
Randomization in Statistical Machine Learning

by

Zhishen Huang

B.S., Southeast University, 2015

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Applied Mathematics

2020

Committee Members:

Prof. Stephen Becker

Prof. Claire Monteleoni

Prof. Sergei Kuznetsov

Prof. François Meyer

Prof. William Kleiber

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Published by ProQuest LLC (

 ProQuest

). Copyright of the Dissertation is held by the Author.

All Rights Reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

28031405

28031405

2020

ii

Huang, Zhishen (Ph.D., Applied Mathematics)

Randomization in Statistical Machine Learning

Thesis directed by Prof. Stephen Becker

Supervised learning and reinforcement learning problems are often formulated as optimization

problems for training. The optimization algorithms themselves bear interest from the mathematical

point of view. This thesis discusses the usage of randomization in optimization, which makes

possible what corresponding deterministic algorithms are unable to achieve.

Applying randomization in algorithms has the capability of reducing the time or space com-

plexity at the expense of potential failure to provide a valid solution. Early prominent examples of

randomized algorithms include quicksort, Karger’s algorithm for min-cut problem and the Bloom

filter. In this thesis, randomization is introduced into optimization algorithms and is used for data

compression.

This thesis considers first-order optimization algorithms due to their practicality for large-

scale application. The first chapter considers the minimization of nonconvex and nonsmooth objec-

tives, where we give probabilistic guarantees for the proximal gradient descent method to converge

to local minima [HB20a]. The second chapter varies the randomization format for gradient descent

where Gaussian noise is injected at each iteration step. We point out the ergodicity property of

such variation, which is not available for a deterministic version of gradient descent.

The third chapter considers using the sketching technique to compress data and evaluate

statistics solely based on the sketched dataset [HB20b]. We give theoretical guarantee for the

evaluation accuracy of autocorrelation from data sketches and demonstrate numerical performance

on molecular dynamic simulation data and synthetic data.

The fourth chapter considers a deterministic algorithm for integer-constrained programming,

where we suggest a finer convex relaxation where the primal problem is reformulated by Fenchel-

Rockafellar duality, and separated into two subproblems based on pre-selected support.

Dedication

To my family

iv

Acknowledgements

I am grateful to my advisor Prof. Stephen Becker for his guidance, patience and inspiration

throughout my PhD career in Boulder.

To Dr. Mohan Sarovar, Prof. Kristina Lerman and Dr. Andrés Abeliuk, Dr. Eric Kightley

and Mr. Robert Hipps, I give my thank for their tremendous support in my summer internships.

I thank the friendship of Harry Dudley, Mitchell Krock and Eric Kightley.

My unreserved gratitude goes to my family for their unwavering love, care, patience and

encouragement they have given me throughout my life.

The discussion with Prof. Manuel Lladser has benefited penning the reachability section in

the second chapter of this dissertation.

This dissertation is partially supported by the grant NSF/DMS 1819251.

v

Contents

Chapter

1 Perturbed Proximal Descent to Escape Saddle Points for Non-convex and Non-smooth Ob-

jective Functions 1

1.1 Introduction . 1

1.1.1 Related literature . 4

1.2 Algorithm . 6

1.3 Main result: escaping saddle points through perturbed proximal descent 7

1.3.1 Sketch of the proof of main theorem . 9

1.4 Technical proofs . 10

1.4.1 Lemma: Iterates remain bounded if stuck near a saddle point 10

1.4.2 Preparation for building pillars . 11

1.4.3 Lemma: perturbed iterates will escape the saddle point 14

1.4.4 Combining previous results . 17

1.4.5 Main lemma . 18

1.4.6 Main theorem, and its proof . 20

1.4.7 From ε-second-order stationary point to local minimizers 22

1.5 Numerical experiment . 23

1.5.1 Results . 25

1.6 Conclusion . 26

vi

2 Stochastic Gradient Langevin Dynamics with Variance Reduction 27

2.1 Introduction . 27

2.1.1 Prior art . 28

2.2 Algorithm and main results . 32

2.3 First-order stationary point convergence property . 36

2.4 Ergodicity property of SGLD . 40

2.4.1 Recurrence . 40

2.4.2 Reachability . 43

2.5 Second-order stationary point convergence property 51

3 Spectral Estimation from Simulations via Sketching 56

3.1 Sketching . 58

3.2 Approximating autocorrelation with sketching . 61

3.3 Theoretical guarantees . 64

3.4 Numerical experiments . 66

3.4.1 Baseline methods . 67

3.4.2 Methanol ensemble simulation data . 71

3.5 Conclusions . 75

3.6 Further experiments . 75

3.6.1 Alternative baseline methods . 75

3.6.2 Synthetic data . 76

4 Improved convex relaxations using exact subset selection for `0 optimization problems 82

4.1 Introduction and main idea . 82

4.1.1 Prior art . 85

4.2 Design of the hybrid solver . 86

4.2.1 Pre-selected support and the separability of the FR-dual problem 86

4.2.2 Subgradient descent algorithm . 88

vii

4.2.3 Acceleration with the bundle method, and the algorithm of hybrid solver . . 89

4.3 Numerical results . 92

4.3.1 Conclusion . 94

Bibliography 96

viii

Tables

Table

2.1 Comparison between convergence results for variants of LD optimization schemes.

∗ indicates convergence target is actually a ε-second-order stationary point, which

coincides with a local minimizer when ε <
√
q under assumption 6. 35

2.2 Comparison between assumptions made for variants of LD optimization schemes.

The Hessian Lipschitz assumption is used for second-order convergence property if

made. 35

3.1 Compressed dimension requirement for JLTs. 61

ix

Figures

Figure

1.1 Graph of function Φ(x) . 3

1.2 The comparison between gradient descent (GD) and proximal gradient descent (Prox)

on the percentage of success finding the correct local minima, as a function of the

stepsize η . 3

1.3 The octopus function with different λ values . 23

1.4 Performance of our proposed PPD algorithm on the octopus function with λ = 0.01 25

3.1 Autocorrelation (top) and power spectral density (bottom) for the two frequency

simulation. 70

3.2 Ground truth of autocorrelation of the velocity of methanol molecules up to τ = 100. 71

3.3 Power spectral density for methanol data. The compression ratio is 1% for each

method. 72

3.4 The error due to approximating the PSD for the proposed methods (Haar, Gaussian,

and FJLT-Hadamard) compared to baselines, on the methanol data. Left: relative

`1 error. Middle: relative `2 error. Right: relative `∞ error. 73

3.5 Three metrics characterizing the discrepancy between estimated autocorrelation of

first 15 lags and the ground truth vs. total length of time signals. The full time

signal is divided into B =
√
Tlong blocks, each of which is used to evaluate the first

