(Sachin Natesh)

(a) Original Mesh 2

(b) Optimized Mesh 2

Image Optimization
(Jacob Spainhour, Damien Beecroft, Spas Angelov) An Exploration of Optimization on Smooth Manifolds (Brandon Finley, David Lujan)

Retraction $\mathrm{R}_{x}(v)=\frac{x+0}{|x+t| 0}$ on the sphere.
Bayesian Optimization: A Class of Zero-th Order Optimization Algorithms (Kevin Doherty, Killian Wood)

Model of Function

WSINDy and Asymptotic Consistency
(Daniel Messenger)

APPM 5630
"Advanced Convex Optimization" Prof. Becker, spring 2021 Student projects

Electron Density Localization
(Nick Dietrich)

Approximating the Natural Gradient
(Mike McCabe)

An overview of sparse recovery with convex optimization
(Mike Huffman, Steven Kordonowy) then e is the unique solution to $\left(P_{1}\right)$.
In order to prove Theorem 1, we prove the existence of a dual variable with helpful properties and then show that our solutions to $\left(P_{1}\right)$ must be unique. We argue there exists a dual variable ν that obeys

1. $\left\langle\nu, v_{j}\right\rangle=\operatorname{sgn}\left(e_{j}\right)$ for $j \in S$
2. $\left|\left\langle\nu, v_{j}\right\rangle\right| \leq 1$ for all $j \notin S$

Lagrangian optimality conditions for (P_{1}) provides some intuition as to where these properties arise. The Lagrangian of $\left(P_{1}\right)$ is given by $\mathcal{L}(d, \nu)=\|d\|_{1}+\nu^{T} F(d-e)$. \mathcal{L} is not differentiable at $d=0$, so we focus on subgradients. In order to satisfy stationarity of the KKT conditions, we must Student backgrounds:

- Applied Math (BS/MS, PhD)
- Computer Science (PhD)
- Aerospace Engineering (PhD)

Robust Principal Component Analysis with Background Modeling Application
(Noki Cheng)

Theorem 1. For any $\delta>0, \exists T(\delta)$, such that for any $t \geq T(\delta)$, if $x^{t} \in \widetilde{B}\left(x^{*}, \delta\right)$, then $x^{\tau} \in \widetilde{B}\left(x^{*}, \delta\right)$, $\forall \tilde{t} \geq t$.
Proof. Assume that for a $t \geq T(\delta), x^{t} \in \widetilde{B}\left(x^{*}, \delta\right)$.
This implies, $\exists y^{t}$ such that, $x^{t}=C\left(y^{t}\right)$ and $F\left(x^{*}, y^{t}\right)<$
Let $\exists y^{t+1}$ such that, $x^{t+1}=C\left(y^{t+1}\right)$. We need to show that $F\left(x^{*}, y^{t+1}\right)<\delta$. Firstly we note a few equalities and inequalities that are helpful

Heat Transfer Optimization in 1D (David Perkins)
Temperature Plot for $g(x, t)=\sin (x) \sin (\pi t / 5)(\operatorname{step}(x-\pi / 4)-\operatorname{step}(x-3 \pi / 4))-0.4$

Approximate Hessian Based ARC for Deep Learning (Cooper Simpson, Jaden Wang)

