget +w2 (1 — prarget ), (1 —

the sample complexity of TOOL is

CA-)l))otarget + (1 - w2)(| - ptarget)} with

(6.19)

Then, Eq. (6.17) follows from Prop. 6.1.

The bound on ./ can be obtained by solving the convex optimization Zizl x; subject to the
constraints x; > 0 for all i € [d® — 1], and Zizl z? <d— 1. See [92, Thm. I1.2] for details.

Now, suppose that piarget is well-conditioned with parameter 8 > 0. Since piarget is pure, we
must have Z ( (Rptarget))2 =d — 1. Then, if K denotes the number of non-identity Paulis
with non-zero overlap with prarget, we have K < (d — 1)/ by definition of well-conditioned state,

and therefore, /' < K < (d —1)/5. Then, Eq. (6.18) follows from Eq. (6.17). O

The sample complexity of TOOL for the measurement procedure given in Box 6 is bounded
above by O(dlog(2/6)/e?) in worst case over all true states and all target states. Observe that the
dependence on ¢ is significantly better for TOOL compared to biased DFE in the worst case over all
target states (O(log(1/0)) for TOOL versus O(1/9) in DFE). On the other hand, if the target states
are well-conditioned, then the sample complexity of TOOL is the same as the sample complexity of

DFE.
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Chapter 7

Lower bounds on learning expectation values

In this chapter, we first define the minimax norm and studying its properties in Sec. 7.1.
Then, in Sec. 7.2, we show that for a fixed measurement protocol, the minimax norm gives a tight
lower bound on the estimation error. Subsequently, we show in that TOOL can achieve this lower
bound to within a small factor. Often the measurement protocol is fixed based on experimental
constraints and the observable whose expectation value we wish to learn. If we had the ability to
implement any measurement protocol of our choice, then we show in Sec. 7.3 that measuring in the
eigenbasis of the observable is optimal. Finally, in Sec. 7.4, we discuss extension of our lower bound

to learning the expectation values of many observables simultaneously in /,.-norm.

7.1 Minimax norm

In this section, we define the minimax norm and study its properties. We also look at a few
different interpretations of the minimax norm.

Since we only have access to finitely many outcomes in any experiment implemented in
practice, we cannot have perfect knowledge of the quantum state or the expectation value. The
minimax norm seeks to quantify how large the uncertainty in estimating the expectation value must

be for any estimation procedure in the worst case.

Definition 7.1 (Minimax norm). Given a measurement protocol 9 and a confidence level
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1 -9 € (0,1), the minimax norm of an observable O determined by 9t and 1 — § is defined as
1
1Ol s = max o (Tr(Ox1) — Tr(Ox2))
X1,X2€L 2 (7 1)

1 2
t. BD < —1 -
s m(x1, x2) < v log (5> ,

where N is the total number of samples used by 9t and BDgy is the average Bhattacharyya distance

defined in Eq. (3.5). O

In the following two paragraphs, we motivate the definition of the minimax norm by relating
it to the estimation error. We begin by motivating the need to study the worst-case estimation error.
Suppose that the state p was prepared in an experiment, but we don’t know p. Our goal is to learn
the expectation value of the observable @. So we choose a measurement protocol 91 for this purpose,
and perform measurements specified by 9t on p. The outcomes observed in the experiment will give
us some confidence region € within which the expectation value Tr(0p) must lie with probability
greater than 1 — §. We can define the estimation error as half size of the confidence region, given
as (1/2) maxy, o,e% (01 — 02). Since the measurement outcomes are obtained probabilistically, they
can be different every time the experiment is performed. Therefore, it is helpful to know what is
the worst-case error in learning the expectation value of O using the measurement protocol 91, no
matter what state p was/will be prepared by the device, or what measurements outcomes were/will
be observed when implementing 1.

We can, therefore, ask for the following constraint: if p is the true state, then the “distance”
between p and another state y; consistent with the measurements is bounded above by some number
u. Since we want the error to be dependent on the measurement protocol but independent of
the measurement outcomes, we use a distance measure defined on the probability distributions
determined by the measurement protocol, which leads us to classical distance measures we studied
in Ch. 3. Furthermore, we posit that u should depend on the chosen confidence level 1 — § and the
number of samples N as follows: u increases as ¢ decreases, and u decreases when N increases. The

reason is that if § is very small, then we need to allow for a larger error since we want to estimate to
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a very high confidence level. On the other hand, if N is large, then we have a large amount of data,
using which we can reduce the estimation error. When defining the minimax norm, we claim that the
“correct” distance measure to look at is the average Bhattacharyya distance determined by 991 and the
“correct” upper bound is u = log(2/0)/N. This gives us the constraint BDoy(x1,p) < log(2/9)/N.
Since we want our uncertainty bound to be valid no matter what state p was prepared by the device,
we look at all the states x1 and y that satisfy the constraint BDop(x1, x2) < log(2/0)/N. Then,
the minimax norm defined in Eq. (7.1) is just (half the) maximum difference in expectation value of
O between states satisfying this constraint.

Since the average Bhattacharyya distance BDgy is the negative logarithm of the geometric-
average Bhattacharyya coefficient BCoy (Eq. (3.6)), and the geometric-average classical fidelity

satisfies FCoy = BCgﬁ, we can rewrite the minimax norm in terms of these as follows.

1
0] = — (Tr(O — Tr(0O
101lon 5 Jhax 2( (Ox1) (Ox2))
s.t. BCor(x1,x2) > <2> ,
1 (7.2)
= — (Tr(O —Tr(0
Jnax 2( r(Ox1) — Tr(Ox2))
S\2/N
st. FCom(x1,x2) > <2> .

Thus, we can interpret the minimax norm in terms of BCgy or FCyy instead of BDgy. The advantage
of working with BDgy is that it is a proper convex function (see Prop. 3.8).

We now prove that ||-[loy 5 is a seminorm on the set Sy of d x d Hermitian matrices. To
understand why |[|-[|oy 5 is only a seminorm and not a norm on Sy, we return to the connection
between the minimax norm and the error for estimating expectation values. If the observable whose
expectation value we want to learn is @ = cl for some ¢ € R, then its expectation value is equal to c,
no matter what the state is. Thus, the error for learning the expectation value of such an observable
should be zero. This notion is captured by the minimax norm, where we have ||cl||yy s = 0 for all

c € R. This is what leads to ||||oy 5 being a seminorm instead of a norm. Indeed, we show that when
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we “mod out” the constant matrices from Sy, ||-||oy 5 becomes a norm.
k)

Proposition 7.2. Fiz the measurement protocol M and the confidence level 1 —§ € (0,1). Then,

the following statements hold.
1. ||"llgn 5 s @ seminorm on Sq.
2. Denoting J = {cl | c € R}, |“|lgn 5 is a norm on Sq/.7 .

Proof. 1. First, we prove that [|-||sy 5 is non-negative. Since x1 = x2 satisfies BDon(x1,x2) = 0 and
Tr(0x1) — Tr(Ox2) = 0, we have [|O]|gy 5 > 0 for all observables O.

Next, we prove that [[cOlgy s = |c[[|O]lgy s for all ¢ € R and observables 0. Given any
¢ > 0, we have [cOllyy 5 = |0y 5 by linearity and the fact that multiplication with a positive
constant commutes with maximization. To handle the case of ¢ < 0, we note that BDgp(x1, x2) =
BDyn(x2, X1), and thus the optimization in Eq. (7.1) is invariant under the exchange of x1, x2. Thus,

for ¢ = —|c¢| < 0, we obtain

Ie0lans =1e] max, { = 3 (760x0) ~ Tv0x2)) |BDom(x1: ) < 108 () = el [0l
(7.3)
Finally, we prove the triangle inequality. Given 01,0y € Sy, we have Tr((01 + 02)(x1 — Xx2)) =
Tr(O1(x1—x2)) +Tr(O2(x1—X2)). Then, because max.ez(f(2)+9(2)) < max.cz f(2)+max.cz g(2)
for all real-valued functions f, g and all sets Z, we can infer that |01 + Oa|lgy 5 < [|O1]lgn 5 + |O2]lgp 5-
2. The elements of S;/.7 are cosets [0] = {O + ¢l | ¢ € R} for O € S;. Given a coset
(0] € Sq/.7, we show that || ||gy 5 = [[Ollgn 5 for all o € [O]. Since o € [0], we have o = O + cl for
some real number ¢, and therefore, Tr(/x1) — Tr( x2) = Tr(O(x1 — x2)) + cTr(x1) — cTr(xe2) =
Tr(0x1)—Tr(Ox2) for all x1,x2 € L. It follows that [|O|lgy 5 = |||y 5- Thus, we can unambiguously
define ||[O]llgn 5 = [|O|lon s> s0 that [|[O]]|sy 5 is a seminorm on Sg/.7.
Thus, to show that [|-[|gy 5 s @ norm on Sy/.%, it suffices to show that [0] # [0] implies

[[@]llgn,s > 0. Given [0] # [0], choose any representative O of [0], so that O # cl for any ¢ € R.

Then, we must have Amax(0) — Amin(0) > 0. Denoting N = N (M), /7 = (6/2)"/N € (0,1), and
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[Amax) 5 | Amin) to be eigenstates of © corresponding to the maximum and minimum eigenvalue, we have

for all x € & that the states x| = (1—/7) [Amax) (Amax|+v7x and x4 = (1=1/7) [Amin) (Amin|+v/7X

satisfy BCon(x}, x4) > VF(X4, xb) > 1—|Ix} — Xbll¢y = +/7- The first inequality is a consequence of

Therefore, from Eq. (7.2), we have 2||0]|gy 5 > (Amax(0) — Amin(0))(1 — /7). Thus, for any finite

Prop. 3.7, and the second inequality is a consequence of Fuchs-van de Graaf inequality (Eq. (3.3

N, we have [|0||gy s > 0, proving the claim. O

Due to the above result, we refer to [-|s; s as the minimax norm, instead of the minimax
seminorm, even though it is a seminorm on S;. Since the minimax norm is closely related to the set

of density matrices satisfying the constraint in Eq. (7.1), we define the constraint set below.

Definition 7.3. Given a measurement protocol 9t using N samples and a confidence level 1 — § €

(0,1), we define the constraint set

1 2
6.0) = { (x2) € 7 % 7 | BDmOxe) < ox (5) }. (.4
and the constraint-difference set as
1
26(.6) = { 00— xa) | (uoxa) € 6EM) - (7.5)

O]

There is a duality between the constraint-difference set and the minimax norm, which we
show in Prop. 7.6. Thus, it is useful to study some properties of the constraint set and the

constraint-difference set.

Proposition 7.4. Fiz the measurement protocol M and the confidence level 1 —§ € (0,1). Then,

the following statements hold.

1. The constraint set € (9M,d) satisfies the following properties:

i. €(IM,H) is compact and convex.
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ii. For all x € L, we have (x,x) € €(IM,J).
iii- (x1,x2) € €M, 0) iff (x2,x1) € €(M, ).
2. The constraint-difference set A€ (M, ) satisfies the following properties:

i. AG(IM,0) is compact and conver.
ii. 0 € AG(IM,0).
iii. A€ (M, ) is symmetric: —AG (M, ) = AG(IM,0)
iv. AB(M,0) is balanced: for all a € R with |a| <1, we have aAB (M, 0) C AB(IM,0).
v. AB(IM,0) absorbs all traceless observables: for all O € Sy with Tr(O) = 0, there is some
r > 0 such that a0 € AG (M, ) for all |a| <.
vi. AB(IM,0) spans the subspace of traceless observables: span A€ (M, ) = {0 € Sy | Tr(O) =

0}.

Proof. 1. i. Since BDgy is a proper convex function (Prop. 3.8), the constraint set € (9, 0) is convex
(see [8, Cor. (8.5)]). To show that & (9M,0) is compact, we write it as

S\ N
%(Sm, (5) = {(Xl,XQ) EX XX ’ BCgﬁ(Xl,Xg) > <2> } . (7.6)

Since BCyy is continuous, the constraint BCor(x1, x2) > (6/2)'/Y defines a closed set. Since X x I
is compact, and the intersection of a closed set and a compact set is compact, € (9, J) is compact.
ii. Since for all x € &, BDon(x, x) = 0, we have (x, x) € €(IM,0).

iii. Since BDan(x1,x2) = BCan(x2, X1), we have (x1,x2) € €(9M,6) iff (x2,x1) € €(M,9).

2. i. Since A€ (9, 0) is the linear image of € (IM, J), it is a compact and convex set.

ii. Since (x, x) € €(9M,0) for all x € X, we have 0 € AG (M, J).

iii. Since (x1,x2) € €(M,0) iff (x2,x1) € € (M, ), we have —AG (M, ) = AG (M, J).

iv. Since A€ (9N, 0) is symmetric, it suffices to show that aA€ (M, ) C A€ (M, 0) for a € [0, 1].