15 lags of autocorrelation. 74

x

3.6 Top: autocorrelation, and bottom: Power spectral density (PSD) for a synthetic

simulation. The sparse ruler subsampling and the block (Algorithm 8) subsampling

miss sampling the autocorrelation at long lags, with the effect of making the PSD

estimate have low resolution. Y-axis in arbitrary units for both plots. 78

3.7 Autocorrelation, demonstrating the hierarchical sampling scheme of Algorithm 9.

The top plot is a zoomed in version of the bottom plot. The estimate of the auto-

correlation at long lags is inaccurate, and the resulting PSD is unusable. 79

3.8 Example of particle dynamics in synthetic data. The left subfigures shows the signal

of a common particle and the right subfigure shows the signal of a particle with two

eigen-frequencies. 2 pulses exist in the synthetic signal and are introduced apart

from each other thus not merging their peaks, while we show the zoomed version of

one pulse, which is marked in the colour of magenta. 80

3.9 Autocorrelation and power spectral density of the synthetic data. The red peak in

the power spectral density exists because of special particles, and the red lags in

autocorrelation are due to existence of pulses. 80

3.10 Three metrics characterizing accuracy of sketching methods on the PSD in the case

of adversarial synthetic data. 81

4.1 Comparison between three solvers in the moderate measurement-sparsity ratio regime.

The sparsity is 100. 93

Chapter 1

Perturbed Proximal Descent to Escape Saddle Points for Non-convex and

Non-smooth Objective Functions

1.1 Introduction

We consider the problem of finding approximate local minimizers of the problem

minimizex∈Rd (Φ(x) := f(x) + g(x)) (1.1)

where f(x) is not convex but smooth (and with full domain), and g(x) is convex but not smooth.

Many optimization problems in engineering, signal processing and machine learning can be cast in

this framework, where f is a smooth loss function, and g is a non-smooth regularizer such as a norm.

For example, our model captures regularized neural networks [GJP95], where the regularization can

induce sparsity as an alternative to dropout. In this chapter, for simplicity we restrict our discussion

to g(x) = λ‖x‖1, where λ ≥ 0 is a constant, but many of the results apply to more general choices

of g. The first-order condition is 0 ∈ ∇f(x) + ∂g(x), and any x satisfying this condition is called a

“stationary point” (see [BC17] for background on the subdifferential ∂g). All local minimizers are

stationary points, but not vice-versa. We define a “saddle point” to be any stationary point where

the Hessian is indefinite (and therefore not a local minimizer). This chapter extends a recent line

of work [JGN+17] to analyze when we can expect to find a local minimizer. It has been argued

that in many machine learning problems, finding any local minimizer is often enough for good

performance, but finding a saddle point is not useful [DPG+14].

The fact that g is non-smooth is crucially important, and it does more than just complicate

2

the analysis, as it also requires a new algorithm. In the smooth case, f is often minimized using

gradient descent or an accelerated variant [Nes83] with a fixed stepsize. Näıvely extending gradient

descent to apply to (1.1) leads to subgradient descent with fixed-stepsize. Unfortunately, this

method fails to converge as the example d = 1, λ = 1 and f = 0 shows [Sho62] since for a generic

choice of the initial point, the sequence is not Cauchy.

Instead of gradient descent, we use a perturbed version of proximal gradient descent. For a

real-valued convex lower semi-continuous function g, define the “proximity” operator (or “prox” for

short) as the map proxg(y) = argminx g(y) + 1
2‖x − y‖2 (throughout this chapter, for vectors we

use ‖ · ‖ to denote the Euclidean norm). Equivalently, proxg = (I + ∂g)−1, and thus the first-order

condition is equivalent to x = proxηg[x− η∇f(x)] for any η > 0. Proximal gradient descent is the

iteration xt+1 = proxηg[xt − η∇f(xt)], so it immediately follows that if the sequence converges,

it converges to a stationary point. Convergence of the sequence is known to follow from mild

assumptions on f and g, the stepsize η, and boundedness of the sequence {xt} [ABS11].

We define a second-order stationary point to be a first-order stationary point x that addition-

ally satisfies ∇2f(x) � 0, which is a sufficient condition for x to be a local minimizer. Our main

contribution is showing that under suitable assumptions, a perturbed version of proximal gradient

descent will generate a sequence that converges to an approximate second-order stationary point.

We make assumptions on the second-order behavior of f , similar to assumptions under which it

is known that gradient descent will always converge to a second-order stationary point except for

adversarially chosen starting points [LSJR16] — in contrast to Newton’s method, which is attracted

to all stationary points. However, even in the smooth case when the sequence converges, gradient

descent converges arbitrarily slowly [DJL+17] in the presence of a saddle point, so perturbation

is necessary. In the non-smooth case, perturbation is even more important due to the proximal

nature of the algorithm.

A toy example: Gaussian Bump Consider the function Φ : R2 → R, x 7→ 1
2(x2 −

y2)e−
x2+y2

5 + 1
100h100(x) where h100(x) is the Huber function with parameter 100 [Bec17]. The

choice of this combination of Huber parameter and the magnitude of Huber function ensures that

3

Figure 1.1: Graph of function Φ(x)

10
-2

10
-1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

Figure 1.2: The comparison between gradient de-
scent (GD) and proximal gradient descent (Prox)
on the percentage of success finding the correct lo-
cal minima, as a function of the stepsize η

the origin is a saddle point. The Huber function approximates the `1 norm. The plot is show in

Fig. 1.1.

This function has two local minima and a saddle point at (0, 0). Because the Huber function

is both smooth and it has a known proximity operator, we can treat it as either part of the

smooth f component or the non-smooth g component, and therefore run either gradient descent or

proximal gradient descent. We experiment with both algorithms, randomly picking initial points

at x0 = (0.3, 0.01) + ξ where ξ is sampled uniformly from B0(1
10‖x0‖), and varying the stepsize η,

with fixed maximum iteration 1000. Figure 1.2 shows the empirical success rate of finding a local

minimizer (as opposed to converging to the saddle point at (0, 0)).

We observe that the range of stable step size for the proximal descent algorithm is wider

than gradient descent, and the success rate of proximal descent is as high as the gradient descent.

This example motivates us to adopt proximal descent over gradient descent in real application for

better stability and equivalent, if not better, accuracy.

