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ABSTRACT 

 

Rudakevych, Dominic Anthony (M.S., Applied Mathematics) 

Long Short-Term Memory Networks to Improve Aerodynamic Coefficient Estimation for 

Aerocapture 

Thesis directed by Associate Professor Stephen Becker 

 

Aerocapture is a method for orbital insertion from a hyperbolic trajectory being 

considered for NASA’s proposed 2030’s flagship mission to Uranus. By traveling through the 

planet's atmosphere to generate drag, aerocapture greatly reduces the fuel needed when firing 

retrograde thrusters, allowing for larger payloads or a less powerful launch vehicle. Despite these 

theoretical benefits, aerocapture has never flown on any planetary missions due to thin margins 

of error and in-situ corrections necessary to properly execute the maneuver. Critical to the 

guidance and control algorithms are the aerodynamic coefficients. We propose using a neural 

network to learn the nonlinear relationship between the raw sensor data and these aerodynamic 

coefficients. Specifically, we explore how network architectures designed for time dependent 

data, like Long-Short Term Memory (LSTM) neural networks, can produce aerodynamic 

coefficient estimates akin to that of a computational fluid dynamics (CFD) based lookup table, 

while providing more robust coefficient estimation when large environmental perturbations are 

experienced. Improving force and moment coefficient estimation would improve aerocapture by 

providing more accurate aerodynamic coefficients for use in guidance and control algorithms. 

This work considers multiple sensed data sources and aerodynamic coefficient data along with 

LSTM network architectures for model training to maximize an aerocapture maneuver’s success 

rate when tested in a Monte Carlo simulation. Along with this, sensitivity analyses were 
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conducted on model hyperparameters to account for relationship complexity. Results were 

compared against traditional aerodynamic coefficient lookup tables within the Fully Numeric 

Predictor-corrector Aerocapture Guidance (FNPAG) algorithm to draw conclusions for the 

model’s performance. 
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CHAPTER I 

Nomenclature 
ΔV = change in velocity  
Δm = change in mass  
L = lift force  
D = drag force 
CL = lift coefficient  
CD = drag coefficient 
ϼ = atmospheric density 
S = reference area 
α = angle of attack 
β = sideslip angle 
CFA = longitudinal force coefficient 
CFY = lateral force coefficient 
CFN = normal force coefficient 
CMl = rolling moment coefficient 
CMm = pitching moment coefficient 
CMn = yawing moment coefficient 

Background 
Aerocapture 
 With the release of a Decadal Strategy for Planetary Science and Astrobiology, the National 

Aeronautics and Space Administration (NASA) has highlighted the Uranus Orbiter and Probe 

(UOP) flagship mission as the highest priority mission for 2023-2032 [1]. Through UOP, NASA 

aims to put an in-situ atmospheric probe in orbit around Uranus for multiple years, where it will 

gather knowledge on this unexplored ice giant and the Uranian system. The three objectives of 

UOP are to explore Uranus’ (1) origin, interior, and atmosphere; (2) magnetosphere; and (3) 

satellites and rings.  

Currently, optimal launch opportunities in the early 2030’s have UOP leveraging a variety of 

gravity assists to reach Uranus in a shorter cruise time. Once the Uranian system is reached, 

NASA will enter orbit from a hyperbolic trajectory. One theoretical method for achieving this is 

aerocapture. Through aerocapture, a satellite dips into a planet’s atmosphere, creating drag and 
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decreasing velocity. Through precise guidance, navigation and control (GNC), a satellite would 

be able to leverage this drag to slow down and reach orbital velocity without slowing so much as 

to reach sub-orbital velocity. Aerocapture offers three potential benefits over propulsive orbit 

insertion. First, the mass of hardware and propellant needed for an aerocapture maneuver would 

be less than the mass needed for the hardware and propellant to insert a satellite entirely 

propulsively [2]. This difference in mass could be used to transport more scientific payload. The 

second potential benefit would be a reduction to the overall trip time from Earth to Uranus. This 

is a product of how propellant and hardware mass (Δm) scale with the necessary change in 

velocity (ΔV) for different insertion techniques. For entirely propellant insertions, Δm increases 

approximately exponentially with ΔV, while for aerocapture, Δm increases linearly with ΔV [3]. 