Because A€ (I, 9) is convex and 0 € AG (M, J), aAEG (M, 5) C A€ (IM,0) for a € [0, 1] holds.
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v. Since A®(IM, ) is balanced, it suffices to prove that there is some r > 0 such that
rO € AG(IM, ). First take 0" = O/ ||O|,. Since Tr(6’) = 0 and ||0’||; = 1, there are states
X1, X2 such that @' = (x1 — x2)/2. Furthermore, for any a € [0,1) and any y € 2, taking
X; =ax1+ (1 —a)x and x5 = axe + (1 — a)x, we have a0’ = (x} — x4)/2. From Eq. (3.37) and
Eq. (3.32), we have 1 — BCo(x1, x2) < X1 = X2 llonmax < X1 = Xallee = @llx1 — X2l < a. Thus,
for a =1 — (6/2)Y/N, we have BCon(x}, x5) > (6/2)Y, so that (¥} — x5)/2 € AB(M, ). It follows
that taking r = a/ ||0]|; gives rO € A€ (N, ).

vi. Since A€ (9M,d) is absorbing for traceless operators, any traceless O € S; can be written

as 0 = c(x1 — x2)/2 for (x1 — x2)/2 € A€ (M, ) and some ¢ € R. O

A set that is both convex and balanced is called a disc [75, Def. (4.2.7)]. Parts ii and iii
of Prop. 7.4.2 show that A€ (I, 0) is a disc. The fact that AG (M, J) is absorbing for traceless
matrices means that it can be expanded to fully cover the subspace of traceless matrices.

We now prove some simple but useful properties of the minimax norm.

Proposition 7.5. Let O be an observable, M be a measurement protocol, and 1 — & € (0,1) be the

confidence level. Then, the following statements hold.
1. For any c € R, we have [|0 + clfgy 5 = [|0]|g 4-

2. Denoting Amax(0) and Apin(0) as the mazimum and minimum eigenvalues of O, we have

)\max(@) - Amm(@)

0 <
165 < ;

(7.7)

3. The optimization in Eq. (7.1) defining the minimax norm is convexr. Moreover, there is an extreme

point of the constraint set € (M, ) that attains the mazimum in Eq. (7.1).
4. ||O|lgn s s a monotonically decreasing function of 0.

5. [|Ollgn s is a monotonically decreasing function of L (number of POVMs) and N, ..., N, (number

of repetitions of each POVM).
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6. ||Ollgn 5 is a continuous and convex function of O.

Prop. 7.5.1 says that the minimax norm is invariant under translations of the observable by a
constant matrix. From the point of view of estimation, this means that the estimation error only
depends on the spread of the eigenvalues of the observable, and not the actual numerical values.
An analogy of this property can be drawn with the freedom in shifting the reference energy of a

Hamiltonian, which is commonplace in the analysis of physical systems.

Proof. 2. Dropping the constraint in Eq. (7.1), we obtain

[u—

[0l < 5 miae, (Tr(Ox1) = TH(OX2) < 5 (ma(0) = Auin(0)) (7.9

)

3. From Prop. 7.4.1, we know that the constraint set € (91, 0) is compact and convex. Since
the objective function Tr(0x1) — Tr(Ox2) is affine in (x1, x2), the optimization in Eq. (7.1) is convex.
Since the maximum of an affine function on a compact and convex set is attained at an extreme
point of the set, there is an extreme point (x7, x5) € € (M, d) that attains the maximum in Eq. (7.1).

4. We have €(9M,§) C €M, ) for 6 > §'. Therefore, the set over which (Tr(Oxy) —
Tr(Ox2))/2 is maximized in Eq. (7.1) shrinks as ¢ increases, and subsequently, the value of the
minimax norm decreases, proving the claim.

5. For a fixed L, as the value of Ni,..., Ny increases, the value of (BCon(x1,x2)) =
Hle[BC(pgfl) , p§§2))]Nz decreases, as the Bhattacharyya coefficient is bounded between 0 and 1.
Similarly, if we add additional POVMs (i.e., increase L), then the value of (BCop(x1,x2))" =
Hle[BC(pQ,p@)]Ni decreases. As a result, the constraint set €(9M,0) = {(x1,x2) € T x I |
HZ-Lzl[BC(pgg,pgg)]Ni > 0/2} shrinks in size, from which the claim follows.

6. Since ||||9ﬁ5 is a seminorm, it is convex. Since any real-valued convex function on a

finite-dimensional vector space is continuous [8, Cor. 8.40], ||-|lgn 5 is continuous. O

We now show that there is a duality between the characteristic function of the constraint-

difference set A% (9, ) and the minimax norm. Since there is a bijective correspondence between
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a set and its characteristic function, this can be thought of as a duality between A% (9, ) and

+{logt 6-

Proposition 7.6. Fiz the measurement protocol MM and the confidence level 1 —§ € (0,1). Then

the following statements hold.

1. With Sagon,s) defined to be the support function of A€ (IM,d) according to Eq. (2.7), we have

[llon 5 = Saz s ()- (7.9)

2. With xag(om,s) defined to be the characteristic function of A€ (IMN,5) according to Eq. (2.6), the

convex conjugate of |||y 5 is given as

o6 = Xaw @) (- (7.10)

3. The minimazx norm satisfies ||-|lon s = I llon,5-

4. The constraint-difference set can be expressed as

AB(IM,6) = {6 € Sq | (V6 € Sy) Tr(60') < [|6]lgy5}- (7.11)

Proof. 1. Follows from the definitions.

2. We always have X*A%(sm,a) = Saw(ms)- Since AG (M, ) is closed and convex (Prop. 7.4),
XA%(m,s) 1S a proper Isc convex function, and thus self-dual [8, Thm. 13.37]. It follows that
(Saz@me)” = Xag@ns)" = Xag(@n,s)-

3. Follows from Eq. (7.9) and Eq. (7.10), and the fact that X*A%(fm 5 = Sas(m,s)-
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4. We have
{0 €Sq| (VO € Sy) Tr(00") < [|0O|lg 5} = {0" € Sa | sup (Tr(00") — [|O]lg 5) < O}
SIS¥
— (0 € 84103, < 0} (7.12)

= AG(9M, 5),

where the second equality follows from the definition of convex conjugate, and the last equality

follows from Eq. (7.10). O

The fact that [|-||yy 5 is the support function of A€ (9N, ) gives us a geometric interpretation

of the minimax norm. This is shown as a schematic in Fig. 2, which we adapt from [8, Fig. (7.1)].

/

( 3

AG (M, 5)

Figure 2: Interpretation of the minimax norm as the support function of the constraint-difference
set AG (M, ). The observable O is normalized such that ||0| g = 1. The minimax norm measures
the distance of the supporting hyperplane Hp = {0" € Sy | Tr(0'0) = ||0||oy 5} of AE(9N,0) from
the origin.

Below, we describe another useful symmetry property of the minimax norm. By a symmetry,
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we mean a unitary that permutes the measurement settings in the measurement protocol. In
particular, this includes unitaries that leave the measurement settings invariant. We make this

notion precise below. In Def. 7.7, a permutation of [M] is a bijective function o: [M] — [M].

Definition 7.7 (Measurement symmetry). A unitary U is said to be a symmetry of the
measurement protocol M = {(EW N;)}L, if for every i € [L], there is some j € [L] and a

permutation o; of [M;] such that
(UBY, UL, = BY), (7.13)

and INV; = N;. The set of symmetries of 9 is denoted by %y. O

Observe that if i and j are related by a unitary as in Eq. (7.13), we must have M; = M;. It can
be verified that gy forms a group under multiplication. As an example, consider the measurement
protocol where (the eigenvalue of) every Pauli operator is measured the same number of times.
Since any unitary that takes Pauli operators to Pauli operators under conjugation is Clifford by
definition, the set of symmetries of this measurement protocol is just the Clifford group. Another
relevant example is a measurement protocol that corresponds to measuring a single POVM many
times (this encompasses randomized measurements, for example). The measurement symmetries
for such a protocol are those unitaries that leave the POVM invariant. Below, we show that the

minimax norm is invariant under the action of a measurement symmetry.

Proposition 7.8. Let O be any observable, M be a measurement protocol, and 1 —§ be the confidence

level. Then, for all U € Uy, the following statements hold.

1. BDi(UxaU', Ux2U") = BDan(x1, x2) for all x1,x2 € -

2. UB(M,6)UT = {(UxaUT, Ux2UY) | (x1,x2) € €(M,6)} = G (M, 9).
3. UAGOM, Ut = {UO'UT | 0 € AB(IM,0)} = AG(M,9).

4- ||U@UTHm76 = H@HW{,&
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Proof. 1. If U € %y, then UT € %yy. By definition of measurement symmetry, and noting that
POVMs are taken to be distinct in the definition of a measurement protocol, for all i € [L], there
is exactly one j € [L] and a permutation o; of [M;], such that N; = N; and Tr(E(E_?(k)UxUT) =
Tr(UTEY) Ux) = Tr(EX) for all k € [M;] and all x € 2. Then, BDm(Ux1U', UxsUT) =
BDon(x1, x2) for all x1, x2 € X follows from the definition of BDgy.

2. If (x1,x2) € €(M,6), then (Ux1UT,Ux2UT) € €(IM, ) by part 1. and the definition of
€ (M, ). Therefore, UG (M, 0)UT C (M, ). Since we also have UT € %y, for any (x1,x2) €
B (M, ), we have (UTx U, UTxoU) € €(M,d). Consequently, (U(UU)UT,UUT\ U)U) =
(x1, x2) € G(IM, ). Thus, we have €(M, ) C UG (M, 5)UT.

3. By part 2., we have (x1,x2) € €(M,0) iff (UxaUT,Ux2UT) € €(M, ). It follows that
UAB (M, 5)UT = A€ (M, ) by definition of AB(IM, 6).

4. By the definition of minimax norm, we have

1

HU@UTHDjtcs ~ 5 max {Tr(U@UTX1) T (UOU o) ‘(le X2) € EOM, 5)}
1

= 5 max Te(6UTx1U) — Tr(6U T xoU) ‘(Xl,XQ) €M, 5)}

{
— max { THOx) - THOX) |(3h.5) € UTEOR O | (7.14)
= g max { THOx) - THON) |(3ios) € B

= [10llon.s »

where the third equality follows from the definition of UT& (90, §)U and the fourth equality follows

from part 2. O

Finally, we prove a data-processing inequality for the minimax norm. Suppose that an
experimentalist implements the POVM E| and then classically processes the outcome observed after
the measurement. This classical processing, which can be deterministic or random, is described
mathematically as a classical channel. A classical channel describes a process that takes an input

probability distribution on [M] to an output probability distribution on [M’]. We can think of a
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classical channel in terms of its transition matrix .4, which is an M’ x M matrix with non-negative
entries, where the columns sum to 1. If pg , is the distribution after measuring E in the state
X, then the post-processing step is described by a classical channel ./ that acts on pg,. This
gives rise to a new POVM F with M’ elements, where F; = 22/[:1 N Ey, for j € [M']. Tt can be
verified that pp , = #pg,, for all x € &. Thus, the POVM F is the effective POVM that describes
the measurement E and the classical post-processing. We show that performing a classical data

processing on the measurement outcomes does not help with estimation.

Proposition 7.9 (Data-processing inequality for minimax norm). Let 0 = {(E®, N;)} be
a measurement protocol, and let MPP = {(FO N;)}, where for alli € [L], the POVM F is the
effective POVM describing the measurement E® followed by a classical post-processing. Then, for

all observables © and all 1 —§ € (0,1), we have

16llgmor 5 > 16l - (7.15)

Proof. Since for all i € [L], F () is obtained by classically post-processing E(*), there is some channel
A @ such that PFG) = ./V(i)pE(i)’X for all x € &. From [107, Ex. (9.2.8)], we have that for all
quantum channels @ and all states x1, x2, we have F(@(x1),@(x2)) > F(x1,x2). Since a classical
channel acting on discrete probability distributions is a special case of a quantum channel acting on
quantum states (see [107, Sec. (4.6.4)]), we have FC(pp@) ,,,Pp() y,) = FC(PEG 1, PEG ,) for all
i € [L] and all 1, x2. It follows that FCopor (X1, x2) = FCon(x1, x2) for all x1, x2. Then, Eq. (7.15)

follows from the expression for minimax norm given in Eq. (7.2). O

As a consequence of Prop. 7.9, we can conclude that forgetting the sampled POVM in a

randomized measurement protocol does not help with estimation.

7.2 Lower bound on the error for a given measurement protocol

In this section, we derive a lower bound on the error of learning the expectation value of an

observable for a fixed measurement protocol using the minimax norm. We also show that our lower
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bounds can be achieved by TOOL to within a small factor, thus proving that our bounds are tight,
and that we have a constructive estimation procedure for achieving the lower bound to within a
constant factor.

We first reinterpret the estimation error of TOOL given in Box 3 as the minimax norm of the

observable whose expectation value we wish to learn with respect to the perturbed measurement

protocol defined in Def. 5.4.

Proposition 7.10. 1. The estimation error €, of the estimator constructed by TOOL with parameter
€ > 0 for learning the expectation value of O using outcomes of M to a confidence level of

1—0€(0,1) can be expressed as

&x = [10lon(eo),s » (7.16)

where M(es) is the perturbed measurement protocol defined in Def. 5./.

2. If 0O, is the estimator constructed by TOOL, then we have the guarantee

Paneo).p (|5* = Tr(0p)| < ||@”sm(eo)75) >1-9 (7.17)

forallpe X.

3. For1—46¢€(0.75,1), we have

21og(2/0)

Re(0,M(0),0) < Ollamieor.s < 1011/ 748))

R (0,M(eo), 0), (7.18)

where R.(O,9M, ) is the minimaz optimal risk for learning the expectation value of O using M,

defined in Eq. (5.2).