A coincidence In this toy example, the saddle point at (0, 0) happens to be a fixed

point of proximal operator of ηλ‖x‖1. Soft thresholding, as the proximal operator of λ‖x‖1 is

known [CW05], has an attracting region that sets nearby points to 0. The radius of the attracting

region (per dimension) is ηλ, thus if ‖xt0 − η∇f(xt0)‖∞ ≤ ηλ for some iteration t0, then xt = 0

4

for all t > t0. Proximal gradient descent performs even better when the saddle point is not in the

attracting region.

Structure of the chapter 1 Section 1.2 states the algorithm and section 1.3 states the

main theorems, followed by section 1.4 where the theoretical guarantee is presented with proof.

Section 1.5 shows numerical experiments.

1.1.1 Related literature

Second-order methods for smooth objectives Some recent second order methods,

mainly based on either cubic-regularized Newton methods as in or based on trust-region methods,

have been shown to converge to ε-approximate local minimizers of smooth non-convex objective

functions. Both of these approaches involve evaluation of full Hessian. The central idea for the

cubic-regularized Newton method is to locally approximate the objective with cubic polynomial

functions and optimize w.r.t. it, which can either be formulated as a one-dimensional optimization

problem which involves full Hessian inversion [NP06] with time complexity O(log ε), or can be

solved with gradient descent in the stochastic setting with time complexity O(ε−3.5) [TSJ+18].

The trust-region method uses locally constrained quadratic optimization problem as subroutine for

each iteration [CRS17, SQW15], and converges to local optimizers in O(ε−1.5) iterations as reported

in Curtis.

Hybrid approaches which involve evaluation of full Hessian but do not compute the inverse

have also been considered. These approaches are referred as ’Hessian-free’ or Hessian-vector product

approaches. In particular, [CDHS18] points out that the oracle which returns the product of Hessian

and vector can suffice to extract the negative curvature of the geometry thus finding the proper

descent direction, an example of which is Lanczos method [KW92]. The time complexity to return

a local optimizer reported in Carmon is O(ε−1.75). [RZS+17] describes a generic scheme which

alternates between first order oracles and second order oracles to guarantee convergence to local

optimizers.

There have been also attempts to apply second-order methods on training neural networks

5

which often involves high-dimensional parameter space and nonconvex objectives. [MG15] suggests

that in the supervised learning scenario to train a feed-forward neural network, one can use the

Fisher information matrix as Hessian for the loss function, exploit Kronecker structure to construct

the approximate inverse of Hessian and use line search to obtain descent direction (aka damped

Newton method or natural gradient).

See [AZL18] for a more thorough review of these methods. We do not consider these methods

further due to the high-cost of solving for the Newton step in large dimensions and the sophistication

of implementation.

First-order methods for smooth objectives We focus on first order methods because

each step is cheaper and simpler to implement and these methods are more frequently adopted

by the deep learning community. Xu et al. in [XJY18] and Allen-Zhu et al. in [AZL18] develop

Negative-Curvature (NC) search algorithms, which find descent direction corresponding to negative

eigenvalues of Hessian matrix. The core idea of NC is that a gradient descent subroutine is repeat-

edly executed at a saddle point where the second order derivative dominates the update, so that the

repetition of gd essentially serves as the power method to find the eigenvector corresponding to the

smallest eigenvalue of Hessian. The NC search routines avoid using either Hessian or Hessian-vector

information directly, and it can be applied in both online and deterministic scenarios.

In the online setting, combining NC search routine with first-order stochastic methods will

give algorithms NEON-A [XJY18] and NEON2+SGD [AZL18] with iteration cost O(d
ε3.5

) and

O(ε−3.5) respectively (the latter still depends on dimension, whose induced complexity is at least

ln2(d)), and these methods generate a sequence that converges to an approximate local minimum

with high probability. In the offline setting, Jin et al. in [JGN+17] provide a stochastic first order

method that finds an approximate local minimizer with high probability at computational cost

O(ln4(d)
ε2

). Combining NEON2 with gradient descent or SVRG, the cost to find an approximate

local minimum is O(ε−2), whose dependence on dimension is not specified but at least ln2(d). These

methods make Lipschitz continuity assumptions about the gradient and Hessian, so they do not

apply to non-smooth optimization.

6

A recent preprint [LY19] approaches the problem of finding local minima using the forward-

backward envelope technique developed in [STP17], where the assumption about the smoothness

of objective function is weakened to local smoothness instead of global smoothness.

Non-smooth objectives In the offline settings, Boţ et al. propose a proximal algorithm for

minimizing non-convex and non-smooth objective functions in [BCN18]. They show the convergence

to KKT points instead of approximate second-order stationary points. Moreau envelope is also an

instrument to locally convert the nonsmooth problem to a smooth problem in variational analysis,

thus rendering gradient descent applicable for the nonsmooth scenario [STP17, LTP19]. In these

work the second-order derivative of envelope function needs to be defined w.r.t. particular direction

and are always positive definite under their regularization assumptions, thus unable to characterize

the second-order convergence property of the iteration process. Other work [ABS11, BST14] relies

on the Kurdya-Lojasiewicz inequality and shows convergence to stationary points in the sense of

the limiting sub-differential, which is not the same as a local minimizer or approximate second-

order stationary point. In the online setting, Reddi et al. demonstrated in [JRSPS16] that the

proximal descent with variance reduction technique (proxSVRG) has linear convergence to a first-

order stationary point, but not to a local minimizer.

1.2 Algorithm

The algorithm takes as input a starting vector x0, the gradient Lipschitz constant L, the

Hessian Lipschitz constant ρ, the second-order stationary point tolerance ε, a positive constant c, a

failure probability δ, and estimated function value gap ∆Φ. The key parameter for Algorithm 1 is

the constant c. It should be made large enough so that the effect of perturbation will be significant

enough for escaping saddle points, and at the same time not too large so that the iteration stepsize

is of reasonable magnitude and the iteration will not go wild. The output of the algorithm is an

ε-second-order stationary point (see Def. 3).

