
28 an introduction to optimization on smooth manifolds

In this early chapter, we give a restricted definition of smoothness,
focusing on embedded submanifolds. This allows us to build our ini-
tial toolbox more rapidly, and is sufficient to handle many applica-
tions. We extend our perspective to the general framework later on, in
Chapter 8.

To get started with a list of required tools, it is useful to review
briefly the main ingredients of optimization on a linear space E :

min
x2E

f (x). (3.4)

For example, E = Rn or E = Rn⇥p. Perhaps the most fundamen-
tal algorithm to address this class of problems is gradient descent, also
known as steepest descent. Given an initial guess x0 2 E , this algorithm Here, xk designates an element in a se-

quence x0, x1, . . . Sometimes, we also use
subscript notation such as xi to select the
ith entry of a column vector. Context
tells which is meant.

produces iterates on E (a sequence of points on E) as follows:

xk+1 = xk � akgrad f (xk), k = 0, 1, 2, . . . (3.5)

where the ak > 0 are appropriately chosen step-sizes and grad f : E !

E is the gradient of f . Under mild assumptions, the limit points of
the sequence x0, x1, x2, . . . have relevant properties for the optimization
problem (3.4). We study these later, in Chapter 4.

From this discussion, we can identify a list of desiderata for a geo-
metric toolbox, meant to solve

min
x2Sn�1

f (x) (3.6)

with some smooth function f on the sphere. The most pressing point
is to find an alternative for the implicit use of linearity in (3.5). Indeed,
above, both xk and grad f (xk) are elements of E . Since E is a linear
space, they can be combined through linear combination. Putting aside
for now the issue of defining a proper notion of gradient for a function
f on Sn�1, we must still contend with the issue that Sn�1 is not a linear
space: we have no notion of linear combination here.

TxSn�1

x

v

Rx(v)

Sn�1

Retraction Rx(v) = x+v
kx+vk on the sphere.

Alternatively, we can reinterpret iteration (3.5) and say:

To produce xk+1 2 Sn�1, move away from xk along the direction
�grad f (xk) over some distance, while remaining on Sn�1.

Surely, if the purpose is to remain on Sn�1, it would make little sense
to move radially away from the sphere. Rather, using the notion that
smooth spaces can be linearized around x by a tangent space TxSn�1,
we only consider moving along directions in TxSn�1. To this end,
we introduce the concept of retraction at x: a map Rx : TxSn�1 ! Sn�1

which allows us to move away from x smoothly along a prescribed tan-
gent direction while remaining on the sphere. One suggestion might
be as follows:

Rx(v) =
x + v

kx + vk
. (3.7)

APPM 5630

“Advanced Convex Optimization”

Prof. Becker, spring 2021

Student projects

Block Coordinate Descent for Mesh Quality Improvement

(Sachin Natesh)

Student backgrounds:

‣ Applied Math (BS/MS, PhD)

‣ Computer Science (PhD)

‣ Aerospace Engineering (PhD)

An Exploration of Optimization on Smooth Manifolds

(Brandon Finley, David Lujan)

Numerical results - Mesh 2

(a) Original Mesh 2 (b) Optimized Mesh 2

S. Natesh (CU Boulder APPM) Block Coordinate Descent APPM 5630 12 / 17

WSINDy and Asymptotic Consistency

Daniel Messenger

APPM 5630: Convex Analysis, Professor Becker
University of Colorado Boulder

April 26th, 2021

1 / 13

WSINDy and Asymptotic Consistency

(Daniel Messenger)

Fig. 9 Discontinuous 63 (G, C), #B = 10, #C = 1000

Unsurprisingly, this produces a very similar result to the case where 61 (G, C) = sin (G) sin
�
cC

5

�
� 0.4. The resulting

D0 and D; for these is compared in figure 10 below.

Fig. 10 D0 and D; Comparison between 61 (G, C) and 63 (G, C), #B = 10, #C = 1000

It makes sense that these two would produce similar results since the points in the center that become active in
the constraints will be the same, as shown in the third subplot in the figure above.