Proof. Eq. (7.16) follows from Eq. (5.18) and the definition of minimax norm in Eq. (7.1). Eq. (7.17)

follows from Eq. (5.13) and Eq. (7.16). Eq. (7.18) follows from Eq. (7.16) and Eq. (5.16). O

We begin by showing that [|0]|yy.,) s converges to [|O|sy 5 from above, as ¢, — 0. For

simplifying notation, in Lem. 7.11, we take A = €,/(1 + €,) in the definition of M(e,) in Def. 5.4.



Docusign Envelope ID: 3AE25DC6-0FF1-4FFD-BDBE-A4F50E 159038

132

Lemma 7.11. Let 9 = {(E("),Ni)}f:1 be a measurement protocol. For \ € [0,1], define the
measurement protocol IM(N) to consist of the POVMs

@y b Cap® b
{(1 NEY +A5 )\)EMZ_+)\MZ} (7.19)

%

for i € [L], where ith POVM is measured N; times. Then, for any observable © and confidence level

1 -9 €(0,1), the following statements hold.
1. For all A € [0,1], we have [|0l|on x5 = 0llon 5-
2. For all C > 0, we have limx—0 [[0[on(r) 5—cr = [|Ollan s-

Proof. 1. Let p, q be discrete probability distributions over M symbols. Let e = (1/M,...,1/M)
denote the uniform probability distribution over M symbols. Then, by joint concavity of the

Bhattacharyya coefficient [106, Corollary 3.26], we have
BC((1 = X)p+ Xe, (1 = N)g + Ae) > (1 — N\)BC(p, q) + ABC(e, e) > BC(p, q), (7.20)

where in the last step, we used 1 = BC(e,e) > BC(p, q).

Now, given state x, denote pgj) = (Tr(Ey)X),...,Tr(E](\Zx)) obtained from the POVM
{E,(:)}Qﬁl Then, if pgg)(/\) is the distribution obtained from the perturbed POVM in Eq. (7.19),
we can write p()(/\) = (1- )\)pgf) + Xe®, where e® = (1/M;,...,1/M;). Then, we have

B(p§2 ()\),pgg()\)) > B(pgzl),p&g) for all ¢ € [L], and consequently,

~
=~

BCan(x) (x1, x2) = [ [IB@) (N, p{) )N/ > H P, pNNN = BCor(x1, x2).  (7.21)

=1 =1

It follows from Eq. (7.2) that [|O|gny) 5 = [|O]lon s-

2. For C > 0, define A\c = min{d/2C, 1} and A = [0, \;]. Observe that 6 — AC € (0,1) for all
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X € A. Consider the set-valued function €: A — 2% defined as

#) = {(uow) € 2 x| Bl (uoa) = S5 (7.22)

where 27*% is the power set of & x X and N = 25:1 N; is the total number of samples. For
each A € A, €(\) = G (M(N),d — C\) is the constraint set (Eq. (7.4)) over which the optimization
defining the minimax norm [[-[|gn\) 5 is performed. Observe that €(A) is non-empty for each
A € A because BCop(y) (X, x) = 1 for any density matrix x.

The graph of the set-valued function € is given as [3, Def. (17.9)]

grE = {(A (x1,x2)) € AX (X xX) [ (x1,x2) € E(N)}
(7.23)

= {(\ (x1:x2)) € A X (X x ) | (BCanpy(x1,x2))Y + CA/2>65/2} .

Since (BCan(y) (X1, x2))" + CA/2 is a continuous function of A € A and (x1,x2) € X x X, gr€ is a
closed subset of Ax (2 xZ). Now, the set-valued function % is said to be upper hemicontinuous if for
every closed subset F' of ' x X, the set {\ € A | €(\)NF # &} is a closed subset of A [3, Lem. (17.4)].
Since 2 x X is a compact subset of a Hilbert space, we have from [3, Thm. (17.11)] that € is an upper
hemicontinuous set-valued function. Moreover, for each A € A, €(\) is a non-empty compact set (see
Prop. 7.4). Since (Tr(0Ox1) — Tr(Ox2))/2 is a continuous function of (\, (x1,x2)) € A X (X x ), the
minimax norm [|0||gn ) s_cx = MaX(y, xo)ew(y) (Tr(0x1) — Tr(Ox2))/2 is an upper semicontinuous
function of A € A [3, Lem. (17.30)]. By definition of upper semicontinuity [3, Lem. (2.42)], we
have limsupy_,o 0lon(r) 5-cx < [[Ollan 5, where we used the fact that M(A = 0) = M. Then, since

10llns < 110llms—cr < [Ollan(r),s—ca» from Prop. 7.5.4 and Lem. 7.11.1, we have the chain of

inequalities
10]ln,5 <l inf (|0]lan(y) 5—cx < Hmsup [[0llanry 5-cx < [1Ollons - (7.24)
—0 A—0
This implies limx—o |0|on ) s—cxn = [1O]lon 5- O

Next, we show that we can lower bound the minimax optimal risk defined in Eq. (5.2) for the
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measurement protocol 9 by minimizing the minimax optimal risk for M(e,) over all €5 > 0.

Lemma 7.12. Let M be a fized measurement protocol, and for e, > 0, let M(es) be the perturbed
measurement protocol defined in Def. 5./. Then, for learning the expectation value of the observable
O with confidence 1 — 6 € (0,1), we have

inf %.(0,M(co),d) < R.(0,M,). (7.25)

Proof. We begin by noting that for any given family of non-empty sets {F;};c.s indexed by some
set F and any function f: U;cs F; — R, we have

inf = inf inf . 7.26
et F(r) = Jnf nf 7(r) (7.26)

To see this, observe that for all i € .7, we have inf,cy, ,F, f(r) < inf,cp, f(r), so that inf.cu, 7, f(r) <
inf;c. 7 infrep, f(r). On the other hand, for each r € U;c s F;, there is some i € .# such that r € Fj, so
that inf;c s inf,cp f(r) <inf,ep f(r) < f(r), and therefore, inf;c s inf,cp, f(r) < infTGUie}’Fi fr).
In particular, when F; C R for all i € #, we have inf U;c s F; = inf;c 7 inf F;.

To proceed, recall that Poy , denotes the probability over outcomes defined by the measurement
protocol 9 and the state 0. Given an estimator 6 and error ¢ > 0, define the set Ag(e) =

{|6 — Tr(60)| < €}. Then, using Eq. (7.26) along with Eq. (5.1) and Eq. (5.2), we can write

#.(6,9,8) = inf | | {5 >0 | inf Py (Ag(e)) > 1 — 5} , (7.27)
6
and
inf %.(0,M(e.), §) = in UA {e >0 | inf Pane,) o (45(0)) > 1 5}, (7.28)
(607@)

where the union in the second equation is over all estimators 6 and all positive numbers €, > 0.

Since Pon » and Pgy(c,),, are product distributions, by subadditivity of total variation distance

)
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for product distributions, for all states ¢ and all €, > 0, we have
L M; (4) €
1 ~| Te(E; o) + 3, (i)
HPDJ?(GO),U_PWI,UHTV < §ZN1, 1+e —T‘I"(Ej O')

i=1 Jj=1

€ 1 L M; (4) 1
<—-NN)Y [Tr(E}s) - —
1+602; e (Bj"0) =37, (7.29)

€o

<
- 146
< Ne¢,,

where N = Zle N; is the total number of samples, and the last inequality follows from the fact
that Z;‘ﬁl ]Tr(E](»i)a) — 1/M;| < 2. By the definition of total variation distance that

HPW(GO)J - mevUHTv = supy |Pan(e,),o (H) — Pan,o(H)|, where the supremum is over all events H,
we have |Pop(c,)o(A5(€)) — Pamo(A5(€))| < Neo for all €, > 0, all € > 0, all estimators 6, and all
states o.

Now, consider an arbitrary element ¢’ € |z {€ > 0 | inf, Pon, (45(c)) > 1—46}. We claim
that ¢ € U(eo,é) {e > 0] infy Pone,)» (Az(e)) > 1 =0}, For if this does not hold, then for all
€. > 0 and all estimators @, we have inf, Poit(eo),0 (A5(€")) < 1 — 6. Since inf, Pop o (Az(e")) <
infy Pon(e,),0(Az(e")) + Neo, we obtain inf, Poy 5 (Az(¢")) < 1 — 6 + Neo. Because this inequality

holds for all ¢, > 0, we obtain inf, Poy 5 (Az(e")) < 1 — 0 for all estimators 6, contradicting the

assumption that ¢’ € (Jz {e > 0| infs Pon s (A5(e)) > 1 —6}. Consequently, we have
U {5 >0 | inf Py (A5(5)) > 1 — 5} c U {e > 0| inf Pone.) o (Ag(e)) > 1 — 5} . (7.30)
6 (eo,@A)
from which the claim follows. O
Using Lem. 7.11 and Lem. 7.12, we show that the minimax norm lower bounds the estimation

error up to a small factor. We also show that TOOL can achieve this lower bound to within a small

constant factor.
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Theorem 7.13. Ewvery estimation protocol that learns the expectation value of the observable O

using outcomes of M to within an error of € > 0 with a confidence level of 1 — § € (0.75,1) satisfies
e>¢(8) [0llgns (7.31)

where

o(5) = Joma(1/0) —2

= Ton (13 3 (7.32)

Moreover, denoting N to be the total number of samples used by M, for all n > 0, there is some
0 < e <0/(2N), such that the estimator 5* constructed by TOOL with parameter e, for a confidence

level of 1 — (6 — Neo) satisfies
Par,y (162 = Tr(0p)] < (1+7) [Ollgns) > 10 (7.33)
for all states p.

Proof. For all ¢, > 0 and ¢ € (0,0.25), we know from Eq. (7.18) that

1
”@Hgm(eo)#; < m‘%*(@am(eo%é% (734)

where we used the fact that

2log(2/0)  2(1 +logy(1/6)) 1

= = . 7.35
log(1/(46)) ~ logy(1/6)—2 — 2(9) (7:35)
Minimizing this inequality over all ¢, > 0, we obtain
1
i < —— 1 . .
elon>f0 ||@||Em(eo),§ = 0(5) 6101'l>f0 ‘%*(@7 m(60)7 5) (7 36)

Now, let A = e5/(1 + €), so that M(A) defined in Lem. 7.11 coincides with 9M(e,) defined in
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Def. 5.4. Then, from Lem. 7.11.1, we have
< i . .
1Ollns < inf 11Ollone,) 6 (7.37)
Therefore, we obtain
10llgns < i0F [Olgniers < = inf (0, M(co),8) < —— R(6,M,6) < ——c,  (7.38)
M3 = Lo 1P (e0)8 = L5y aomg 7\ ) 0) = gy T T T 0) = ) '

where the second inequality follows from Eq. (7.36), the third inequality follows from Lem. 7.12,
and the last inequality follows from Def. 5.2.

Now, we show that TOOL achieves this lower bound to a small constant factor. Fix n > 0.
Since lime,—0 |01lonc,) 5—ne, = 10llon s (Lem. 7.11.2), we can find a small enough 0 < €, < 6/(2N)
such that [[0loy(c.)s-ne, < (14 1) [[Ollons- Note that this bound holds even when [|0]|gy 5 = 0,
since by Prop. 7.2, we have [0y, s = 0 iff 0 = cl iff [[O]|oy(..) 5_ne, = 0. Let 0, be the estimator
constructed by TOOL with parameter €, for a confidence level of 1 — (6 — Ne,). Then, from

Eq. (7.17), we have

Par(eo) (!@* —Tr(0p)| < (1 +1) II@IIW,(;) > Pon(es) (|@* — Tr(0p)| < ||@||fm(60)75_N60) > 1—(6—Ne,)
(7.39)
for all states p. From Eq. (7.29), we know that H‘@m(%)yl) - vaf’HTV < Neo/(1 + €) for all p. Tt

follows from the definition of total variation distance that

~ ~ €o
Poo({10x = Tr(0p)] < (L +n) [Ollan 53) = Paneo) p({10x = Te(Op)| < (L +n) [Ollan 5}) — N7 p
2
>1—-6+ Neo
1+ e
>1—-96
(7.40)
for all p. O

Since 17 > 0 can be made arbitrarily small in Eq. (7.33), the lower bound in Eq. (7.31) is tight
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to within a factor of 1/¢(d). For confidence levels 90% or more, we have ¢(4) € (0.15,0.5), and

therefore, the lower bound in Eq. (7.31) is fairly tight.

7.3 General lower bound on the estimation error

Our goal in this section is to derive a lower bound on the error of estimating the expectation
value of an observable that does not depend on the measurement protocol that is implemented.
We also show that our lower bound is tight, in the sense that there is some measurement protocol
(and estimation procedure) for which we can achieve the lower bound on the estimation error to
within a constant factor. We find that measuring in the eigenbasis of the observable gives optimal
performance for learning the expectation value of that observable. This result should be intuitive
and familiar to many readers, and we give a formal proof using the results derived in the previous
section.

Since the minimax norm gives a lower bound on the estimation error for any given measurement
protocol, it suffices to obtain a lower bound on the minimax norm that holds for all measurement

protocols using a fixed number of samples.