7
Algorithm 1 Perturbed Proximal Descent: input(x0, L, ρ, ε, c, δ,∆Φ)

Require: χ← 3 max{ln(dL∆Φ
cε2δ

), 4}, η ← c
L , r ←

√
c

χ2 · εL , gthres ←
√
c

χ2 ·ε, Φthres ← c
χ3 ·
√

ε3

ρ , tthres ←
χ
c2
· L√

ρε
1: tnoise ← −tthres − 1
2: for t = 0, 1, . . . do
3: if ‖x− proxηg[x− η∇f(x)]‖ < gthres and t− tnoise > tthres then . saddle point condition

check
4: x̃t ← xt, tnoise ← t
5: xt ← x̃t + ξt, ξt uniformly ∼ B0(r) . add perturbation
6: end if
7: if t− tnoise = tthres and Φ(xt)− Φ(x̃tnoise) > −Φthres then . sufficient function value

decrease check
8: return x̃tnoise

9: end if
10: xt+1 ← proxηg[xt − η∇f(xt)] . PPD step
11: end for

1.3 Main result: escaping saddle points through perturbed proximal descent

The main step in the algorithm is a proximal gradient descent step applied to f + g, defined

as

xt+1 = argmin
y

f(xt) + 〈∇f(xt),y − xt〉+
η−1

2
‖y − xt‖2 + g(y)

= proxηg ◦ (I − η∇f)(xt) (1.2)

One motivation of preferring proximal descent to gradient descent, as shown in Figure 1.2,

is the stability of the algorithm with respect to stepsize change. The proximal step is similar to

the implicit/backward Euler scheme, as equation (1.2) can be written as xt+1 = xt − η
(
∇f(xt) +

∂g(xt+1)
)
. From this perspective, we expect that proximal descent will demonstrate at least the

same convergence speed as gradient descent and stronger stability with respect to hyperparameter

setting.

Definition 1 (Gradient Mapping). Consider a function Φ(x) = f(x)+g(x). The gradient mapping

is defined as Gf,gη (x) := x− proxηg[x− η∇f(x)]

In the rest of this chapter, the super- and subscript of the gradient mapping are not specified,

as it is always clear that f represents the smooth nonconvex part of Φ, g represents λ‖x‖1, and η

8

is the stepsize used in the algorithm. Observe that the gradient map is just the gradient of f if

g ≡ 0.

Definition 2 (First order stationary points). For a function Φ(x), define first order stationary

points as the points which satisfy G(x) = 0.

Definition 3 (ε-second-order stationary point). Consider a function Φ(x) = f(x) + g(x). A point

x is an ε-second-order stationary point if

‖G(x)‖ ≤ ε and λ
(
∇2f(x)

)
min
≥ −√ρε (1.3)

where λ(·)min is the smallest eigenvalue.

The first Lipschitz assumption below is standard [Bec17], and the assumption on the Hessian

was used in [JGN+17] (for example, it is true if f is quadratic).

Assumption 1 (Lipschitz Properties). ∇f is L-Lipschitz continuous and ∇2f is ρ Lipschitz con-

tinuous. We write H as shorthand for ∇2f(x) when x is clear from context.

Assumption 2 (Moderate Nonsmooth Term). The magnitude of ‖x‖1 term, which is denoted by

λ, satisfies inequalities (1.7) and (1.9).

Theorem 4 (Main). There exists an absolute constant cmax such that if f(·) satisfies 1 and 2, then

for any δ > 0, ε ≤ L2

ρ ,∆Φ ≥ Φ(x0)− Φ?, and constant c ≤ cmax, with probability 1− δ, the output

of PPD(x0, L, ρ, ε, c, δ,∆f) will be a ε-second order stationary point, and terminate in iterations:

O
(
L(Φ(x0)− Φ?)

ε2
ln4

(
dL∆Φ

ε2δ

))
Remark Assuming ε ≤ L2

ρ does not lead to loss of generality. Recall the second order

condition is specified as λ
(
∇2f(x?)

)
min
≥ −√ρε, since when ε ≥ L2

ρ , we always have −√ρε ≤ −L ≤

λ
(
∇2f(x?)

)
min

, where the second inequality follows from the fact that the Lipschitz constant is the

upper bound for λ(∇2f(x)) in norm. Consequently, when ε ≥ L2

ρ , every ε-second-order stationary

point is automatically a first order stationary point.

9

1.3.1 Sketch of the proof of main theorem

We consider the objective function Φ = f + g = f(x) + λ‖x‖1. When the magnitude of the

`1 penalty term is small so that f dominates the geometric landscape of the function Φ, we expect

that the characteristics of the objective function should not be too different from the without-`1

penalty case. At a high-level, we follow the proof of [JGN+17].

The key intuition is that when the iteration arrives in the vicinity of a saddle point, the volume

of the trapping region surrounding the saddle point is small. As there is at least one direction for

function value to continue decreasing
(
e.g., the eigenvector corresponding to λ

(
∇2f(x̃)

)
min
≤ −γ

)
,

a random perturbation ξ added to the current iterate will likely have a component in the escape

direction.

We first show that when the iteration arrives in the vicinity of a saddle point x̃, before

achieving sufficient decrease in function value, which partially determines a time threshold T , the

proximal descent iteration will remain bounded around the saddle point; i.e., ‖ut − x̃‖ ≤ const for

all t < T .

Introducing a perturbation will take the current iteration point u0 to w0 = u0 + ξ. We

track the development of these two iteration sequences {ut} and {wt} when proximal descent is

applied. We show that when the magnitude of the nonsmooth `1 term λ is less than a certain

constant Λ, these two iteration sequences will stay at least a fixed distance apart at every step; i.e.,

‖wt − ut‖ ≥ const for all t < T .

The central idea of proving the perturbed sequence will escape the saddle points is that after

the perturbation is introduced, the projection of the iteration sequence in the escaping directions,

i.e., on the subspace spanned by eigenvectors of negative eigenvalues of ∇2f(x̃), will gain more and

more weight. To quantify this central idea, an key observation is that when magnitude of the `1

penalty term is small, the proximal step will preserve the monotonicity relation between increasing

weight of iterations on escape-beneficial subspaces and the iteration progress.

Combining the previous two results, we show that at least one of these two iteration sequences

10

will attain sufficient decrease in function value within the given time threshold T , to be followed by

the argument that the probability of the chosen perturbation not letting the perturbed iteration

sequence to escape the saddle point is small.

The key issue in the final step of the proof is to ensure the returned result will be an ε-

second-order stationary point; in other words, we will show that whenever the current point is not

an ε-second-order stationary point, the algorithm cannot terminate, combined with the proof that

the proposed algorithm 1 will terminate within finitely many steps.

1.4 Technical proofs

For the proof of the main theorem, we introduce some notation and units for the simplicity

of proof statement.

