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achieve good performance in machine learning applications

and we have some partial explanations in the convex setting
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4.2 Gaussian Process Regression

Similarly, we also apply different methods to Gaussian process regression. We randomly generate
200 training points, and construct the Gaussian kernel surrogate of it by calculating the function
values of 1000 distinct test points from 0 to 50. The formula for test point x is

f(x) = (X,x)T (K + �I)�1
y

where (X,x)i = k(xi, x), K is the kernel matrix, and � is the regularization parameter. For
random Fourier features, we replace (X,x)i = z(xi)T z(x) and Kij = z(xi)T z(xj). For Nystrom,
we randomly sample 100 data points out of 200 and substitute kernel matrix K with low rank
approximation K̃. The experiment result is shown in Figure 3. The relative errors for random
Fourier features is 40.45%, for Uniform Nystrom is 14.38%, and for rSVD is 8.57%. The result
roughly matches what we got for kernel matrix approximation.

Figure 3: A comparison of Gaussian process regression performance with R = 100

5 Discussion

In this project we implement three different methods for kernel matrix approximation: random
Fourier features, Nystrom method, and randomized SVD. One main difference between random
Fourier features and Nystrom is that Nystrom utilizes the information from data and therefore, data-
dependent, while random Fourier features is totally independent from what data we have. Another
difference is that random Fourier features approximates feature maps but Nystrom method only ap-
proximates kernel matrix itself. Our empirical result suggests that Nystrom method shows a lower
error in kernel matrix approximation and Gaussian process regression than random Fourier fea-
tures, but higher error than randomized SVD. It is a reasonable result since conducting rSVD needs
the full kernel matrix K, which make rSVD more expensive than the other two.

We also theoretically explore the Oblivious Subspace Embedding method. Instead of sketching
data points to lower dimension like what Nystrom does, it sketches the implicit feature map, by
approximating it with high degree polynomial kernel. The method still remains theoretical as it is
complicated to apply in practical.

6

Figure 1: Left: 1000 Data points with noise level 0.1; Middle: image of Gaussian kernel matrix of
the 1000 data points; Right: Singular values of the kernel matrix

Figure 2: A comparison of a Gaussian kernel on the Scikit-learn S-curve with random Fourier
features (first row), Nystrom method with uniform sampling (second row), randomized SVD (third
row), based on different monte carlo samples (for random Fourier feature) or different target ranks
(for Nystrom and rSVD)

Methods R = 1 R = 10 R = 100 R = 1000

Random Fourier Features 2.76e+0 7.03e-1 3.10e-1 9.51e-2
Uniform Nystrom 8.43e-1 2.94e-1 6.88e-4 2.66e-4
randomized SVD 8.20e-1 2.06e-1 9.72e-5 1.30e-15

Table 1: The table of L2 relative errors for three different kernel matrix approximation methods
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Fast and Randomized Principle Component Analysis

(Ayoub Ghriss)

Theorem 1. Define the d ⇥ d matrix C as 1
nX

>
X = 1

n

Pn
i=1 xix>

i , and let Vk denote the d ⇥ k

matrix composed of the eigenvectors corresponding to the largest k eigenvalues. Suppose that

• maxi kxik
2
 r for some r > 0.

• C has eigenvalues s1 > s2 � . . . � sd, where sk � sk+1 = � for some � > 0.

• k � kV
>
k W̃0k

2
F 

1
2 .

Let �, ✏ 2 (0, 1) be fixed. If we run the algorithm with any epoch length parameter m and step size
⌘, such that

⌘ 
c�

2

r2
� , m �

c
0 log(2/�)

⌘�
, km⌘

2
r
2 + rk

p
m⌘2 log(2/�)  c

00 (9)

(where c, c
0
, c

00 designate certain positive numerical constants), and for T =
l
log(1/✏)
log(2/�)

m
epochs, then

with probability at least 1� dlog2(1/✏)e�, it holds that

k � kV
>
k W̃T k

2
F  ✏.

Corollary 1. Under the conditions above, there exists an algorithm returning W̃T such that k �

kV
>
k W̃T k

2
F  ✏ with arbitrary constant accuracy, in runtime O

⇣
dk(n+ r2k3

�2 ) log(1/✏)
⌘
.

Results and Discussion

Figure 1: Convergence of VR-PCA

The assumption around the initial W0 is non-trivial, especially with small a eigengap �. The
paper suggests using any out-of -the-box stochastic method as a warm up, but that cancels out the
initial claim of exponential convergence since we need to account for the running time of the warm
up as well. Based on the evaluation metric in the introduction, the third assumption is basically
equivalent to requiring the initial subspace generated by W0 to recover at least half the variance
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A Nonlinear Extension to Kalman GD:

Unsuccessfully Attempting to Combine Uncertainty Quantification with Variance Reduction 


(Mike McCabe)
So why is filtering stochastic gradients a bad idea?

10

Dynamics Model Observation Model

Ideal Kalman SG

AKA there is no true system being tracked, so pretty much all of the assumptions 
necessary for sequential filtering do not hold in practice.

Dynamics Model Observation Model

Actual Kalman SG

Figure 2: Results for a subset of data sets explored.
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Accelerated Local Reduced Order Basis Interpolation Applied to 

the Parabolic Diffusion Equation with a Random Coefficient Field 


(Sachin Natesh)

Empirical Results Suggest Quasi-Monte Carlo 

Sampling Increases Accuracy in OpenOA AEP 


(Jordan Perr-Sauer)

Accelerated Proper Orthogonal Decomposition for Turbulent Flows 

(Aviral Prakash)

On Convergence of Stochastic Gradient Descent with 

Adaptive Step Sizes, from Li and Orabona ’19 


(Spencer Shortt)Non-convex case:

Theorem 4: Assume (H1, H3, H4’). Let ⌘t be our global

generalized AdaGrad stepsize from before, where ↵,� > 0 and

✏ 2 (0, 1/2), and 4↵M < �1/2+✏
. Then the iterates of SGD satisfy

the following bound:

E[ min
1tT

||rf (xt)||1�2✏
] 

1

T 1/2�✏
max

✓
2

1/2+✏
1/2�✏ �, 21/2+✏

(� + 2T�2
)
1/4�✏2�1/2�✏

◆
.