Lemma 7.14. Fiz the observable O and confidence level 1 — 6 € (0,1). Then, for all measurement

protocols M using N samples, we have

) 2/N
H@HDJI,(S Z ()‘max(@) - /\mm(@)) 1— <5) . (7.41)

2 2

Proof. We prove this statement by generalizing the strategy in Ref. [92, Thm. II.1]. In the proof
below, we denote Apax(0) as Amax and Amin (0) as Apin for simplicity. O is a multiple of identity iff
Amax = Amin, in which case Eq. (7.41) holds trivially. Thus, we assume for the rest of the proof that
O is not a multiple of identity.

Since by Prop. 3.7, FCon(x1, x2) > F(x1, x2) for all x1,x2 € X, we have from Eq. (7.2) the

lower bound

2

1 S\ N

[0llons = 5 max_{Tr(Ox1) — Tr(Ox2) |[F(x1,x2) = | 5 7 (7.42)
’ 2 x1,x2€% 2
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where N = 25:1 N; is the total number of samples. We proceed to evaluating this lower bound.
Denote v = (§/2)%/V, so that the constraint in the above equation becomes F(x1, x2) > . Recall

that the trace distance between two states 1, x2 can be expressed as [107, Lem. (9.1.1)]

s = Xl = max Tr(A( = x2)). (7.43)
Therefore, we have
TI‘(@Xl) - Tr(@XQ) < (Amax - Amil’l) HXl - X?Htr (744)

IN

()\max - )\min) 1- F(Xh X2)

< (Amax — Amin)V/1 — 7, (7.45)

where the second inequality follows from the Fuchs-van de Graaf inequality (Eq. (3.35)), and the
last inequality holds when F'(x1,x2) > 7.

We show that the upper bound in Eq. (7.45) can be achieved by explicitly constructing the
density matrices x7 and x5 achieving this bound and satisfying F'(x}, x4) > . For this purpose, let
[Amin) and [Amax) denote orthonormal eigenvectors corresponding to the eigenvalues Apin and Apax

respectively. Define

1 I— 1—/1—
X1 = —i_\giﬁy | Amax) {Amax| + % [ Amin) (Amin| » (7.46)
B 14+ T—7 '
Xo = f |>\max> <)\max| + f |)\min> <)\min’ .

Observe that x7 and x5 are diagonal in the eigenbasis of @0. Since 0 < v < 1, the diagonal entries of
these matrices are non-negative and they sum to 1, so that x] and x5 are density matrices. Since

they are diagonal in the same basis, by Prop. 3.6.6, the fidelity between them is given by

roind = (2 (F0) () ) s nan
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Furthermore, we have
Tr(Ox]) — Tr(Ox3) = (Amax — Amin) /1 — 7. (7.48)
As a result, we obtain
o, {T0(0) - O [Fi) 2 7 h = O = AT, (.9)
1,X2
Combining this with Eq. (7.42) gives Eq. (7.41). O

Combining the lower bound on the minimax norm in Eq. (7.41) with the lower bound on

estimation error derived in Thm. 7.13 gives the following result.

Theorem 7.15. Every estimation procedure that learns the expectation value of the observable O

using N samples of a non-adaptive measurement to an error of € and a confidence level 1—§ € (0.75,1)

satisfies
)\max 0)— )\min o 0 2N
e > o(s) Puax(®) Oy (2), (7.50)
2 2
where ¢(09) is defined in Eq. (7.32). Equivalently, every estimation procedure needs at least
N2 Zlog(z/iz (7.51)
‘ 08 ( B o(é)?(xmw)—Amm(@))Q)‘

samples to learn the expectation value of O to within an error of € € (0,0.5) and confidence level of

1—-6€(0.75,1).

Note that since log(1 + z) < z for x > —1 and log(1 + z) > 2z for x € [-1/2,0], we have

2(8)2 (Amax — Amin)? 2 2log(2/6 2(0)? (Amax — Amin)® 2
0 Qoo (2) £(2/9) < 22 ool (2)
‘log (1 - 0(5)2(/\111ax_>\min)2> ’
(7.52)

for 0 < & < (8) Amax(0) — Amin(0))/4.
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Proof. From Thm. 7.13, we know that
P+ (0, M, 0) > ¢(6) |Ollgn 5 (7.53)

for any given measurement protocol 9. Minimizing over all measurement protocols using N samples,
we obtain

Fu(0,N,6) = (5)inf O]y (7.54)

where %.(0, N, ) is the minimax optimal risk defined in Eq. (5.3). Then, from Lem. 7.14, we

obtain

. /
e > .(0,N,0) 2 o(o) PO AnnlO)), fy @2 : (7.55)

where the first inequality follows from the definition of Z,(0, N, d). Rearranging Eq. (7.50) gives

Eq. (7.51). O

Aaronson [1] has proven a lower bound on the sample complexity of learning the expectation
value of an observable similar to Eq. (7.51) that holds in the worst-case over all observables with
bounded operator norm. The worst-case lower bound can be too large for a given observable, when
the operator norm of the observable is large but the difference between the maximum and minimum
eigenvalues is small.

It remains to prove that the lower bound derived in Eq. (7.50) is tight. As one would intuitively

expect, this can be achieved by measuring in the eigenbasis of 0, as we show below.

Proposition 7.16. TOOL can learn the expectation value of an observable O to an error of € >0

and a confidence level of 1 — 6 € (0.75,1) using at most

21og(2/6)

’k’g (1 N ﬁ)‘ (7.56)

<(6)? max — Amin 2
(;5) (Amax(0) 52A O) 1 (Z) for & < ¢(8)(Amax(6) — Amin(0))

~
~

outcomes obtained by measuring in the eigenbasis of O.
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Proof. Let {|\1),...,|\q)} denote an orthonormal eigenbasis of @. Let the measurement protocol
M consist of measuring the POVM {|A1) (A1],..., [ ) (Mg} N times. For all n > 0, we know

from Thm. 7.13 that TOOL can learn (0) to an error of (1 +n) [|0|g, ; and a confidence level of
1—4§ € (0.75,1). Thus, it suffices to compute ||@||m75. We denote Apax(0) = Amax and Apmin(0) = Amin
in the proof.

From Prop. 7.5.1, we have [|Olgys = [|0'|gys for 0" = O — Apinl. 0" has eigenvalues
A, = A\ — Amin for k£ € [d] and the same eigenvectors as 0. Next, note that Tr(0'x) = Zzzl .oy (k)
for all states x, where py (k) = (Ax|x|Ax). Moreover, we have BCon(x1, x2) = Zk 1V Pxr (K)Dyo (K) =
BC(py,,py,) for all states x1, x2. Thus, the optimization defining the minimax norm in Eq. (7.2)
becomes

”@Hsm,a =, max Z)\k Pk — k)

2pq€A
S pquz(Q) |
k=1

We wish to derive an upper bound on [|0|[qy 5. For this purpose, note that if p = ¢, then Zizl N (P

(7.57)

qr) = 0, so that the minimax norm is zero. Thus, we focus on distributions p # ¢. In this case,
the sets I, = {k € [d] | pr —qx > 0} and I_ = {k € [d] | px — q& < 0} are non-empty. Observe

that >g_y Nk — q) = Doker NPk — k) + Xper NPk — @) < Apax 2oger, (P — qx), where

the inequality follows from the fact that A} > 0 for all k. Since Zizl(pk — qx) = 0, we have
> oker Pk — @) = — Xper, (Pk — qi)- Noting that [[p — qll; = > per, (o6 — @) — 2per Pk — ak), we
obtain Y"c; (P — k) = [lp = qlly /2 = Ip — gllpy- Thus, we have the upper bound 3=F_; X} (pk
@) < Mpax 1P — @llpv = (Amax — Amin) [P — ¢|lpy- From Fuchs-van de Graaf inequality (Eq. (3.36))
and the constraint BC(p,q) > (6/2)"/N, we obtain |p — q|lv < /1 — (5/2)2/N. Tt follows that
10195 < ((Amax — Amin)/2)v/1 = (6/2)*/N.

Thus, to learn (0) to an error of €, we set (1 + n) H@Hm,(s =g, so that € < (1 +7)((Amax —
Amin)/2)v/1 — (6/2)2/N. Solving this for N and noting this holds for arbitrarily small > 0 gives

the desired result. O
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Prop. 7.16 shows that the lower bound on sample complexity derived in Thm. 7.15 is tight to
within a factor of 1/¢(6)2. While we used TOOL to obtain an upper bound in Prop. 7.16, one can
also use Hoeffding’s inequality [52] to get obtain an upper bound on the sample complexity.

Prop. 7.16 says that the sample complexity scales only with the difference in maximum and
minimum eigenvalues of the observable, and not the dimension of the system. Thus, for many
observables of interest, it is, in principle, possible to efficiently estimate their expectation values.
The problem, however, is that this requires measuring in the eigenbasis of @, which can be very
challenging in practice depending on @. Usually, one works with a class of measurement protocols
that are relatively easy to implement in the underlying quantum computing architecture. This
motivates the importance of Thm. 7.13, which gives tight bounds on learning the expectation value

of an observable for a measurement protocol chosen according to experimental constraints.

7.4 Lower and upper bounds on the error for shadow tomography

In this section, we obtain lower bounds on the error of simultaneously estimating the expecta-
tion value of many observables. This problem is called shadow tomography, and was first studied by
Aaronson [1]. In addition to providing lower bounds for shadow tomography, we give corresponding
upper bounds on the error achieved by TOOL.

To learn the expectation values of many observables simultaneously using TOOL, we just learn
these expectation values separately and use the union bound to combine the estimates. We describe
the general procedure below, and give theoretical guarantees in Prop. 7.17.

Input: Observables 0y, ..., 0Or, measurement protocol I,
confidence level 1 — ¢ € (0,1), parameter 0 < ¢, < 1

Estimator construction:

For i € [R], compute the estimator 53) and the error sg) for learning (0;) using Box 3, with

measurement protocol 9, confidence level 1 — 0/R, and parameter .
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(1) 5 (1)

Output: estimators 0, ,...,0, ", estimation error ¢, = Max;c(Rg] SSZ)-

The main thing to note in the above procedure is that we need to implement TOOL for each
observable for a confidence level of 1 — /R instead of 1 —J. We now prove a lower bound on learning

the expectation values of many observables simultaneously, and study the performance of TOOL.

Proposition 7.17. The error € of every estimation procedure that can learn the expectation values
of the observables 01, . ..,0r simultaneously using outcomes of the measurement protocol I with

confidence level 1 — § € (0.75,1)is bounded below as

> (5 Oilloy s - 7.58
£ 0()?&1%11 llom,s (7.58)

On the other hand, for allm > 0, there is some €, € (0,0/(2NR)], such that for all €5 € (0,€.], using
TOOL with parameter e, and confidence level 1 — (6 — Neo) according to Box 7 can simultaneously

learn the expectation values of O1,...,0r with error

1 6; : 7.59
(+77)§rel[zgll o5/ (7.59)

to a confidence level of 1 — 4.

Proof. 1f for i € [L], @ denotes the estimator used by this procedure for learning (0;), then

Par, (16 = (0] > €) < Pm,y (;2?%] 16— (65) | > g> <4, (7.60)

for all states p. Then, by Thm. 7.13, we must have ¢ > () [|0;|gy 5 for all i € [L], giving Eq. (7.58).
Next, we obtain an upper bound achieved by TOOL. Fix n > 0. For each i € [R], by
Lem. 7.11.2, we have lime, 0 [|Oillon(c, ) 6/r—ne, = [|Oillon,s/r- Thus, given n > 0, there is some

0 <& < 6/(2NR) such that for all i € [R], we have [|O;]lgn(c.) 5/p—Ne, < (14 1) |0ill5/z- We then
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follow the strategy of Thm. 7.13. First, from Eq. (7.17), for all i € [R], we have

Parcear (167 = Tr(0ip)| < (L4+0) [Oilam /) > Poncearp (167 = Tr(0p)] < 104l 5/ v, )
(i)

for all states p. From Eq. (7.29), we know that H@gﬁ(eo)w - vaPHTV < Neéo/(1+ ¢) for all p. It

(7.61)

follows from the definition of total variation distance that for all p and all ¢ € [R], we have

~, ~ €o
P, ({10 — Tx(Gip)| < (14 ) |Oillon s/ }) = Po(eo),o ({105 — Tr(Oip)| < (L4 1) |Oillon 5/5}) — Nm
>1—0+Ne, — N Co
1+e
1 é+ Né?
- R 1+e
1)
>1——
R

(7.62)

Therefore, for all p and all i € [R], we have

~ ~ J
*_ . . < *_ . . —
P, (@ (01> (1+7) %%II@]H%W> <P,y (167 = (001> (1+0) [0ilms/m) < 7

(7.63)
Then, by the union bound, we can infer that
P 6% —(6;)] > (1+ 0, <, 7.64
o (155 (01 (14 1) 1 10 (7.64)
giving the desired result. O

The error in Eq. (7.59) obtained by implementing Box 7 does not always match the lower
bound in Eq. (7.58) because we are using the union bound to derive Eq. (7.59). In particular, since
6/R <6, from Prop. 7.5, we know that [|0i|lay 5/ = [|Oilloy s for all ¢ € [R]. Therefore, even though
n > 0 can be made arbitrarily small, Eq. (7.59) can be larger than the lower bound in Eq. (7.58).

As to how large the error in Eq. (7.59) is compared to Eq. (7.58) will depend on the observables
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and the measurement protocol. While the error achieved by Box 7 is not always within a constant
factor of the lower bound in Eq. (7.58), we can prove a slightly weaker optimality result for Box 7

that is sufficient in practice.