For matrices we use ‖ · ‖ to denote spectral norm. The operator PS(·) denotes projection

onto set S. Define the local approximation of the smooth part of the objective function by

f̃x(y) := f(x) +∇T f(x)(y − x) +
1

2
(y − z)TH(y − z) (1.4)

Units With the conditional number of the Hessian matrix κ := L
γ ≥ 1, we define the

following units for the convenience of proof statement:

F := ηL
γ3

ρ2
· ln−3(

dκ

δ
), G :=

√
ηL

γ2

ρ
· ln−2(

dκ

δ
)

S :=
√
ηL

γ

ρ
· ln−1(

dκ

δ
), T :=

ln(dκδ)

ηγ

1.4.1 Lemma: Iterates remain bounded if stuck near a saddle point

Lemma 5. For any constant ĉ ≥ 3, there exists absolute constant cmax: for any δ ∈ (0, dκe], let

f(·), x̃ satisfies the condition in Lemma 10, for any initial point u0 with ‖u0 − x̃‖ ≤ 2S /(κ·ln(dκδ)),

define:

T = min
{

inf
t

{
t | f̃u0(ut)− f(u0) + g(ut)− g(u0) ≤ −3F

}
, ĉT

}
then, for any η ≤ cmax/L, we have for all t < T that ‖ut − x̃‖ ≤ 100(S · ĉ).

11

Proof. We show if the function value did not decrease, then all the iteration updates must be

constrained in a small ball. The proximal descent updates the solution as

ũt+1 = ut −∇f(ut) = (I −∇f)(ut)

ut+1 = proxηg
(
ũt+1

)
= proxηg ◦ (I −∇f)(ut)

Without losing of generality, set u0 = 0 to be the origin. For any t ∈ N,

‖ut − u0‖ = ‖ut − 0‖ = ‖proxηg(ũt)− proxηg(0)‖ ≤ ‖ũt − 0‖ = ‖ũt‖

Jin et al. prove in [JGN+17] by induction that if ‖ut‖ ≤ 100(S · ĉ), then ‖ũt+1‖ ≤ 100(S · ĉ).

Consequently, ‖ut+1‖ ≤ 100(S · ĉ).

We point out that it is implicitly assumed that 2S
κ·ln(dκ

δ
)
� ĉ, so that for all t < T , ‖x̃‖ � ‖ut‖,

and the relation ‖ut − x̃‖ ≤ ‖ut‖+ ‖x̃‖ ≤ 100(S · ĉ) holds.

1.4.2 Preparation for building pillars

Lemma 6 (Existence of lower bound for the difference sequence {vt}Tt=1). For iteration sequences

{wt} and {ut} defined in Lemma 8, define the difference sequence as

vt = wt − ut

There exists a positive lower bound for {vt} when t < ĉT .

Proof. To show that the lower bound for iteration difference {vt}Tt=1 exists, we consider bounding

the iteration sequence ṽt+1 first. Define the difference between the proximal of l1 penalty term

and its coimage as Dg[x] = proxg[x]−x = min{λ1, |x|} ⊗ sgn(−x), where ⊗ is Hadamard product

and the minimum is taken elementwise. We notice that ‖Dηλ‖·‖1 [x]‖ ≤ ηλ
√
d. Thus, ‖wk − uk‖ =

12

‖w̃k − ṽk − λ(Dηg[w̃k]−Dηg[ũk])‖ ≥ ‖w̃k − ṽk‖ − 2ηλ
√
d.

‖ṽt+1‖ = ‖w̃t+1 − ũt+1‖

= ‖(I − η∇f) ◦ proxηg(w̃k)− (I − η∇f) ◦ proxηg(ũk)‖

= ‖wk − uk − η(∇f(wk)−∇f(uk))‖

≥ ‖wk − uk‖ − ηL‖wk − uk‖ = (1− ηL)‖wk − uk‖

≥ (1− ηL)(‖w̃k − ũk‖ − 2ηλ
√
d) = (1− ηL)(‖ṽk‖ − 2ηλ

√
d)

≥ (1− ηL)t‖ṽ1‖ − 2ηλ
√
d

t∑
i=1

(1− ηL)i

= (1− ηL)t‖ṽ1‖ − 2λ
√
d

(1− ηL)
(
1− (1− ηL)t

)
L

As ṽ1 = (I − η∇f)v0 = (I − η∇f)µre1 = µr(e1 − η∇2f(ξ)θe1) = µr(1 + ηγθ)e1, where θ ∈ (0, 1),

we have

‖ṽt+1‖ ≥ (1− ηL)tµr(1 + ηγθ)− 2λ
√
d

(1− ηL)(1− (1− ηL)t)

ηL
(1.5)

To compare ‖vt‖ and ‖ṽt‖,

‖vt+1‖ ≥ ‖ṽt+1‖ − 2ηλ
√
d ≥ (1− ηL)tµr(1 + ηγθ)− 2λ

√
d

(1− ηL)(1− (1− ηL)t) + ηL

L
(1.6)

Therefore, as long as

λ <
(1− ηL)ĉT µ 1

κ(ln dκ
δ

)2

√
ηL

3
2
γ
ρ (1 + ηγθ)

2
√
d[(1− ηL)(1− (1− ηL)ĉT) + ηL]

(1.7)

the difference sequence {‖vt‖} has a positive lower bound on its norm.

Lemma 7 (Preservation of subspace projection monotonicity after prox of l1 in rotated coordinate

with small λ). Denote the subspace of Rn spanned by {e1} as E, while the complement subspace

spanned by {e2, · · · , en} as E⊥. For a given vector x chosen from a lower bounded set X , i.e.

∀x ∈ X , ‖x‖ ≥ C for some constant C > 0, assume ‖PE⊥x‖ ≤ K‖PEx‖, where 0 < K ≤ 1 is a

constant. If the parameter λ for the l1 penalty term is small enough, then

‖PE⊥proxηg(x)‖ ≤ K‖PEproxηg(x)‖

13

Proof. We want to find a constraint on λ such that when λ is small enough, if the projection in the

original coordinate demonstrates the monotonicity relation ‖PEx‖ ≤ ‖PE⊥x‖, this monotonicity

relation will be preserved after proximal operator of l1 is applied on the input vector.

Naturally there exists a normal vector, denoted as n̂boundary ≡ n̂, for the boundary hyperplane

on which ‖PEx‖ = K‖PE⊥x‖. By moving along n̂, a point approaches the boundary most efficiently.

Any vector inside the hyperplane is perpendicular to n̂, which we denote as n̂⊥.

