Block Coordinate Descent for Mesh Quality Improvement
(Sachin Natesh)

Image Optimization

(

Jacob Spainhour, Damien Beecroft, Spas Angelov)
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An Exploration of Optimization on Smooth Manifolds

(Brandon Finley, David Lujan)

APPM 5630

Prof. Becker, spring 2021
Student projects

xX+v

Retraction Ry (v) B

on the sphere.

Bayesian Optimization: A Class of Zero-th

N . > Applied
Order Optimization Algorithms

(Kevin Doherty, Killian Wood) Mirror Descent Learning in Continuous Games

(Maneesha Papireddygari)

80

i;AV/i |
U ; w
‘vi\' /\ E 20

-40
-60

-80

“Advanced Convex Optimization”

> Computer Science (PhD)
> Aerospace Engineering (PhD)

Electron Density Localization
(Nick Dietrich)

Point Correlation [Lon,Lat] = [0,0] Hr 20, o =7025.61km

Approximating the Natural Gradient
(Mike McCabe)
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An overview of sparse recovery with convex optimization
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(Mike Huffman, Steven Kordonowy)

Theorem 1. (Theorem 1.3 in [1]) Assume e is supported on a set S of size k. If 8+ dap, + 031 < 1,
then e is the unique solution to (Py).

In order to prove Theorem 1, we prove the existence of a dual variable with helpful properties
and then show that our solutions to (P;) must be unique. We argue there exists a dual variable v
that obeys

1. (v,vj) = sgn(ej) for j € S
2. |[{(v,vj)|<1lforalljgs
Lagrangian optimality conditions for (P;) provides some intuition as to where these properties

arise. The Lagrangian of (P;) is given by £(d,v) = ||d||1 + vTF(d — ¢). L is not differentiable at
d = 0, so we focus on subgradients. In order to satisfy stationarity of the KKT conditions, we must
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Model of Function

Theorem 1. For any § > 0, 3T(0), such that for anyt > T(4), ifz* € E(z*, 0), then 2t e E(x*, d),

0 vt > t.
Proof. Assume that for a t > T(6), o' € B(a*, ).
This implies, Jy* such that, ¢ = C(y!) and F(2*,y*) < 4.
-5 Let Jy'*! such that, ! = C(y**!). We need to show that F(z*,y'*1) < 6.
Iy Firstly we note a few equalities and inequalities that are helpful -
g
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Domain Temperature Plot for g(x,t) = sin(z)sin(nt/5)(step(x — w/4) — step(x — 3w /4)) — 0.4

WSINDy and Asymptotic Consistency
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Robust PCA of boats in the sea using APG

Approximate Hessian Based ARC for Deep Learning
(Cooper Simpson, Jaden Wang)
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