Proposition 7.18. For every estimation procedure that learns the expectation values of O1,...,0Rr
simultaneously using the outcomes of M to a confidence level of 1 —§ € (0.75,1) for all states by
learning each expectation value separately to an error € and a confidence level of 1 — d/R and
using the union bound to obtain an error of € = max;cg e must satisfy

> (6 0; . 7.65
= > o(5) max |0l g/ (7.65)

Proof. Suppose that for each i € [R], the estimation procedure learns (60;) to error () to a confidence

level of 1 —0/R. Then, by Thm. 7.13, we must have
e > ¢(0) 16illan 5/ r (7.66)

for all i € [R]. Taking maximum over i € [R] gives Eq. (7.65). O

The strategy described in Prop. 7.18 is commonly used by many estimation procedures in
practice, including classical shadows [54]. Then, the result of Prop. 7.18 and Prop. 7.17 together
imply that TOOL performs at least as good as such estimation procedures, up to a factor of 1/¢(9).
A detailed comparison of TOOL with classical shadows is presented in Ch. 8.

Prop. 7.18 and Prop. 7.17 derived lower bounds on shadow tomography for a fixed measurement

protocol. Now, we derive a lower bound, allowing all measurement protocols.

Proposition 7.19. Let M denote a set of measurement protocols that use a fized number of samples.
Then, the error € of every procedure that simultaneously learns the expectation values of Oy,...,0g

using a measurement protocol from the set M, with probability greater than 1 — ¢ € (0.75,1) for all
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states is bounded below as
e > ¢(6) Sz%fmnéf}%? 104l g5 - (7.67)
If we focus on estimation procedures that learns the expectation values of Oy, ...,0r simultaneously

using the outcomes of M to a confidence level of 1 —§ € (0.75,1) for all states by learning each
expectation value separately to an error €9 and a confidence level of 1 — d/R and using the union
bound to obtain an error of € = max;c(p e the lower bound can be improved to

> ] i . .
€2 ¢(0) inf max 1Gillons/r (7.68)

On the other hand, for all n > 0, there is a measurement protocol in M such that TOOL can
use the outcomes of this protocol to simultaneously learn the expectation values of O1,...,0r to

within an error of

1 inf O; 7.69
(L+mn) i ?61%%](” illons/r (7.69)
with probability greater than 1 —§ € (0,1).
Proof. Given any procedure that implements the measurement protocol 9’ € M, we know from
Prop. 7.17 that the error of simultaneously learning (0;) ,...,(Og) is bounded below as

> (0 Oillow = > ¢(5) inf Oillom s 7.70
6_0()52%\\ Hm,zs_c()mlgéMgrel%H [ (7.70)

which gives Eq. (7.67). If instead we focus on estimation procedures that use the union bound to
learn the expectation values of @1, ..., Or simultaneously, then by Prop. 7.18, the error is bounded
below as

> (6 O; || s > inf O; . 7.71
e 2 o0) 4o > it 10 0o (r.11)

Now, assume that at least one of the observables @1, ..., 0Or is not a multiple of identity, for

otherwise, the expectation value of each 0; is zero and there is nothing to learn. Assuming that the
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measurement protocols in M use N samples, by Thm. 7.15, we have
2(5) 5\ YN
i [0lon > 5w 8) ~ Ain( 0011~ (57 (.72
forall M e M, 6 € (0,1), and R > 1, and consequently,
inf max ||G;]| > 20 i Oona(01) — A (@)1 — (2 2/N>o (7.73)
1Nl 1max || G Z — MaxX{(Amax\%i) — Amin( —\ 55 . .
MeMicif | IO/ R 2 ielh) 2R
Fix n > 0, and define 19 = /1 +n — 1. Since 1y > 0, we have
(1+0) inf max 1Oillon 5/ 5 > Jnf mex 1Gillan.s/ R (7.74)

and therefore, by the definition of infimum, there is some measurement protocol 9, € M such that

max 1Oillon, .5/ < (1 +10) inf max 1Oillons/ - (7.75)
From Prop. 7.17, we know that the using the measurement protocol 01,, TOOL can learn (01), ..., (Or)

simultaneously to a confidence level of 1 — § with an error of

(1 +10) max 16illgn. 5/ < (1+10)? nf max 1Gillon,5/7 = (1 +n) ﬁrngg% 1Gillon 5/r > (7.76)

where (1 +70)? = (1 + n) by definition of 7. O

As in Prop. 7.18, if we only consider estimation procedures in Prop. 7.19 that simultaneously
learn the expectation values of @1, ..., Og using the union bound, then TOOL is minimax optimal
up to a small constant factor.

Before ending this section, we give an alternate expression for max;c(g) [|O;[lgy 5. We begin by

introducing a seminorm determined by a given list of observables.

Definition 7.20. Given a list of observables @ = (0y,...,0r), we define the seminorm on Sy
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induced by O as
IQllg = 5 max|TH(O,Q) (1.77)
for Q € Sg. O
It can be verified that ||-||5 is a seminorm on Sg. Moreover, if —I < 0y,...,0r < |, and
M(0) = {({(1+0:)/2,(1 - 6:1)/2}, No) } .2, (7.78)

denotes the measurement protocol corresponding to measuring the two-outcome POVMs defined by

0O1,...,0R, then
o= alle = llp = ollon(e) max - (7.79)
We now give an expression for the minimax norm in terms of ||-[| 4.

Proposition 7.21. 1. The minimaz norm of an observable O given the measurement protocol I

and confidence level 1 — & can be expressed as

1

1Ollgns = 5 max — [Tr(Ox1) = Tr(Ox2)|
X17X2€=%‘
) 5 (7.80)
.t. BD < =1 -.
s m(x1,X2) <  log <5>
2. Given a list of observables @ = (Oy,...,0R), a measurement protocol M, and a confidence level
1 -6, we have
max [|O; gy s = max Ix1 = x2lle
7 ’ , X
<l e (7.81)

1 2
.t. < — - .
s.t.  BDon(x1,x2) < N log (5>

Proof. 1. Since (x1, x2) € € (M, 9) iff (x2, x2) € (M, ) (Prop. 7.4.1.iii), we have Tr(O(x1 — x2)) <
[0]lgn s and —Tr(0(x1 — x2)) < [[Ollgy s for all (x1,x2) € €(M,d). This gives Tr(O(x1 — x2)) <
|Tr(O(x1 — x2)| < ||@||m75 for all (x1,x2) € €(9M,0). Optimizing over (x1,x2) € €(M, ) gives
Eq. (7.80).

2. Eq. (7.81) follows from Eq. (7.80), Def. 7.20, and the fact that maximums commute. [
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Eq. (7.81) shows that max;c(g) [|Oil|gy 5 is related to the constant of domination studied in [71],

though with respect to different distance measures than those studied in [71].
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Chapter 8

Miscellaneous applications of the lower bounds

In Ch. 7, we showed that the minimax norm provides a tight lower bound for learning the
expectation values of observables for any given measurement protocol. Therefore, we can use the
minimax norm as a figure of merit to study and compare the performance of different measurement
protocols and estimation procedures for learning the expectation values of observables. Motivated
by this, we study some upper and lower bounds on the minimax norm for different measurement
protocols, in order to prove feasibility and infeasibility results.

In Sec. 8.1, we study the relation of the minimax norm to the shadow norm for measurement
protocols described by a single POVM. Since randomized measurements can be described by a
single effective POVM, our analysis applies to randomized measurements as well. We first show
that the minimax norm is always smaller than the shadow norm up to appropriate constant factors,
which implies that TOOL always performs as well as classical shadows. Subsequently, we show that
there are many observables for which the minimax norm is exponentially smaller than the shadow
norm, implying an exponential advantage of TOOL over classical shadows. In Sec. 8.2, we present
two no-go theorems, one for estimating the fidelity with stabilizer states, and another for learning

the expectation values of arbitrary observables.

8.1 Randomized measurements

In this section, we study the performance of learning the expectation values of observables using

measurement protocols described by a single POVM. As discussed in the preliminaries (Sec. 2.2),



Docusign Envelope ID: 3AE25DC6-0FF1-4FFD-BDBE-A4F50E 159038

152

randomized measurement protocols can be described by an effective POVM, and therefore, our
analysis of single POVMs apply to randomized measurement protocols as well.

To begin with, we give a brief description of the classical shadows estimation procedure,
as given in [54]. We discuss the procedure for a system of n-qubits (i.e., d = 2") following [54],
but we note that the procedure can be generalized to other scenarios. We fix a set % of unitary
operators, called a unitary ensemble, and randomly sample a unitary operator from % according
to some probability distribution. If U € % was sampled, then we rotate the (unknown) state p
prepared in the experiment by U, i.e., p — UpUT. After this, we perform a computational basis
measurement. If the outcome b € {0,1}" was observed, then we store a classical description of
the state UT|b) (b| U. This measurement procedure is repeated N times, and the resulting classical
description, {UiT |b;) (bil Ui}i]\il, is called a classical shadow. Then, given observables Oy, ..., Og, for
each r € [R], one implements the median-of-means estimation procedure on {Tr(@,nU;r |bi) (b Ui},
to learn Tr(6,p) to a confidence level of 1 — §/R. Finally, one uses the union bound to estimate
Tr(01p), ..., Tr(Orp) in loo-norm to a confidence level of 1 —§. Note that it does not matter whether
or not the observables 0y, ..., Or are known before the measurements are performed.

In this section, we focus on the case where % is a finite ensemble, since that covers the
ensembles studied by [54]. We call the measurement where U € % is sampled according to the
probability distribution py € Ay, the state is rotated by U as p — U pUT, and a computational
basis measurement is performed on the rotated state as Z-random unitary measurement. The

effective POVM describing a %-random unitary measurement is

{puUT |b) (0] Ulveu pefo1yn (8.1)

Following [54], when we talk about a %-random unitary measurement, we will assume that the

effective POVM in Eq. (8.1) is informationally complete. In this case, the map

o)=Y 3 pU<b\UaUT\b>=EM 3 <b|UaUT|b> (8.2)

Ue be{0,1}" be{0,1}n
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for 0 € X is invertible [54]. Using this, we can define the shadow norm of an observable as follows.

Definition 8.1 (Shadow norm). Given a unitary ensemble %, the shadow norm of an observable

0 is defined as

10 atons = mix \/EM S lUaUb) (lUE(0)Ub)> (8.3)
oc
be{0,1}»

O]

The shadow norm determines the performance of classical shadows. [54, Thm. 1] shows that
the sample complexity of classical shadows for learning the expectation values of 0y,...,0Or to an
error of ¢ > 0 and a confidence level of 1 — ¢ is equal to

TI‘(@Z‘)

I
d

N=0 <log(R) max

€2  1<i<R

2
. (8.4)
shadow

[54] prove the following lower bounds to show that the performance of classical shadows is

nearly optimal in the worst case over observables.

Theorem 8.2 (Thm. 5, [54], rephrased). Fiz a measurement protocol M using N samples,
an estimation error €, and an integer R < exp(d/32), where d is the system dimension. If for all
O1,...,0r with max;c(p [|0il|ys < B, there are estimators 61,...,0r, such that for all p, we have
max,¢|g] \@AZ — Tr(O;p)| > € with high probability, then necessarily

N>Q (B%g(m) . (8.5)

e2

Thm. 8.2 applies to all measurement protocols. [54] also prove a lower bound that applies
specifically to local measurements on a system of n-qubits. A local measurement or a local POVM
is a POVM L = {w;d |v;) {(v;|}M,, where w € Ay, |v;) = |U§1)> ®-® |U§n)> for all ¢ € [M], and
d = 2" [54]. We define a local measurement protocol as My = {(L¥, N;)}~ |, where L is a local

POVM for all ¢ € [R]. On the other hand, a k-local observable acting on a system of n qubits is an
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observable that acts trivially on n — k qubits. Then, [54] prove the following result.

Theorem 8.3 (Thm. 6, [54], rephrased). Fiz a local measurement protocol M using N samples,
an estimation error €, number of qubits n, locality k, and an integer R < 3F (2) If for all k-local
observables Oy, . ..,O0r with max;c (g [|0i]|, < 1, there are estimators 51, A 53, such that for all p,

we have max,¢|g] \@AZ — Tr(O;p)| > € with high probability, then necessarily

N>Q <?’kl(;§<R)> . (8.6)

[54] prove that the classical shadows estimation procedure achieves the lower bound in Thm. 8.2
by choosing the unitary ensemble to be global Clifford operators, while classical shadows achieves
the lower bound in Thm. 8.3 by choosing the unitary ensemble to be local Clifford operators. Note,
however, that lower bounds in Thm. 8.2 and Thm. 8.3 are obtained for the worst case over all states
and all observables with either a fixed bound on the Hilbert-Schmidt norm or a fixed locality. Thus,
in principle, it is possible to improve upon the sample complexity bounds given in Thm. 8.2 and
Thm. 8.3 for specific choices of observables.

In this section, we focus on proving three results. First, we prove that TOOL does at least as
well as classical shadows for every unitary ensemble, and more generally, for every measurement
protocol that can be described by a single POVM. Second, we find observables for which TOOL
can beat both the lower bound of Thm. 8.3 as well as classical shadows. Since the lower bound
of Thm. 8.3 is worst case over all observables with a fixed locality, classical shadows itself may
perform better than the lower bound for specific observables. It is therefore necessary to show that
TOOL can do better than both the lower bound and classical shadows. Note that we focus on local
measurements here because they are more practical to implement with the current experimental
capabilities. Finally, we prove two data-processing inequalities for the minimax norm for randomized
measurements.