Define

v̂move(x) =

−ηλ · sgn(xi) if |xi| ≥ ηλ

−xi if |xi| < ηλ

= min{|x|, ηλ1} ⊗ sgn(−x) (1.8)

where ⊗ is the Hadamard product, and the minimum is taken elementwise. Because proxηg(x) =

x + v̂move, a sufficient condition to be imposed on λ to guarantee the preservation of projection

monotonicity ‖PE⊥proxηg(x)‖ ≤ K‖PEproxηg(x)‖ is that

λ <

∥∥∥∥ Projnx

v̂move · n̂

∥∥∥∥ =

∥∥∥∥ x · n̂
v̂move · n̂

∥∥∥∥ ≤ ‖x‖
‖v̂move · n̂‖

which means the moving distance caused by applying the l1 proximal operator (soft shrinkage)

projected on the direction of n̂ is less that the distance between x to the boundary hyperplane,

hence rendering the vector stay on the same side of the boundary after moving.

Therefore, as long as

λ <
C

‖v̂move · n̂‖
(1.9)

the monotonicity of projection onto subspaces can be preserved.

Remark 1 for Lemma 7 As an examples in R2, set K = 1, we visualise the shift caused

by proximal operator and the boundary of projection-monotonicity preserving region. Assume e1,2

are orthonormal basis of Cartesian coordinate in the standard position. The directional vector for

14

region division boundary is êboundary = n̂⊥ =
±ê1 ± ê2√

2
, and ê⊥boundary = n̂ is the corresponding

perpendicular directional vector. For l1 norm, v̂move is (±1,±1).

Remark 2 for Lemma 7 We point out that the upper bound for the parameter λ is

related to the alignment of the eigenspace of H. If the eigenspace of H is aligned with canonical

orthonormal basis of Rd, then λ ∈ (0,∞). The most stringent restriction on the upper bound of λ

applies when v̂move is parallel to n̂.

1.4.3 Lemma: perturbed iterates will escape the saddle point

Lemma 8. There exists absolute constant cmax, ĉ such that: for any δ ∈ (0, dκe], let f(·), x̃ satisfies

the condition in Lemma 10, and sequences {ut}, {wt} satisfy the conditions in Lemma 10, define:

T = min
{

inf
t

{
t|f̃w0(wt) + g(wt)− f(w0)− g(w0) ≤ −3F

}
, ĉT

}
then, for any η ≤ cmax/L, if ‖ut − x̃‖ ≤ 100(S · ĉ) for all t < T , we will have T < ĉT .

Proof. We show that if the iterate sequence before time T starting from u0 does not provide suf-

ficient function value decrease, the other iterate sequence, which starts from w0, will be able to

achieve the function value decrease purpose. Ultimately, we will prove T < ĉT . We establish the

inequality about T by considering the difference between wt and ut. Define vt = wt − ut. The

assumption of the lemma 8, v0 = µ[S /(κ · ln(dκδ))]e1, µ ∈ [δ/(2
√
d), 1].

We bound ‖vt‖ from both sides for all t < T to obtain an inequality about T .

Recall that the proximal descent updates the solution as

ũt+1 = ut −∇f(ut) = (I − η∇f)(ut)

ut+1 = proxηg
(
ũt+1

)
= proxηg ◦ (I − η∇f)(ut)

Simple algebraic computation gives

ṽt+1 = (I − ηH− η∆′t)vt (1.10)

15

where ∆′t =
∫ 1

0 ∇
2f(ut + θvt) dθ −H, and ṽt = w̃t − ũt.

Consider ‖ũt‖ and ‖w̃t‖. Because v0 = ṽ0, we have ‖w̃0 − x̃‖ ≤ ‖ũ0 − x̃‖+ ‖ṽ0‖ ≤ 2S /(κ ·

ln(dκδ)). With same logic in the proof for lemma 5, we see ‖ũt‖ ≤ 100(S · ĉ), and ‖w̃t‖ ≤ 100(S · ĉ).

(Same relation hold for ‖ut‖ and ‖wt‖ respectively.) As a result, ‖ṽt‖ ≤ ‖w̃t‖+ ‖ũt‖ ≤ 200(S · ĉ)

for all t < T . Also,

‖vt‖ ≤ 200(S · ĉ) (1.11)

Equation (1.11) and Hessian Lipschitz gives for t < T , ‖∆′t‖ ≤ ρ(‖ut‖ + ‖vt‖ + ‖x̃‖) ≤

ρS (300ĉ+ 1) = ζ
η , where ζ = ηρS (300ĉ+ 1).

Denote ψt be the norm of vt projected onto e1 direction (§), and ϕt be the norm of vt

projected onto the remaining subspace (§c), while ψ̃t be the norm of ṽt projected onto §, and ϕ̃t

be the norm of ṽt projected onto §c.

Equation (1.10) gives

ψ̃t+1 ≥ (1 + γη)ψt − ζ
√
ψ2
t + ϕ2

t (1.12)

ϕ̃t+1 ≤ (1 + γη)ϕt + ζ
√
ψ2
t + ϕ2

t (1.13)

To obtain the lower bound of ‖vt‖, we prove the following relation as preparation:

for all t < T, ϕt ≤ 4ζt · ψt (1.14)

By hypothesis of lemma 8, we know ϕ0 = 0, thus the base case of induction holds. Assume equation

(1.14) is true for τ ≤ t, for t+ 1 ≤ T , we have

ϕ̃t+1 ≤ 4ζt(1 + γη)ψt + ζ
√
ψ2
t + ϕ2

t

4ζ(t+ 1)

[
(1 + γη)ψt − ζ

√
ψ2
t + ϕ2

t

]
≤ 4ζ(t+ 1)ψ̃t+1 (1.15)

By choosing
√
cmax ≤ 1

300ĉ+1 min{ 1
2
√

2
, 1

4ĉ}, and η ≤ cmax
L , we have 4ζ(t+ 1) ≤ 4ζT ≤ 4ηρS (300ĉ+

1)ĉT = 4
√
ηL(300ĉ + 1)ĉ ≤ 1. This gives 4(1 + γη)ψt ≥ 4ψt ≥ (1 + 1)

√
2ψ2

t ≥ (1 + 4ζ(t +

16

1))
√
ψ2
t + ϕ2

t . i.e.

(1 + 4ζ(t+ 1))
√
ψ2
t + ϕ2

t ≤ 4ψt (1.16)

Connecting two parts of equation (1.15), we obtain

ϕ̃t+1 ≤ 4ζ(t+ 1)ψ̃t+1 (1.17)

Now we switch our focus to the eigenspace of Hessian H. Assume the orthonormal basis for

the eigensapce of H is {e1, e2, · · · , ed}. The order of dimension aligns with the increasing order of

the corresponding eigenvalues. This coordinate transformation does not lead to loss of generality,

as it is unitary.