This linear relationship allows for hyperbolic entry speeds infeasible with propulsive orbit 

insertion, and thus lower flight times. Finally, aerocapture could allow less costly launch vehicles 

because of the reduced propellant and hardware mass [2]. 

 

 

Fig. 1 Notional Aerocapture Maneuver [4] 
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Despite these potential benefits, aerocapture has not been used on a flight mission to date. 

While multiple flight tests and missions featuring aerocapture have been proposed, all have been 

unsuccessful on account of aerocapture’s technological readiness level (TRLs). TRLs are a 1-9 

scale system designed by NASA in the 1970s for estimating the maturity level of a particular 

technology [5]. At the extreme ends of the scale, TRL 1 indicates research has begun on a certain 

technology, but the work is still speculative, whereas TRL 9 suggests a fully functional 

technology which has been “flight proven” during a successful mission. The UOP flagship 

mission would be a multi-billion-dollar endeavor, meaning the risk tolerance is extremely low, 

and the TRL for the aerocapture maneuver would have to advance substantially on the TRL 

scale.  

Estimating Lift and Drag Coefficients  
The current state-of-the-art aerocapture guidance, the Fully Numeric Predictor-corrector 

Aerocapture Guidance (FNPAG), has been flight simulated in multiple environments, especially 

Earth and Mars [6, 7]. In these simulations, lift and drag coefficients are considered fixed on 

account of high velocity during aerocapture maneuvers [7]. Lift and drag coefficients are 

conventionally defined as 

  

CL =  
L

0.5 ∗ ϼ ∗ V2 ∗ S
(1) 

CD =  
D

0.5 ∗ ϼ ∗ V2 ∗ S
(2) 

 

Equations (1) and (2) show the lift and drag coefficients have inverse square scaling with 

vehicle velocity. While (1) and (2) provide algebraic solutions for the coefficients, these are not 
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usable online. This is because flights implementing FNPAG need accurate lift and drag 

coefficients to compute lift and drag forces, which are used in guidance and control for vital 

flight measurements including the L/D ratio and acceleration due to aerodynamics. Since the lift 

and drag forces are unavailable to the model, flights making online adjustments to lift and drag 

coefficients rely on the relationships between force coefficients and angle of attack defined 

below [8].   

 

CL =  CFN cos α − CFA sin α (3) 

CD =  CFN sin α + CFA cos α (4) 

 

 The longitudinal, lateral, and normal force coefficients used for estimating lift and drag 

coefficients are provided by lookup tables informed by wind tunnel and computational fluid 

dynamics (CFD) data which take angle of attack, sideslip angle, and Knudsen Number as table 

input. While these tables provide more robust lift and drag coefficient information for guidance, 

aerodynamics for destinations with demanding entry circumstances (such as Uranus) cannot be 

accurately modeled by extrapolation of laboratory data at lower Mach numbers [2].  

Neural Networks 
 To account for uncertainties introduced by the Uranian atmosphere, we propose a data-driven 

technique for producing lift and drag coefficients during an aerocapture maneuver, using realistic 

numerical simulations to create a dataset. A neural network is a model designed after the 

biological learning process. The base learning unit, a neuron, takes in a collection of inputs to 

produce an output, which may then be fed to other neurons. Figure 2 shows a simple feed-

forward neural network (FFNN) with three layers: an input layer of three neurons, a hidden layer 

of four neurons, and an output layer of two neurons. The connections (or weights) between 
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neurons are updated during the learning process as the model identifies which relationships are 

relevant. For an error back-propagation learning scheme, weights are updated to travel the 

steepest gradient-descent to minimize the difference between the sum of squared errors between 

the model outputs and truth output values known during the training process [9]. 