To begin with, we note that for the measurement protocol M = {(E,N)} that involves

implementing the POVM FE = {Ek}ﬂ/fz . N times, we can simplify the expressions for the classical
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distance measures defined in Sec. 3.1. In particular, if we denote py (k) = Tr(Eyx) for x € &, then

for all x1,x2 € X, we have

M
ch(le X2) = Z Pxa (k)pX2 (k;) = BC(pXupXQ)v (87)
k=1

FCon(x1, x2) = BCan(x1,x2))?, and BDan(x1, x2) = — log(BCan(x1, X2))-

We can also generalize the definition of the shadow norm for measurement protocols described
by a single POVM. Note that generalization of classical shadows to informationally complete POV Ms
and frames has been studied in the recent past. We briefly discuss how to define the shadow norm to

the case of single POVM measurements. First, note that the map & given in Eq. (8.2) generalizes to

M
&(0) = > Tr(Eyo)Ej. (8.8)
k=1

We can obtain Eq. (8.2) from Eq. (8.8) by taking E to be the effective POVM given in Eq. (8.1).
When the POVM E is informationally complete, the map & has a left inverse &' [88]. It can be
verified that the converse also holds, i.e., if & has a left inverse, then E must be informationally

complete. Thus, we can generalize shadow norm to an informationally complete POVM as follows.

Definition 8.4 (Shadow norm for an IC-POVM). Given an informationally complete POVM

E, we define the shadow norm of an observable ® with respect to E as

M
1Ol shadone = max s [ > (Tr (E)1(0) Er))’ Tr(Ero). (8.9)
k=1

It can be verified that Eq. (8.9) defines a norm on Sy (also see [57, Sec. VI]). We now derive

an upper bound on the minimax norm in terms of the shadow norm.
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Proposition 8.5. 1. Let E be a POVM and O be an observable contained in the span of E, so that

0= By (8.10)

for some (not necessarily unique) numbers o, ..., ar € R. Then, for M = {(E,N)}, we have

S\ YN M
[Ollogns <1/2—2 <2> égg max Z(ak — ¢)?Tr(Exo)

= (8.11)
2
<t/2-2 <2> max Z a;Tr(Epo).
k=1
2. If E is informationally complete, then
M
6= "Tr ((%*N(@)Ek) Ey, (8.12)
k=1
and for M = {(E,N)}, we have
5\ UN
I6hns < 12-2(3) " 8810~ llatn
(8.13)

5 1/N
2-2 <2> ”@Hshadow'

Proof. 1. From Eq. (8.10), we can write Tr(Oy) = nyzl agpy (k) for any state x, where p, (k) =
Tr(Exx). Thus, using Eq. (8.7) and the expression for the minimax norm given in Eq. (7.2), we can
write

[0l = 5 max, 2 k(P (k) = pua(k)

S\ YN
st Bc<pxl,pxz>z(2) .

Since Dy ak(py, (k) — Py (k) = g (v Py (k) + \/pr(k))(\/pm(k) - \/PxQ(k))’ by Cauchy-

(8.14)
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Schwarz inequality, we obtain

M M M
Z ok (Px, (k) — Py, (k) < V2 Z aipm(k) + Z aipr(k) HD (py1 s Px2),
k=1 k=1 k=1

where HD(py,,py,) is the Hellinger distance between the distributions p,, and p,, defined in

Eq. (3.21). Since HD(py,,Pys) = /1 — BC(pyy,Pyo), the constraint BC(py,,py,) > (6/2)YN

implies H (py;,Pys) < /1 — (6/2)1/N. Therefore, we have

101l 5

(8.15)

From Prop. 7.5.1, we have [|0|lyy 5 = [|0 — cl|lgy 5 for all ¢ € R. Then, since 0 —cl = 373", (a —
¢)Ey,we obtain Eq. (8.11).
2. Since the map & defined in Eq. (8.8) has a left inverse & ! when FE is informationally

complete, we have o = Z,iwzl Tr(Eyo)& 1 (E}) for all 0 € £. Consequently, for any observable O,

we have
M M
Te(60) = Y Tr (68 (Ey)) Te(Epo) = > Tr ((%_1)T(@)Ek) Tr(Eyo). (8.16)
k=1 k=1

Since this holds for every state o, Eq. (8.12) holds.
Since Eq. (8.11) holds for all aq,...,ap € R such that 6 = 224:1 o EL, we can take

ar, = Tr((8~HT(O)Ey) to obtain /2 —2(5/2)YN [|0|| yudew- Now, from Prop. 7.5.1, we know

that [|Olgy s = [|0 — clllgn s for all ¢ € R. Thus, we also have the stronger inequality [|O]lgy s <

2 — 2(5/2)1/N inchR ||@ - c'”shadow' -
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Since log(1/xz) > 1 — z for = > 0, we have
S\ YN log(2/4)
1—|(-= <4 =17 Nl
< 2) </l (8.17)

Due to the logarithmic dependence of the upper bound in Eq. (8.13) on 1/4, we can simultaneously
learn the expectation values of R observables in l-norm by learning them separately to a confidence
level of 1 — §/R and using the union bound. Then, since the minimax norm determines the
performance of TOOL, while the shadow norm determines the performance of classical shadows, we
can infer from Eq. (8.13) that TOOL performs at least as well as classical shadows. We formally

prove this below.

Corollary 8.6. For all informationally complete POVMs E, TOOL can simultaneously learn the

expectation values of Oy, ...,0r in l-norm to an error of € and confidence level of 1 — ¢ € (0,1)

2
log <2R> (8.18)
shadow 0

outcomes of E. In particular, TOOL performs at least as well as classical shadows for all % -random

using at most

unitary measurements.

Proof. For all ¢ € [R], we have from Eq. (8.13) and Eq. (8.17) that

"N 21og(2/9)
”@Zuﬁﬂ,é < 2-2 <2> ;Iellf?‘ H@Z - CIHshadow < \/T‘

From Prop. 7.17, we know that for all » > 0, TOOL can simultaneously learn the expectation values

0~ — (8.19)

shadow

of 01, ...,0r to within an error of

21log(2/9)

N (8.20)

1 Oilloy s < (14 n)C
( +n)§r€1%\l lons < (1+n)

where C' = maxi<;<n [|0; — Tr(O:)1/d|| g adqow- Setting (1 +n)C+/210g(2/5)/N < ¢, solving for N,

and using the fact that n > 0 can be made arbitrarily small gives Eq. (8.18). O
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Cor. 8.6 shows that TOOL does at least as well as classical shadows. We now show that there
are many observables for which TOOL performs exponentially better than classical shadows.

For this purpose, we focus on uniformly random Pauli measurements on an n-qubit system
that achieves the lower bound worst-case lower bound in Thm. 8.3 (see [54]). To describe this
measurement, we denote Cl; to be the one-qubit Clifford group. Then, by a uniformly random
Pauli measurement (URPM), we mean performing a %-random unitary measurement for
U = CIP" and py = 1/|%| for all U € %. To describe the effective POVM for URPM, for
ke{X,Y,Z}"™ and b € {0,1}", we denote |k, b) to be the bth eigenvector of Pauli P} defined by the
string k. For example, if n = 1, then |X,0) = |+), if n = 2, then |ZX,01) = |0—), and so on. Then,

the effective POVM for URPM is given by the operators
1
Ek%b = 37 ‘kv b> <k7 b’ ) (821)

for k € {X,Y,Z}" and b € {0,1}".
We begin by showing that TOOL can perform exponentially better than classical shadows for

learning the expectation value of a single observable.

Proposition 8.7. For learning the expectation value of © = |Z™,0™) (Z™,0"| to an error of € > 0

and a confidence level of 1 — 0 € (0,1)) using uniformly random Pauli measurements, classical

o((2) 3(2)

samples, whereas TOOL needs at most

o((2) (1)

shadows needs at least

samples.

Proof. To obtain a lower bound on the sample complexity of classical shadows, it suffices to find a

lower bound on the shadow norm. The inverse map &' for & defined in Eq. (8.2) for URPM is
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given by &~ ! = @I, D; 1, where D},

1/3 1/3(A) =3A — Tr(A)l for any 2 x 2 Hermitian matrix A [54].

Since O is a product state, its shadow norm can be expressed as

®n
2
@ihadong@cTr{( >~ Evea,U'12.0) (2,6U (2,bU(32,0) <Z,0I>Ufz,b>) a].

be{0,1}
(8:24)
Thus, ||0]|2,,40, 1S the maximum eigenvalue of
XN
2
> EveanUH1Z,0) (201U (2,bU(312,0) (2,0 - Ut Zb) | (8.25)
be{0,1}
which is equal to the nth power of the maximum eigenvalue of
2

> EveanUMZ,0)(Zb|U (Z,6U(317,0) (2,0l - )U'|Z,b) (8.26)

be{0,1}
which we now compute. To proceed, denote A = 31|Z,0) (Z,0] — (3/2)l, so that 3|Z,0) (Z,0| —

| = A+ (1/2)l and Tr(A) = 0. Thus, (Z,blU(3|Z2,0)(Z,0| - HU'|Z, b>2 = (Z,b[UAU"|Z, b>2 +

<Z, bUAUT|Z, b> + 1/4. From [54, App. 5], we know that

2] Tr(A%)1+ 242
EUam[UTZ¢H2J4U<ZMUAUsz>}:r(Qf:gl (8.27)

for b € {0,1}. Similarly, we have

Eveoy, |UT1Z,0) (Z, ] U<Z,b|UAUT|Z, b>] -

o

<|Z, 0 (Z,0] - ;I> (8.28)

DN | —

for b € {0,1} [54, App. 5]. Finally, we have

1 1
Evect, [UT |Z,b) (Z,b] UJ =3l (8.29)
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for b € {0, 1}. Putting these observations together, we obtain

> Evean UM Z.0) (2.0 U (Tx((312.0) (2.0 - )0 |2,6) (26| 0)
be{0,1} (8.30)

3 1

which has a maximum eigenvalue of 3/2. As a result, we have ||@||§hadow = (3/2)", or ||0||shadow =

V(3/2)". We also have ||1/2"|| 40w = 1/2". Thus, by triangle inequality and reverse triangle

inequality, we have

3\" 1 1 3\" 1
2) S <llo— <. (2 — 31
<2> A H 2n shadow B <2) * 2n (8 k )

Since classical shadows need Q(||60 — 1/2"||%,,.40, 108(1/8) /€2) samples to estimate the fidelity to a

precision of € and a confidence level of 1 — ¢ [54], Eq. (8.22) follows.
Next, we obtain an upper bound on the minimax norm. Using Eq. (7.2), Eq. (8.7), and
Eq. (8.21), we have

1
O = — max Tr(O —
[0l = 5 max, Tr(O0q ~x2)

1/N (8.32)
s.t. Z BL” Z \/pk,b(Xl)pk,b(X2)2<g> ,

ke{X.)Y,Z}n be{0,1}"

where we denote py(x) = (k,b|x|k,b) for x € . We also denote py(x) to be a 2"-dimensional

(probability) vector with entries py(x) for b € {0,1}". Then, using Fuchs-van de Graaf inequality

(Eq. (3.36)), we have 37yc o 130 v/Prs(x1)Prp(x2) < \/1 — [lpk(x1) = pr(x2) |3y for each k. By

concavity of square-root, we have

>oooamny \/Pk,b(Xl)Pk,b(Xz)S L= > (13" Ipe(xa) = pr(x2) 3y (8-33)

ke{X)Y,Z}n be{0,1} ke{X,Y,Z}n
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Thus, from Eq. (8.32), we have the bound
Ol < 5 max THO0G - x2)
- < _
ms =5 MO X1 — X2
1 ) 5\ 2/N (8.34)
s.t. > 3 k1) = pe(x2)llpy < 1 = <2> :
ke{X,)Y,Z}"
To proceed, we expand x1 — X2 in the Pauli basis as

xi-xz= Y, BP (8.35)

ee{I,X,Y,Z}"

Fix a k € {X,Y,Z}", and define J(k) = {¢{ € {[,X,Y,Z}" | Vi € [n],l; € {I,k;}}, so that
|7 (k)| = 2". Denoting Zy = {0, 1} to be the 2-element field, for ¢ € {I, X,Y, Z}", define w(¢) € Z}
with m;(¢) = 1 if ¢; # I and m;(¢) = 0 otherwise. Also define the weight wt(¢,b) = (7 (¢),b) =
Yo mi(0)b; (mod 2) € {0,1} for £ € {I,X,Y,Z}" and b € {0,1}", which is an “inner product”

between 7(¢),b € Zy. Then, Apgp = prp(x1) — Prp(x2) can be expressed as

Apry = Tr (b, b) (k.b (x1 — x2)) = D (=105, (8.36)
L7 (k)

Therefore, the equation relating Apy,; for b € {0,1}" with 5, for £ € 7 (k) is the Walsh-Hadamard

transform. Taking its inverse, we find that

Be=o- > (—)"ENAp, (8.37)
be{0,1}n

for ¢ € 7 (k).