20

Heat Transfer Optimization in 1D

(David Perkins)

Approximate Hessian Based ARC for Deep Learning
Cooper Simpson

Jaden Wang

expect the algorithm to be robust with varying �0. Thus, we do not believe it is informative to

test sensitivity to varying �0 in our experiments.

(a) (b)

Figure 5: Training loss and testing accuracy for SGD and ARC-EE using the hyperparameters

that result in the best performance.

In subsection 3.2.2 we see the results from SGD using a learning rate of 0.001 and momentum

0.9 alongside the results of ARC-EE using a tolerance of "l = 0.001. Clearly SGD achieves greater

testing accuracy in much fewer propagations than ARC-EE. It is interesting, however, to observe

that SGD seems to plateau at a testing accuracy of around 0.7, and it is unclear whether it can

break through with more training. It is possible that ARC-EE might break through where SGD

could not, and if that is the case, we might consider a hybrid algorithm where we predominantly

use SGD but switch to ARC-EE when SGD fails to make progress.

Having seen all of our experimental results we are now ready to consider the claims stated at

the beginning of this section. C.1 would imply that even though SGD and ARC-EE might achieve

similar training loss, ARC-EE would be able to achieve better testing accuracy. This is clearly not

supported by our experiments (see subsection 3.2.2). In fact, the opposite appears to be true. A few

results for a single dataset are hardly conclusive, but at the moment this claim does not hold. C.2

would imply SGD could stagnate at certain levels of performance where ARC-EE would continue

to gain ground. Again we do not see this supported in the data. It is quite possible that the

network we consider does not have enough stagnation areas in its loss landscape for us to observe

this phenomenon. For example, [XRM18] showed this occurring for a deep autoencoder containing

many more parameters. Thus the results here are inconclusive and a more in-depth study with a

variety of models is required to answer this question fully. Lastly, we can say that C.3 partially

holds. In particular, the impact of varying the learning rate on the performance of SGD seems

18

Approximate Hessian Based ARC for Deep Learning

(Cooper Simpson, Jaden Wang)

Demo: Bayesian Optimization

Model of Function

• Let’s see how much this improves the model!

True Function

Bayesian Optimization: A Class of Zero-th 
Order Optimization Algorithms

(Kevin Doherty, Killian Wood) Mirror Descent Learning in Continuous Games

(Maneesha Papireddygari)

• Each agent gets a payo↵ of ui(x) = ui(xi, x�i), where xi is action of player i and x�i is action
of all other players. All uis are continuously di↵erentiable with gradient vi(x) = �xiui(x).

• x⇤ is called a Nash equilibrium if for each i, ui(x⇤i , x
⇤
�i) � ui(xi, x⇤�i)8xi 2 �i

• Variationally stable - Given a concave game G, a set C is variationally stable if hv(x), x�x⇤i 
0, 8x, x⇤. Intuitively this means that any action that is not in the set C would want to move
towards any of its elements. A game is called variationally stable if its set of all Nash
is a variationally stable set. Potential and psuedo-monotone games satisfy this condition
appealing to generality of this notion.

• Conjugate function of hi be h⇤i and choice function in the OMD algorithm is given by

Ci(yi) arg max
xi2�i

{hyi, xii � hi(xi)}

• Fenchel coupling, a generalization of Bregman divergence, can be seen as distance between
decision variable x and dual variable y. It is defined as -

F (x, y) =
NX

i=1

(hi(xi)� xiyi + h⇤i (yi))

Convergence To Nash

Under certain conditions, the authors show that final action of the algorithm converges to the Nash
equilibrium using these 3 broad steps -

• Irrespective of the initial action x0, any iterate xt approaches arbitrary close to Nash x⇤,in
Euclidean norm, and visits it infinitely often.

• If an iterate is arbitrary close to x⇤ in Euclidean norm, it is close to x⇤ in Fenchel coupling
measure too(i.e. xt 2 eB(x⇤, �)). From the above point we know that xt must be close to x⇤

in Fenchel coupling measure and visits it infinitely often too.

• After long enough iteration, if xt 2 eB(x⇤, �), it remains there. From previous part we know
each xt visits the neighbourhood infinitely often. So it will be stuck in the neighbourhood
forever. As this is true for any �, we can say that F (x⇤, yt) ! 0 as t is large enough. Under
mild conditions, this implies xt ! x⇤ as t ! 1.