 

 

Fig. 2 FFNN Architecture [10] 

 

 The architecture of individual neurons allows neural networks to develop nonlinear mappings 

from inputs to outputs. Each neuron performs a mapping F: Rn → R, wherein a vector of inputs, 

Ai, is multiplied by a respective vector of weights, wi, and then adjusted by a bias vector, bi, after 

which all the values are summed. The weighted input sum is then used as input to a nonlinear 

activation function F, which maps to the neuron output, Z. Equation 5 demonstrates this 

relationship 

. 

Z =  F (∑ wiAi

n

i=1

+ bi) (5) 
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 The ability for neural networks to learn nonlinear relationships comes from the use of 

nonlinear activation functions. Common activation functions include the Sigmoid function, the 

Rectified Linear Unit (ReLU), and the Tanh function [11]. In this work, the sigmoid and tanh 

activation functions are used.  

 While powerful, FFNNs are preferred for handling data in a single pass, while other network 

architectures learn trends in time-dependent data better. Recurrent neural networks (RNNs) are 

often utilized for their internal “memory” structure and ability to handle sequences of variable 

length. The key difference is allowing the output of a previous timestep, Zt−1, to be used as input 

for the current timestep [12]. Long short-term memory neural networks (LSTMs) are a type of 

RNN designed to model temporal data and capture long term dependencies, and one of the most 

popular types of RNNs. LSTMs overcome certain weaknesses of general RNNs, such as the 

long-term time dependencies [13], which make them attractive for the task of estimating 

aerodynamic coefficients for an aerocapture maneuver. At each time step in an LSTM, four 

neural network layers, referred to as “gates”, interact to maintain long-term time dependencies, 

as shown in Figure 3.  

 

 

Fig. 3 LSTM Architecture [14] 
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 At each timestep, the cell state (or “memory”) and the hidden layer information from the 

previous timestep are passed in. The “forget gate” takes the previous output and the new input 

and decides what information from the cell state does not need to be maintained. The “input 

gate” and “candidate memory gate” then determine what new information will be stored in the 

memory. Using the new input, the “output gate” determines what information will be passed 

from the cell state to the next input. Equations 6-11, referring to Fig. 3, demonstrate how each 

neural network layer updates during one timestep. Note the equations for the gates (6, 7, 8, 10) 

are analogous to Equation 5, while the cell state and hidden layer equations (9, 11) are simply 

updating functions of the four gates.  

 

Ft =  σ(WF ∗ [Ht−1, Xt] + bF) (6) 
It =  σ(WI ∗ [Ht−1, Xt] + bI) (7) 

c̃t =  tanh(WC ∗ [Ht−1, Xt] + bC) (8) 
Ct =  Ft ∗ Ct−1 + It ∗ c̃t (9) 

Ot =  σ(WO ∗ [Ht−1, Xt] + bO) (10) 
Ht =  Ot ∗ tanh(Ct) (11) 

 

 Depending on whether the predictive task of the network is regression-based or classification-

based, the final outputs of the LSTM will pass through a final linear or SoftMax activation 

function.    
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CHAPTER II 

Monte Carlo Simulations 
 To train the LSTM model, data was generated from a Monte Carlo (MC) simulation in 

Matlab. MC simulations are a process by which researchers may computationally examine 

outcomes of a complex task by providing parameters and known distributions of unknown input 

parameters. The MC simulation used in this research models a satellite performing an 

aerocapture maneuver to achieve planetary orbit around Uranus. The simulation uses preloaded 

data provided by NASA regarding planetary constants, satellite dimensions and aerodynamic 

properties, as well as an atmospheric profile for Uranus. By perturbing the entry flight path 

angle, aerodynamics, onboard instrument measurement readings, and navigation rotational initial 

states, the MC simulation can generate thousands of unique flight paths for examining the 

performance of new aerocapture technologies. The training data uses six-degrees-of-freedom 

motion modeling and assumes perfect navigation knowledge during guidance and control.  

 The explanatory variables used to train the LSTM model are necessarily variables available 

in-situ for the model to be of any utility for a satellite performing an aerocapture maneuver. 