By lemma 6, we know the iteration difference sequence vt has a positive lower bound in terms

of 2-norm. Therefore, by lemma 7, with the virtue of equation (1.17)
√∑d

i=2(eTi ṽt+1)2 ≤ 4ζ(t +

1)‖eT1 ṽt+1‖, we still have the projection monotonicity on the subspace of eigenspace of H, i.e.

ϕt+1 =

√√√√ d∑
i=2

(eTi proxg(ṽt+1))2 ≤ 4ζ(t+ 1)‖eT1 proxg(ṽt+1)‖ = 4ζ(t+ 1)ψt+1

Until here we finish the induction.

Recall that 4ζ(t+ 1) ≤ 1, we thus have ϕt ≤ 4ζtψt ≤ ψt, which gives

ψt+1 ≥ (1 + γη)ψt −
√

2ζψt ≥
(
1 +

γη

2

)
ψt (1.18)

where the last inequality follows from ζ = ηρS (300ĉ+ 1) ≤ √cmax(300ĉ+ 1)γη · ln−1(dκδ) ≤ γη

2
√

2
.

Finally, combining (1.11) and (1.18), we have for all t < T :

200(S · ĉ) ≥ ‖vt‖ ≥ ψt ≥ (1 +
γη

2
)tψ0 = (1 +

γη

2
)tc0

S

κ
ln−1

(
dκ

δ

)
≥ (1 +

γη

2
)t

δ

2
√
d

S

κ
ln−1

(
dκ

δ

)
This implies

T <
1

2

ln[400κ
√
d

δ · ĉ ln(dκδ)]

ln(1 + γη
2)

≤
ln[400κ

√
d

δ · ĉ ln(dκδ)]

γη
≤ (2 + ln(400ĉ))T

The last inequality is due to δ ∈ (0, dκe], we have ln(dκδ) ≥ 1. By choosing the constant ĉ to be large

enough to satisfy 2 + ln(400ĉ) ≤ ĉ, we will have T < ĉT , which finishes the proof.

17

1.4.4 Combining previous results

Lemma 9. There exists a universal constant cmax, for any δ ∈ (0, dκe], let f(·), x̃ satisfies the

conditions in Lemma 10, and without loss of generality let e1 be the minimum eigenvector of ∇2f(x̃).

Consider two gradient descent sequences {ut}, {wt} with initial points u0,w0 satisfying: (denote

radius r = S /(κ · ln(dκδ)))

‖u0 − x̃‖ ≤ r, w0 = u0 + µ · r · e1, µ ∈ [δ/(2
√
d), 1]

Then, for any stepsize η ≤ cmax/L, and any T ≥ 1
cmax

T , we have:

min{f(uT) + g(uT)− f(u0)− g(u0), f(wT) + g(wT)− f(w0)− g(w0)} ≤ −2.7F

Proof. Without losing generality, let x̃ = 0 be the origin. Let (c
(2)
max, ĉ) be the absolute constant

so that Lemma 8 holds, also let c
(1)
max be the absolute constant to make Lemma 5 holds based on

our current choice of ĉ. We choose cmax ≤ min{c(1)
max, c

(2)
max} so that our learning rate η ≤ cmax/L is

small enough which make both Lemma 5 and Lemma 8 hold. Let T ? := ĉT and define:

T ′ = inf
t

{
t|f̃u0(ut) + g(ut)− f(u0)− g(u0) ≤ −3F

}
Let’s consider following two cases:

Case T ′ ≤ T ?: In this case, by Lemma 5, we know ‖uT ′−1‖ ≤ O(S), and therefore

‖uT ′‖ ≤‖uT ′−1‖+ η‖∇f(uT ′−1)‖ ≤ ‖uT ′−1‖+ η‖∇f(x̃)‖+ ηL‖uT ′−1‖ ≤ O(S)

By choosing cmax small enough and η ≤ cmax/L, this gives:

f(uT ′) + g(uT ′)− f(u0)− g(u0)

≤ ∇f(u0) ᵀ (uT ′ − u0) +
1

2
(uT ′ − u0) ᵀ∇2f(u0)(uT ′ − u0) +

ρ

6
‖uT ′ − u0‖3 + g(uT ′)− g(u0)

≤ f̃u0(uT ′)− f(u0) + g(uT ′)− g(u0) +
ρ

2
‖u0 − x̃‖‖uT ′ − u0‖2 +

ρ

6
‖uT ′ − u0‖3

≤ −3F +O(ρS 3) = −3F +O(
√
ηL ·F) ≤ −2.7F

The first and second inequality exploit Hessian Lipschitz property of smooth function f , and ‖u0−

x̃‖ ≤ O(S), ‖uT ′ − u0‖ ≤ O(S). By choose cmax ≤ min{1, 1
ĉ}. We know η < 1

L , by sufficient

18

decrease lemma for proximal descent, we know each proximal descent iteration decreases function

value. Therefore, for any T ≥ 1
cmax

T ≥ ĉT = T ? ≥ T ′, we have:

Φ(uT)− Φ(u0) ≤ Φ(uT ?)− Φ(u0) ≤ Φ(uT ′)− Φ(u0) ≤ −2.7F

Case T ′ > T ?: In this case, by Lemma 5, we know ‖ut‖ ≤ O(S) for all t ≤ T ?. Define

T ′′ = inf
t

{
t|f̃w0(wt) + g(wt)− f(w0)− g(w0) ≤ −3F

}
By Lemma 8, we immediately have T ′′ ≤ T ?. Apply same argument as in the case T ′ ≤ T ?, we

have for all T ≥ 1
cmax

T that f(wT)+g(wT)−f(w0)−g(w0) ≤ f(wT ?)+g(wT ?)−f(w0)−g(w0) ≤

−2.7F .