Proof Of Part 3

Theorem 1. For any � > 0, 9T (�), such that for any t � T (�), if xt 2 eB(x⇤, �), then xet 2 eB(x⇤, �),
8et � t.

Proof. Assume that for a t � T (�), xt 2 eB(x⇤, �).
This implies, 9yt such that, xt = C(yt) and F (x⇤, yt) < �.
Let 9yt+1 such that, xt+1 = C(yt+1). We need to show that F (x⇤, yt+1) < �.
Firstly we note a few equalities and inequalities that are helpful -

tt+1
i = yti + ↵tvi(x

t) (1)

B–3

Figure 3: Convergence plot for strain eigenvalues in [0.9, 2.0]

with Saddle-free Newton which uses significantly more ex-
pensive iterations. The second set of experiments (figure 3 shows similar boosts. In this setting,
diagonal preconditioning failed to noticeably outperform vanilla SGD with momentum. Though
one highly unexpected observation from those experiments not included in the graphic was that
momentum seemed to hurt optimization on this problem. After turning momentum o↵ on
Adam (and re-tuning the LR), it eventually reached a similar level as K-FAC, which is also not
implemented with momentum at present.
One question might be: why did K-FAC converge to a higher minimum? One weakness of

natural gradient methods is that while the Fisher matrix can be seen as an estimate of the
Hessian in the same sense as a Gauss-Newton matrix, it does not have the ability to capture
negative curvature information. This can lead to convergence (especially when you don’t im-
plement all of the globalization strategies discussed in the paper) to saddle points instead of
local minima. Figure 2 shows that this is indeed what happened here using an estimate of
the Hessian spectrum calculated using the Lanczos method. The Hessian is clearly indefinite
at “convergence” with negative values large enough that it is unlikely to purely be numerical
error.

6 Conclusion

Overall the results were quite positive. There were some counter-intuitive findings in the ex-
periments. The most confusing to me is that K-FAC’s performance lead actually grows in the
stochastic setting. Adam significantly outperformed K-FAC in deterministic experiments on a
per-iteration basis where K-FAC functioned as an approximate Gauss-Newton method. I would
expect the stochastic estimate of second-order information to outweigh the benefits of (the per-
formance of SF-Newton was similarly surprising, though that required some hyperparameter
tuning) and result in large steps in bad directions. That did not appear to be the case. This
suggests that the Fisher e�ciency argument may actually hold weight (although SGD with
Polyak averaging is also Fisher e�cient, so who knows?).
The current implementation needs a lot of work before it’s use-able on actual projects. The

algorithm requires some interesting caching and steps that are di�cult to implement in modern
deep learning libraries. From the project, I just wrote those steps into the network but that
shouldn’t be a requirement for regular usage. Nonetheless, the results indicate that it may be
worth the time investment to do.

6

Approximating the Natural Gradient

(Mike McCabe)

3 Results and Discussion

3.1 Single Parameter Estimation

A single length scale parameter was estimated for the globe using TIEGCM model states
from June 15th, 2008. Observations from 300 km altitude were used one hour at a time for
the entire day, all with an initial guess of ↵0 = 104 km. Both solvers were able to converge
to the same minimum for every hour except for hour 6. Plots of the results from the solvers
is seen in Figure 2. There doesn’t appear to be any structure throughout the day as the
estimated parameters look to be randomly scattered between 2000 and 8000 km. These
estimates appears to have a reasonable scale, as it allows for correlation between locations
nearby to one another, but ↵ is not too large to have all points in the globe be correlated.
Both solvers converged to the same solutions. The fminunc solver took about 6 iterations
to converge while the fminsearch solver took around 30 iterations to converge. It is also
interesting to note that if more observations are used on each minimization iteration, i.e.
adding more altitudes or times, ↵ becomes increasingly smaller.

Figure 2: On the left is a contour plot is the Gaspari-Cohn correlation with ↵ = 7023 km at hour 20. On
the right is ↵ for each hour using 300 km altitude observations. Results from fminunc and fminsearch were
identical.