Because of this, training variables include the satellite’s quaternion representation of rotations 

(q), linear velocity (v), angular velocity (w), altitude relative to the planetary body (alt), and the 

atmospheric density (ϼ). In training, the model learns the non-linear relationship between these 

variables and the force and moment coefficients (CFA, CFY, CFN, CMl, CMm, CMn) described 

in section II. 1000 perturbed trajectories were generated for training data with these variables 

available. With the computing power available, each MC simulation took roughly 40 secounds to 

generate.  
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Sensitivity Analysis of Hyperparameters 
 Hyperparameters play a key role in how the relationship between explanatory and response 

variables are established in a neural network during training. Minibatch size refers to how many 

simulated trajectories the model can view before performing gradient descent and back 

propagating to update weights. Hidden units refer to the number of neurons in the LSTM layer. 

The number of hidden units in a neural network scale with the complexity of the predictive task 

[9]. To find an optimal hyperparameter configuration, sensitivity analysis was performed across 

these dimensions. Because of long training time, each LSTM network was trained over 100 

epochs. The minimization target was the mean absolute error (MAE) between the predicted and 

true force and moment coefficients across each trajectory. The results of this analysis are shown 

in Table 1. Hyperparameter values of 200 hidden units and a minibatch size of 64 are shown to 

be the optimal, among all tested hyperparameters, for minimizing the difference between target 

and prediction values.  

 

Table 1: Sensitivity Analysis for Training Hyperparameters, showing the MAE 

Minibatch Size / Hidden Units 32 64 128 

10 0.035384 0.036822 0.041822 

100 0.029583 0.027413 0.039612 

200 0.028078 0.024402 0.033858 
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CHAPTER III 

Offline Performance 
Before in-situ guidance implementation of the LSTM network, a direct comparison of neural 

network to lookup table performance was conducted. For a testing set of 1000 trajectories, truth 

and lookup table values were logged for the target force and moment coefficients. The LSTM 

was provided input variables, and predictions were made offline. Each trajectory was filtered to 

only include data where atmospheric density (ϼ) was above 0.00001 so the model would learn 

coefficient patterns for traveling through an atmosphere, where guidance and control would be 

active during aerocapture. By calculating absolute error at each timestep and averaging across an 

individual trajectory, a direct comparison of lookup table and LSTM network is possible. Table 2 

shows the proportion of runs where the LSTM outperformed the lookup table for each response 

variable.  

 

Table 2: Proportion of Trajectories where LSTM Outperformed Lookup Table 

Response Variable Percent 

CFA 12% 

CFY 67% 

CFN 100% 

CMl 25% 

CMm 100% 

CMn 0% 

 

Table 2 shows that the LSTM outperformed the lookup table when estimating the true lateral 

and normal force coefficients, as well as the pitching moment coefficient. This is an expected 
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result, as a satellite performing an aerocapture maneuver would experience high perturbations in 

lateral and normal forces, allowing the LSTM to develop a robust understanding of how the 

inputs relate to these coefficients.   

Examining data for an individual trajectory quantifies how much the LSTM overperforms or 

underperforms the lookup table. Table 3 shows the MAE for the lookup table and the LSTM 

network for a single trajectory in the test data. Bolded values indicate whether the lookup table 

or the LSTM network performed better for each coefficient. 

 

Table 3: Single Trajectory Comparison 

Response Variable Lookup Table MAE LSTM Network MAE 

CFA 0.2717 1.0830 

CFY 0.0280 0.0126 

CFN 0.2686 0.0539 

CMl 0.0015 0.0040 

CMm 0.0877 0.0037 

CMn 0.0039 0.0091 

 

Once again, analysis shows the LSTM performing exceptionally well estimating the lateral 

force coefficient, normal force coefficient, and the pitching moment coefficient. Viewing an 

individual trajectory provides scale of improvement for each variable. While the lookup table has 

a mean absolute error 4x smaller than the LSTM when estimating the longitudinal force 

coefficient, estimates for the rolling and yawing moment coefficients are nearly identical. Figure 

4 makes this more evident, showing the lookup table and LSTM results compared to the true 
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force coefficient values across the trajectory. Appendix A provides the same plots for the 

moment coefficients.  