With future calculations in mind, for a given ¢ € {I, X,Y, Z}", we restrict our attention to all
the strings k € {X,Y, Z}" obtained by replacing identity occurring in ¢ with either X or Y. This
defines the set ' ({) ={k € {X,Y, Z}" |Vi € [n]|,ki=4; if {; # 1, k; € {X,Y} if {; = I} given any

te{l,X,Y,Z}". Let H({) denote the Hamming weight of ¢, i.e., the number of characters of the
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string £ not equal to identity. Then, we have |% (¢)| = 2"~ H®) and we can write
’ Z Be
kEL%

(8.38)

Z Z 1"ED Ap, .

ke%(é be{o 1}n
To proceed, observe that for O = |Z™,0™) (Z™,0"|, we have

Tr(00x = > b (8.39)

tes(Zn)

because wt(¢,0™) = 0 for all £. Since Tr(x1 — x2) = 0, we must have S» = 0. Thus, for convenience,

we denote F(Z") = F(Z™) \ {I"}. Then, using Eq. (8.39) and Eq. (8.38), we obtain

SO - ) =5 > Z D DRCHAN

LeFo(Zm) keF ( E) be{o 1}n
SH(0) (8.40)
< ) on > 27 APkl Ty
tego(Zm) ke (£)

where we denote Apy, to be the 2"-dimensional vector with components Apy,;, for b € {0,1}", and
use the fact that Ebe{oyl}n(—1)Wt(£’b)Apk,b < [|Apklly = 2| Apklpy-

Next, we show that {F# (¢) | £ € F(Z™)} partitions {X,Y, Z}"™\ {X,Y }". First, note that for
0,0 e F(Z™), if £ # 0, then there is at least one index i € [n] where ¢; = Z but ¢, = I or ¢} =
but ¢; = I, and as a result, # (¢) N # (¢') = @. Further, for all k € {X,Y, Z}" \ {X,Y}", we have
ke F(0) for £ € F(Z™) obtained by replacing all X, Y in k with I. Thus, {# (¢) | ¢ € FH(Z")}
partitions {X,Y, Z}" \ {X,Y}". Consequently, for every k € {X,Y, Z}"\ {X,Y}" belonging to a

particular % (¢), we can uniquely assign an ¢ € %(Z"), which we denote as ¢(k). Thus, we can
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write Eq. (8.40) as

1 oH(L(k)) 1
iTr(@b(l —Xx2)) < Z on  on | Apklry
ke{X,Y,Z}"\{X,Y}"

QH(((K) 1 \? 1 )
> < on 2n> 3" > 30 18261,

ke{X,Y,Z}"\{X,Y}" ke{X,Y,Z}"\{X,Y}"

(8.41)

IN

where the second inequality follows from the Cauchy-Schwarz inequality. From the above inequality,
we can see that only the weight of (k) contributes to the pre-factor. In % (Z"), there are ()
strings of Hamming weight ¢ for i € [n]. Each string ¢ € #(Z") of Hamming weight i comes from

k € #(£), and we have | % ()| = 2"~*. Moreover, we know from Eq. (8.34) that we can bound

1 ) 1 ) 5\ N
> glamlivs Y glAmdvs1-(3 (842)
ke{X,Y,Z}"\{X,Y}" ke{X,)Y,Z}n

%Tr(@(m —Xx2)) < Zzn; <7Z> on—i (;;)23HW
B WW (8.43)

10]lgn,5 < \/@W- (8.44)

Consequently, from Thm. 7.13, we know that TOOL can estimate the expectation value of ® with

Thus, we obtain

A

Therefore, we have

error at most (1 +7)+/(9/8)"\/1 — (6/2)*" for a confidence level of 1 — & € (0.75,1), for any given

1 > 0. Thus, using Eq. (8.17), we can infer that to reach a precision of ¢, we need at most

w0 ((2) L (1) 5
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samples. 0

Since the observable 6 = |Z™,0™) (Z™,0"| acts non-trivially on all n-qubits, the worst-case
lower bound of [54] (Thm. 8.3) is £2(3"/?) to learn the expectation value of © to an error of . On
the other hand, from Eq. (8.31), we can infer that ©((3/2)"log(1/5)/e?) samples are both necessary
and sufficient to learn the expectation value of @ using classical shadows. Therefore, classical
shadows already beats the lower bound of Thm. 8.3 by an exponential factor (exponential in the
number of qubits). Prop. 8.7 shows that TOOL beats both classical shadows and the lower bound
of Thm. 8.3 by an exponential factor. This shows that there are observables for which classical
shadows is not optimal, and can be improved by an exponential factor.

To numerically check the bounds on the minimax norm and the shadow norm derived in

Prop. 8.7, we define the rescaled minimax norm as

101192,

V1 (3/2)YN

(8.46)

From Eq. (8.44), we have the upper bound of 1/(9/8)" on the rescaled minimax norm of 0. Since
the minimax norm is invariant under translations of the observable (Prop. 7.5.1), we also have the
upper bound of \/W on the rescaled minimax norm of ® — 1/2". On the other hand, from
Eq. (8.31), we have the lower bound |0 — 1/2"|| 440w = V/ (3/2)" —1/2". In Fig. 3, we plot the
numerically computed values of the rescaled minimax norm and the shadow norm of © — /2" along
with bounds derived above. We can see that the bounds are valid and improve as the system size n
increases. In the numerical computation of the minimax norm, we use N = 5000, 6 = 0.05, and
€0 = 107°. Lem. 7.11.1 guarantees that for ¢, > 0, the computed value is an upper bound on the
minimax norm.

We now show that the exponential advantage of TOOL over classical shadows persists even if

we learn the expectation values of many observables simultaneously.

Corollary 8.8. For simultaneously learning the fidelity with all the 6™ (projectors onto the) eigen-
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—®&— rescaled minimax norm —m#— shadow norm
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2.0 1
1.5
1.0 1
1 2 3 4 5
n

Figure 3: Plot of the rescaled minimax norm (defined in Eq. (8.46)) and the shadow norm of
|Z™,0™) (Z™,0™| — 1/2™ for uniformly random Pauli measurements as a function of the number
of qubits n. The minimax norm is rescaled by a factor of /1 — (6/2)2/N. The analytically
computed upper bound of 1/(9/8)" on the rescaled minimax norm (dashed line) and lower bound
of \/(3/2) — 1/2™ on the shadow norm (dot-dash line) are plotted for reference.

states |k, b) (k,b|, k € {X,Y,Z}" and b € {0,1}", of weight-n Pauli operators in an n-qubit system

to an error of € > 0 and a confidence level of 1 — & € (0, 1), classical shadows needs at least

o(n(2)" s (1)) )

outcomes of uniformly random Pauli measurements, while TOOL needs at most

o(n(2)" L (1)) )

outcomes.

Proof. For all k € {X,Y,Z}" and all b € {0, 1}", there is a unitary U € CI®" such that |k, b) (k,b| =

U|z™,0m) (Z™, 0" Ut. Since CI$" is a group, it can be verified from the definition of shadow norm
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(Def. 8.1) that [|[k, b) (k. bl]| = [[1Zz",0m) (Z", 0]

shadow shadow *

Similarly, each U € Cl?" is a measurement symmetry of the uniformly random Pauli mea-
surement (as defined in Def. 7.7), since it only permutes the POVM elements in Eq. (8.21). Thus,
from Prop. 7.8, we have |||k, ) (k,b|[lgn s = [[[Z",0™) (Z",0"[|lgn s for all k& € {X,Y,Z}" and all
be {0,1}".

It follows that for both classical shadows and TOOL, learning the expectation value of any
given |k,b) (k,b| for k € {X,Y,Z}" and b € {0,1}" using URPM needs exactly as many samples
as learning the expectation value of |Z°0") (Z",0"|. Since there are a total of R = 6™ observables
whose expectation values we want to learn, for classical shadows as well as TOOL, we learn each
expectation value to a confidence level of 1 — ¢/R and then use the union bound to simultaneously
learn them in [o-norm. Thus, Eq. (8.47) and Eq. (8.48) follow from Eq. (8.22) and Eq. (8.23),

respectively. O

Finally, we prove a data-processing-type inequality for the minimax norm for randomized
measurements. First, we show that randomizing a deterministic measurement protocol does not
offer any benefits for estimation. We define what we mean by randomization of a measurement

protocol below.

Definition 8.9 (Randomization of a measurement protocol). Given a measurement protocol

M = {(E®, N;)}, its randomization is the measurement protocol 9# where the POVM

N; .
Ei =~ Bk € M i€ (L] (8.49)
is measured N times, where N = 25:1 N, denotes the total number of samples. ]

The measurement protocol 9% can be implemented by sampling the ith POVM of 9t with
probability p; = N;/N and measuring it, and repeating this procedure a total of N times.
Since the minimax norm provides a tight lower bound on the estimation error for any

measurement protocol, we can use it to compare the performance of 9 and M# for estimation.
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The result below shows that randomizing a measurement protocol according to Def. 8.9 does not

offer any benefits for learning the expectation value of an observable.

Proposition 8.10. Let M be a measurement protocol and IN* denote its randomization according

to Def. 8.9. Then, for all observables © and confidence levels 1 — § € (0,1), we have

101l 5 = (1Ol - (8.50)

Proof. Given any state y, denote pgf ) (j) = Tr(E](-i) X) to be the probability distribution defined by
the ith POVM of the measurement protocol 9. Similarly, given any state x, denote gy (i,7) =

(Ni/N)pgf) (7) to be the probability distribution defied by the POVM in Eq. (8.49). Observe that

L L

N i) (i ONRONLY
BCo# (X1, X2) = BC(qy,, qx.) = Z WBC(ng)vp&g)) 2 H[Bc(p&B’P;Q))]NZ/N = BC(x1, x2)-
i=1 i=1
Then, Eq. (8.50) follows from the expression for the minimax norm given in Eq. (7.2). O
8.2 Two no-go theorems

In this section, we present two no-go theorems (or propositions), one for fidelity estimation
with stabilizer states, and another for learning the expectation values of arbitrary observables.

Our first task is to learn the fidelity with a pure stabilizer state prarget. We saw in Sec. 6.2, that
if we randomly sample elements of the stabilizer group of prarget, then we can efficiently estimate the
fidelity with prarget. However, we know that all the stabilizer group elements can be obtained from
the generators of the stabilizer group STAB(ptarget) Of prarget- Therefore, one can ask the question if
it suffices to measure the stabilizer group elements, and then post-process the measurement outcomes
to learn the fidelity with prarget. Note that the size of the stabilizer group of an n-qubit stabilizer
state is 2", while there are only n stabilizer generators. Thus, if we randomly sample a fixed number
(independent of n) of elements of STAB(ptarget), we are likely to draw different a element each time

we sample. Measuring a different sampled element each time amounts to repeatedly changing the
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measurement setting, which is experimentally more time consuming than measuring n stabilizer
generators each a fixed number of times. Therefore, whether measuring the stabilizer generators
suffices to learn the fidelity with piarget is also a practically relevant question. First, we consider
the case where we measure the stabilizer generators one at a time, that is, we prepare the state p,
measure a stabilizer generator, record the outcome, and repeat this procedure many times. It turns
out that measuring the stabilizer generators in this fashion does not suffice to learn the fidelity with

the target stabilizer state to a small enough precision.

Proposition 8.11. For n > 2, there is no procedure that can learn the fidelity with an n-qubit pure
stabilizer state prarger to an error e < 0.05 and confidence level 1 —§ > 0.95 using outcomes from

independent projective measurements of the stabilizer generators of prarget -

Proof. Let Pi, ..., P, denote stabilizer generators of prarget = 1) (¢|. Note that all the stabilizer
generators, and therefore, the stabilizer group elements commute. Since [¢) is the eigenstate of

these generators with eigenvalue +1 [66], we can write

n

I+ B
Ptarget = 1_[1 2 Z-
1=

(I + P;)/2 denotes the orthogonal projector onto the +1-eigenvalue subspace of P; for i € [n], and
since these projectors commute, their product (which is ptarget) corresponds to the projector onto
the intersection of all the +1-eigenvalue subspaces of Py, ..., P,.

Taking inspiration from this observation, we construct states x1, x2 such that FCon(x1, x2) = 1,
while F(ptarget, X1) — F (prarget, X2) = 1 — 1/n. Here, M is the measurement protocol where the
POVM {(I + P;)/2, (1 — P;)/2} is measured N; times, for ¢ € [n], which are eigenvalue/projective
measurements of the stabilizer generators. To that end, define

1 1
X1 = 1-— E Ptarget + P

1
X2:p25
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where
L
I — P
1L
P = H 9 :
i=1
n n ..
1 |+ (=1)% P
L — —
=2 l—5—
=1 7=1
The state p;- is the projector onto the simultaneous —1 eigenstate of all Py, ..., P,, whereas the
state py is the uniform mixture over i = 1,...,n of the +1-eigenstate of P; for j # i and —1

eigenstate of P;.
Noting that ((I £ P;)/2)? = (1£ P;)/2 and ((I1+ P;)/2)((1 — P;)/2) = 0 for each i € [n], we

obtain

7N
w—l_
Jqs)
N————
<
=
| I
Il
=
| —
N
M+
Jas)
N————
>0
o
—_1
I
—_
|
S|

Then, since

st =BT (o (7)o o[ (57)

=1

i/

()

we have FCor(x1, x2) = (BCam(x1,Xx2))? = 1. Similarly, since p- and p3 are orthogonal to parget,

we obtain

1

F(ptargetv Xl) - F(ptargety)@) = Tr(ptarget(Xl - XQ)) =1- E

From Eq. (7.2), we have ||ptarget|lgy s = 0.5 — 0.5/n. Then, from Thm. 7.13, it follows that the error
of any procedure is bounded below as € > ||ptarget|lgn 5 /U0(0) = (1 — 1/n)/20(5). For n > 2 and

5 € (0,0.05), we have 1 — 1/n > 0.5 and ¥(J) < 4.6, so that € > 0.05. O
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In Prop. 8.11, we only considered deterministic stabilizer generator measurements. We can
use the following general strategy to show that randomized stabilizer generator measurements don’t
work either.