3.2 Day and Night Side Estimation

The next attempted set is to estimate separate parameters for the day and night sides.
Using one altitude at one hour, the solver was run with ↵ with a size two to find reasonable
correlation length scales ↵day = 4221, ↵night = 4204. The cost function for this run as well
as results from each hour of the day are seen in Figure 3. It appears that the night side
generally has longer correlation length scale than the day side. Whether or not this is a real
e↵ect will need to be further studied using more altitudes and hours of data. There are two
outliers from the night side, where those parameters are large enough to assign correlation to
all observations on the night side. Additionally the fminunc and fminsearch solvers arrived
at the same ↵ values, with fminunc needing around 7 iterations and fminsearch needing
around 70 iterations.

5

Electron Density Localization

(Nick Dietrich)

Applications:
Background Modeling

Robust PCA of birds in the sky using APG

Robust PCA of boats in the sea using APG

Robust Principal Component Analysis

with Background Modeling Application

(Noki Cheng)

(a) Original (b) Linear Scaling (c) Intensity Preservation

(a) Original (b) Linear Scaling (c) Intensity Preservation

5

Image Optimization

(Jacob Spainhour, Damien Beecroft, Spas Angelov)

3 THEORY

The second statement is actually an equivalence to RIP and is a helpful bound that we make use
of later. This leads us to the main theorem we focus on in this paper: If F is restrictedly almost
orthonormal and our error e is sparse, then we can solve (P1) exactly [1, 6, 7].

Theorem 1. (Theorem 1.3 in [1]) Assume e is supported on a set S of size k. If �k+�2k+�3k < 1,
then e is the unique solution to (P1).

In order to prove Theorem 1, we prove the existence of a dual variable with helpful properties
and then show that our solutions to (P1) must be unique. We argue there exists a dual variable ⌫
that obeys

1. h⌫, vji = sgn(ej) for j 2 S

2. | h⌫, vji |  1 for all j 62 S

Lagrangian optimality conditions for (P1) provides some intuition as to where these properties
arise. The Lagrangian of (P1) is given by L(d, ⌫) = ||d||1 + ⌫TF (d � e). L is not di↵erentiable at
d = 0, so we focus on subgradients. In order to satisfy stationarity of the KKT conditions, we must
have that F T ⌫⇤ 2 �||d⇤||1 for optimal (d⇤, ⌫⇤). What does it mean for F T ⌫⇤ to be a subgradient
of ||d⇤||1? Comparing components, we must have (F T ⌫⇤)j = sgn(d⇤j) for any d⇤j 6= 0, as || · ||2
is di↵erentiable outside of 0 and has slope equal to 1 in magnitude. When d⇤j = 0, we require

|(F T ⌫⇤)j|  1. However, this is exactly property 2, as (F T ⌫⇤)j = h⌫⇤, vji by definition. Thus such
a ⌫⇤ would satisfy the stationary KKT condition. The KKT feasibility properties are satisfied by
e and ⌫ and our problem has no inequality constraints, thus guaranteeing strong duality.

The existence of such a ⌫ is shown by the following two lemmas. In the first lemma, the authors
provide the existence of a ⌫ that satisfies property 1 and has desirable (but not perfect) behavior
outside of S. Lemma 2 then proceeds to guarantee ⌫ satisfies property 2 by repeated application
of lemma 1.

Lemma 1. (Lemma 2.1 in [1]) Let ; 6= S, S0 ✓ [n] be such that �|S| < 1 and ||e||0  |S|. Then

there exists a vector ⌫ 2 Rn
such that h⌫, vji = ej for all j 2 S. Further, there is an “exceptional

set” E ✓ [n] \ S bounded in size |E|  |S0| such that

| h⌫, vji | 
�|S|+|S0|

(1� �|S|)
p
|S0|

· ||e||2

for all j 62 S [E and

(
X

j2E
| h⌫, vji |2)1/2 

�3|S|
1� �|S|

· ||e||2.

Lastly, ||⌫||2 
p

1+�|S|
1��|S|

||e||2.

3

An overview of sparse recovery with convex optimization

(Mike Huffman, Steven Kordonowy)