         

a.) Longitudinal Force Coefficient b.) Normal Force Coefficient 

 

c.) Lateral Force Coefficient 

Fig. 4 True Force Coefficients with LSTM and Lookup Table Estimates 

Online Performance 
Examining offline estimation offers insight about predictive capacity, but demonstrating in-

situ improvements over the lookup table would be true progression toward improving 

aerocapture TRL. To access the LSTM online, the network was integrated into the MC 

simulation guidance block where the lookup table was previously being used. 1000 trajectories 

were simulated with the lookup table, and 1000 trajectories were separately simulated with the 

LSTM network. Each run had identical physics and perturbations, with the only variation being 
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the implementation of the perturbed lookup table or the LSTM network in guidance. For each 

trajectory, success was determined by whether the maneuver successfully entered a scientific 

orbit (passed) or reached early termination (failed). The results are provided in Table 4. 

 

Table 4: Pass Percentage for Online Implementation 

LSTM Pass Percentage Lookup Table Pass Percentage 

47.4% 47.4% 

 

An identical pass percentage when using the lookup table and the LSTM network in guidance 

for aerodynamic coefficients provides evidence of the full flight being robust to aerodynamic 

coefficient variation. This result reinforces both the sufficiency of lookup table implementation 

for aerodynamic coefficient estimation, as well as the potential for LSTM network capability in 

an online predictive space. Table 2 displays LSTM improvements over the lookup table, but 

table 4 suggests online improvements to aerodynamic coefficient accuracy are dwarfed by other, 

more dominant, flight variations such as atmosphere and gravity profile estimation.   

Discussion of Results and Impact  
With new interplanetary flagship missions being announced by NASA in the early 2030s, the 

allure of aerocapture for efficient planetary orbit insertion increases. One avenue for improving 

the TRL of aerocapture is improving online aerodynamic coefficient estimation. More accurate 

force and moment coefficient estimates during guidance and control would allow FNPAG to 

execute more efficient commands during an aerocapture maneuver. To this end, a LSTM neural 

network was introduced as an efficient tool for learning nonlinear relationships between sensed 

data and the target force and moment coefficients. After a sensitivity analysis to optimize 
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training hyperparameters, the trained model was accessed offline and online, demonstrating an 

improvement in 3 of 6 force or moment coefficients in over 50% of simulated trajectories. 

Despite this, online tests of the model showed no difference in the flight performance when 

compared to the traditional lookup table used in guidance. This provides evidence to the 

robustness of an aerocapture maneuver to perturbations in aerodynamic coefficients, as well as 

the ability of neural networks to create predictions on coefficients akin to lookup table values 

without seeing any wind tunnel or CFD data.  

Prospects for Further Study 

One key continuation of this research would be examining alternative loss and objective 

functions for model training. We used mean squared error as an optimization target during 

hyperparameter sensitivity analysis and training, but this is a surrogate function for our true 

goals. Ideally, any improvements to aerocapture would target outcomes like pass percentage of a 

MC simulation or fuel consumption during an aerocapture maneuver. Whether the model 

accurately predicts aerodynamic coefficients is without utility if it has no effect on true variables 

of interest, as shown when reviewing online performance.  

The utility of neural networks and machine learning open many doors of research in 

improving aerocapture. Multiple papers have explored how machine learning techniques may 

improve different nonlinear predictive tasks, including atmospheric composition estimation and 

local density approximation online [15, 16]. A potential continuation of this study would be 

using an LSTM network to do ensemble prediction, where all these models are combined into 

one. Because neural networks perform well at learning nonlinear relationships, there is high 

potential for modeling improvements when providing the network more inputs for analysis. A 

future paper coupling an ensemble LSTM approach with a more generalized loss function like 
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pass percentage or fuel consumption would provide autonomy for the neural network to learn 

unknown relationships, leading to potentially drastic improvements in aerocapture viability. 
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Appendix 

Appendix A: True Moment Coefficients with LSTM and Lookup Table Estimates 

       

a.) Rolling Moment Coefficient   b.) Yawing Moment Coefficient 

 

b.) Pitching Moment Coefficient 
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