Suppose that we have shown for an observable 6, POVMs E(M ... E() and a confidence

level 1 —6 € (0.75,1), that [|Oflgy s > c holds for all Ny, ..., Ny, where M = {(EW, N;)}E

izq- Our
goal is to show that for any randomized measurement protocol 9V, obtained by randomly sampling
E() with probability p; and measuring it (and repeating this many times), we have H@Hm/ 5 = O
To see this, let S be a positive number, and define N; = [p;S]| for i € [L] and N = ZZ‘L:1 N;.
Then, p; ~ N;/N for large enough S. Then, from Prop. 8.10, we have [|0|gps 5 > [0|gn s >
for all S > 0. Since BC(p, q) is continuous in p, g, we can infer that for large enough S, we have
BCon (X1, x2) & BCay (X1, x2) for all x1,x2. Thus, [|O]gy s = [|O]|ggs 5 > .

We now look for generalization of the ideas underlying Prop. 8.11. From Prop. 8.11, we
see that although the stabilizer group elements can be written as finite products of the stabilizer
generators, it is not sufficient to measure the stabilizer generators independently to learn the fidelity
with the stabilizer state. This suggests that the algebra structure of S; is not relevant to learning
the expectation values of observables. We show below that this is indeed the case, as the linear
subspace spanned by the measurement protocol determines the observables whose expectation values
can be learnt with asymptotically vanishing error.

We describe our result in terms of the projection superoperator, which we define below. Let

% C Sy be a subspace. Fix an orthonormal basis Hy,..., Hgime of %. Then, the (orthogonal)

projection superoperator Py : Sz — Sy is the linear map

dim %
Py(0) =Y Tr(H0)H; (8.51)
=1

for all ® € S;. It can be verified that the action of %9 does not depend on the choice of the
orthonormal basis of %. If %~ denotes the orthogonal complement of %, then Py + Py,1 is the

identity map on S;. Thus, every observable O can be decomposed as Py (0) + Py (0). We can
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then state our result as follows.

Proposition 8.12. Fiz an observable O and a measurement protocol M = {(EW, N;) L. If
O ¢ spanM, then the error € of every estimation procedure that learns the expectation value of ©

using the outcomes of M to a confidence level 1 — & € (0.75,1) for all states is bounded below as

|- @],

£ > <(5)
[# oy @]

(8.52)

independent of the total number of samples used by IN.
Conversely, if © € spanN, then the expectation value of O can be learnt to any given error

and confidence level using sufficiently many outcomes from measuring EV, ... E®X).

Proof. First, assume that O ¢ span 9. Then, denoting Oy = Pspanom(0) and Of- = P (spanam) L (0),

we have O = Oy + Of-. We have O3~ # 0, O3~ € (span90)*, and also Tr(0y) = 0 because | € span .

Xizo H@H ) (8.53)

are quantum states, and we have Tr(O(x4+ — x-))/2 = H@OLHIQ-IS / H@OLHOO > 0. Furthermore, if

Then,

M = {(EW, N;)}, then we have Tr(E,ii))H) = Tr(E,(:)X,) for all k € [M;] and all i € [L] because

O € (spanM)*. As a result, we have BCyn (x4, x—) = 1. Then, from Eq. (7.2), we obtain

19 1s
[0l s = (554
105 ]|
for all Ny,..., Ny. By Thm. 7.13, we have that the error of all estimation procedures using outcomes

of M is bounded below by ¢ () H@OLHIQ{S / H@OLHOO, independent of the number of samples.
Conversely, if O € span 9, then we can write O = Zz 1 Zk ne )EIEZ), where each a,g) €R.

Therefore, 6 = Sk Zk 1 ak fk , where fk is the observed frequency (Eq. (5.35)) of E,(:), is a

bounded unbiased estimator of (0). (O) can therefore be estimated using Hoeffding’s inequality [52] to

any given error and confidence level using sufficiently many outcomes from measuring EV, ..., E().
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O

We can informally summarize Prop. 8.12 by saying that the expectation value of an observable
O can be learnt using outcomes of 91 if and only if @ € span. This parallels the well-known
result that for learning a state in trace distance, we need to perform an informationally complete

measurement. Indeed, we show that the latter result follows from Prop. 8.12.

Corollary 8.13. If the measurement protocol M is not informationally complete, then there is no
estimation procedure that can learn every quantum state using outcomes of M to an arbitrarily small

error in trace distance with high probability.

Proof. Suppose that we have an estimator p that learns p using outcomes of 9t to an error ¢ in
trace distance with confidence level 1 — §. If 91 is not informationally complete, then spant C S,
(see Prop. 2.4). Choose any O € (span)* with ||0]| = 1. Since Pox,(Ilp — pll;, > €) < &
by assumption, and |Tr(O(p — p))| < 2||p — pll;, (see [107, Ex. (9.1.6)]), we have Poy ,(|Tr(0Op) —

Tr(Op)| > 2¢) < §. Then, by Prop. 8.12, we must have & > ¢(6) [|0|/3g /2- O

Owing to Prop. 8.12 (and the terminology used in Cor. 8.13), we can call a measurement

protocol M informationally complete for an observable 0 if 6@ € span IN.
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N Set of natural numbers (excluding zero) p.14
R Set of real numbers p.14
R Set of extended real numbers, R = RU {£o0} p.14
C Set of complex numbers p.14
[M] [M]={1,...,.M},M €N p.14
0ij 0;; = 1 if i = j and zero otherwise p-14
{Oi}ies Indexed family; elements O; indexed by elements of the set % p.14
(-, ) Inner product p.15, 19
span Linear span p-15
@ Direct sum p.16, 17
& Tensor product or direct product p.16
v |U Quotient space of the vector space 7” by the subspace % C 7 p-16
oA + B Minkowski sum of subsets o/, % of a vector space p.16
ker Kernel of a linear map p-17
range Range of a function p-17
Il Il Seminorm or norm p.18
K" Set of n-dimensional vectors with entries from K; K=R or K=C p-18
Kmxn Set of m x m matrices with entries from K; K=R or K=C p.18
Sn Set of n x n Hermitian matrices p-18
A(A) Vector of eigenvalues of a (Hermitian) matrix A p.18
Amax (A4), Amin(A) Maximum, minimum eigenvalue of a (Hermitian) matrix A p.18
o(A) Vector of singular values of a matrix A p.19
Omax(A), omin(A) Maximum, minimum singular value of a matrix A p.19

H-Hp l, or p-norm of a vector; Schatten p-norm of a matrix; p € [1, ] p-19
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| Allgs Hilbert-Schmidt norm or Schatten-2 norm of a matrix A € S,, p.19
| Al Trace norm or Schatten-1 of a matrix A € S, p.19
| All Operator or spectral norm or Schatten-co norm of a matrix A € S,, p.20
(0) Expectation value of the observable O with respect to some under- p-20
lying state p; (0) = Tr(Op)
POVM E Positive operator-valued measure, E = {F1,..., Ex}, (VE)E, > 0, p.21
SM Ep=1. k € [M] is referred to as the label of Ej.
PE,p Probability distribution over the labels upon measuring the POVM p-21
E with respect to the state p given by Born’s rule
pff) PEG) p» when the POVM E® is understood p-21
m Measurement protocol M = {(E®, N;)}L_,, where for each i € [L], p.22

the POVM E® is measured N; times. The POVMs are assumed
to be distict.

N(9n) Total number of samples used by 9; if M = {(E®, N;)}~ |, then p.22
N(M) =30, N;

P o Joint probability over the labels determined by the measurement p.22
protocol I, and the state p; as a vector, Poy , = ®f:1(p§f))®Ni
span O Span of the POVM elements in 9t; span{E,(:) | k € [M;],i € [L]} p.24
int A Interior of the set A p-26
clA Closure of the set A p.26
(Q,B(Q)) Borel space, Polish space p.26, 27
m measure, o-finite reference measure p-27, 28
m K 1y 1 is absolutely continuous with respect to 724 p.27
dmey [drmesy Radon-Nikodym derivative of 7z1 with respect to 729 p.27
P Probability measure or probability distribution p-27
E[X] Expected value of the random variable X p.28
Ay Standard simplex in R%; set of discrete probability distributions p-29
over d symbols
supp p Support of a discrete distribution p p-29
Dy f-divergence p-29
KL(P||Q) KL divergence between P and Q p.30
aff & Affine hull of the set & p-33
conv K Convex hull of the set # p-33

relint & Relative interior of the set F& p.34
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usc

Xx

Sor
f*

BC
FC

BD
BDo
BCon

FCay

F(p,0)

Ip = qllrv

HD(p, q)
SDC(p, q)

10 = o llon ave
lp— UHzm,max
HDop avg(p, o)
HDon max(p; o)
SDCop ave(p, 0)
SDCop max (P, o)
o= ol
Dgu(p, o)
SD(p, o)

Lower semicontinuous
Upper semicontinuous

Characteristic function of the set #; xo(z) =0 if x € # and oo
otherwise

Support function of the set #
Convex conjugate of the function f
Bhattacharyya coefficient between two probability distributions

Classical fidelity between two probability distributions; FC(p, q) =
(BC(p,9))?

Bhattacharyya distance between two probability distributions;
BD(p, q) = —1og(BC(p, q))

Average Bhattacharyya distance between two states determined by
the measurement protocol 9

Geometric-average Bhattacharyya coefficient between two states
determined by the measurement protocol 9t

Geometric-average classical fidelity between two states determined
by the measurement protocol 90t FCoy(p, o) = BC3(p, o)

Fidelity between the states p and o

Total variation distance between the probability distributions p
and ¢

Hellinger distance between the probability distributions p and ¢

Classical sine distance between the probability distributions p and
q

Average total variation distance between the states p and o
Maximum total variation distance between the states p and o
Average Hellinger distance between the states p and o
Maximum Hellinger distance between the states p and o
Average classical sine distance between the states p and o
Maximum classical sine distance between the states p and o
Trace distance between the states p and o

Bures distance between the states p and o

Sine distance between the states p and o
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p.34
p-34

p-35

p.35
p-35
p-40

p-40

p-40

p-41

p-42

p-42
p-49

p-49
p-49

p-50
p-50
p-o0
p-50
p-50
p-50
p-H2
p-52

p-H2



Docusign Envelope ID: 3AE25DC6-0FF1-4FFD-BDBE-A4F50E 159038

Index

e-minimax, 32 dual problem, 37
d-risk, 61 dual variable, 37

o-algebra, 25
effective POVM, 23

absolutely continuous, 27 event, 28
affine estimator, 60

affine function, 34 fidelity, 42 ' N

affine set, 33 Fuchs-van de Graaf inequality, 53

alphabet, 29 ] geometric-average Bhattacharyya coefficient,
average Bhattacharyya distance, 41 49

geometric-average classical fidelity, 42

Bhattacharyya coefficient, 40 o
good pair, 61

Bhattacharyya distance, 40
Borel space, 27 Hellinger distance, 49
Bures distance, 52

indexed family, 14
informationally complete (IC), 24
interior, 26

isometry, 17

characteristic function, 35
classical fidelity, 40
classical sine distance, 49

closure, 26 isomorphism, 17
coercive, 34
compact, 26 Karush-Kuhn-Tucker (KKT) conditions, 37

complementary slackness, 37

complete, 26

concave function, 34

confidence interval, 32

convex conjugate, Legendre-Fenchel
transform, 35

convex function, 34

convex hull, 33

convex set, 33

label (of a POVM), 21
Lagrangian, 36

log-concave function, 34
lower semi-continuous, lsc, 34

measurable function, 27

measurable space, measurable set, 25
measure, 27

measurement protocol, 22

metric space, 26

dense, 26 .. imal risk. 6
discrete distribution, 29 minimax optimal risk, 62
discrete topology, 28 observable, 20

dual feasibility, 37
dual function, 37
dual optimal value, 37 parametric density family, 60

orthogonal complement, 16
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perspective (of a) function, 36

Polish space, 26

positive semidefinite (PSD), 17

primal feasibility, 37

primal optimal value, 36

primal problem, 36

primal variable, 37

probability density function, 28

probability measure, probability distribution,
27

probability space, 27

proper function, 34

pseudometric, 51

pure state, 20

quantum state, 20
quotient space, 16

randomized measurement, 23
rank, 19

reference measure, 28
relative interior, 34
relatively open, 34

sample complexity, 33
seminorm, 18

separable, 26

SIC-POVM, 25

simplex, standard simplex, 29
sine distance, 52

Slater’s condition, 38
stationarity, 37

strong duality, 37

subspace, 16

support, 18

support function, 35
support of a distribution, 29
symbol, 29

topology, 26
total variation distance, 49
trace distance, 52

upper semi-continuous, usc, 34

weak duality, 37
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