1.4.5 Main lemma

Lemma 10 (Main Lemma). There exists universal constant cmax, for f(·) satisfies 1, for any

δ ∈ (0, dκe], suppose we start with point x̃ satisfying following conditions:

‖G(x̃)‖ =

∥∥∥∥L(x̃− prox 1
L
g

(
x̃− 1

L
∇f(x̃)

)∥∥∥∥ ≤ G and λmin(∇2f(x̃)) ≤ −γ

Let x0 = x̃ + ξ where ξ come from the uniform distribution over ball with radius S /(κ · ln(dκδ)),

and let xt be the iterates of gradient descent from x0. Then, when stepsize η ≤ cmax/L, with at

least probability 1− δ, we have following for any T ≥ 1
cmax

T :

f(xT) + g(xT)− f(x̃)− g(x̃) ≤ −F

Proof. Denote T l
L

(x) = prox 1
L
g

[
x− 1

L∇f(x)
]
. The fisrt order stationary condition is equivalent to

‖x̃− T 1
L

(x̃)‖ = ‖∇f(x̃) + ∂g
(
T 1
L

(x̃)
)
‖ ≤ G , where ∂g is the subgradient of the function g.

As g(x) = λ‖x‖1 has Lipschitz constant λ, we have

f(x0) + g(x0) ≤ f(x̃) + 〈∇f(x̃), ξ〉+
L

2
‖ξ‖2 + g(x̃) + 〈∂g(x̃), ξ〉+

λ

2
‖ξ‖2

Notice

‖∇f(x̃) + ∂g(x̃)‖ = ‖∇f(x̃) + ∂g(T l
L

(x))−
(
∂g(T l

L
(x))− ∂g(x̃)

)
‖

≤ G + λG

19

By adding perturbation, in worst case we increase function value by:

f(x0)− f(x̃) + g(x0)− g(x̃) ≤ ‖∇f(x̃) + ∂g(x̃)‖‖ξ‖+
L+ λ

2
‖ξ‖2

≤ (1 + λ)G (
S

κ · ln(dκδ)
) +

1

2
(L+ λ)(

S

κ · ln(dκδ)
)2

≤ (
3

2
+

1

5
)F

where the last inequality follows from the fact that λ� min{1, l} per equation (1.7).

On the other hand, let radius r = S
κ·ln(dκ

δ
)
. We know x0 come from uniform distribution

over Bx̃(r). Let Xstuck ⊂ Bx̃(r) denote the set of bad starting points so that if x0 ∈ Xstuck, then

Φ(xT)− Φ(x0) > −2.7F (thus stuck at a saddle point); otherwise if x0 ∈ Bx̃(r)− Xstuck, we have

Φ(xT)− Φ(x0) ≤ −2.7F .

By applying Lemma 9, we know for any x0 ∈ Xstuck, it is guaranteed that (x0±µre1) 6∈ Xstuck

where µ ∈ [δ
2
√
d
, 1]. Denote IXstuck

(·) be the indicator function of being inside set Xstuck; and vector

x = (x(1),x(−1)), where x(1) is the component along e1 direction, and x(−1) is the remaining d− 1

dimensional vector. Recall B(d)(r) be d-dimensional ball with radius r; By calculus, this gives an

upper bound on the volume of Xstuck:

Vol(Xstuck) =

∫
B(d)
x̃ (r)

dx · IXstuck
(x)

=

∫
B(d−1)
x̃ (r)

dx(−1)

∫ x̃(1)+
√
r2−‖x̃(−1)−x(−1)‖2

x̃(1)−
√
r2−‖x̃(−1)−x(−1)‖2

dx(1) · IXstuck
(x)

≤
∫
B(d−1)
x̃ (r)

dx(−1) ·
(

2 · δ

2
√
d
r

)
= Vol(B(d−1)

0 (r))× δr√
d

Then, we immediately have the ratio:

Vol(Xstuck)

Vol(B(d)
x̃ (r))

≤
δr√
d
×Vol(B(d−1)

0 (r))

Vol(B(d)
0 (r))

=
δ√
πd

Γ(d2 + 1)

Γ(d2 + 1
2)
≤ δ√

πd
·
√
d

2
+

1

2
≤ δ

The second last inequality is by the property of Gamma function that Γ(x+1)
Γ(x+1/2) <

√
x+ 1

2 as long

20

as x ≥ 0. Therefore, with at least probability 1− δ, x0 6∈ Xstuck. In this case, we have:

Φ(xT)− Φ(x̃) = Φ(xT)− Φ(x0) + Φ(x0)− Φ(x̃)

≤ −2.7F + 1.7F

≤ −F

which finishes the proof.

1.4.6 Main theorem, and its proof

Lemma 11 (Sufficient Decrease Lemma for Proximal Descent, [Bec17]). Assume the function

f is real-valued and lower semi-continuous. Then for any L ∈ (L2 ,∞) where η = 1
L , we have

Φ(xt)− Φ(xt+1) ≥ L−L
2

L2 ‖G 1
L

(xt)‖.

1.4.6.1 Proof of the main theorem

Proof. Denote c̃max to be the absolute constant allowed in lemma 10 when it is given following

parameters η = c
L , γ =

√
ρε, and δ = dL√

ρεe
−χ. This parameter setting gives gthres to be defined

in the following text. In this theorem, we let cmax = min{c̃max, 1/2}, and choose any constant

c ≤ cmax.

In this proof, we will actually achieve some point satisfying following condition:

‖G(x)‖ ≤ gthres ≡
√
c

χ2
· ε, λmin(∇2f(x)) ≥ −√ρε (1.19)

Since c ≤ 1, χ ≥ 1, we have
√
c

χ2 ≤ 1, which implies any x satisfy Eq.(1.19) is also a ε-second-order

stationary point.

Starting from x0, we know if x0 does not satisfy Eq.(1.19), there are only two possibilities:

(1) ‖G(x0)‖ > gthres: In this case, Algorithm 1 will not add perturbation. By lemma 11:

Φ(x1)− Φ(x0) ≤ −η
2
· g2

thres = − c2

2χ4
· ε

2

L

21

(2) ‖G(x0)‖ ≤ gthres: In this case, Algorithm 1 will add a perturbation of radius r, and

will perform proximal gradient descent (without perturbations) for the next tthres steps.

Algorithm 1 will then check termination condition. If the condition is not met, we must

have:

Φ(xtthres
)− Φ(x0) ≤ −Φthres = − c

χ3
·

√
ε3

ρ

This means on average every step decreases the function value by

Φ(xtthres
)− Φ(x0)

tthres
≤ − c

3

χ4
· ε

2

L

In case 1, we can repeat this argument for t = 1 and in case 2, we can repeat this argument for

t = tthres. Hence, we can conclude as long as algorithm 1 has not terminated yet, on average, every

step decrease function value by at least c3

χ4 · ε
2

L . However, we clearly can not decrease function value

by more than Φ(x0)−Φ?, where Φ? is the function value of global minima. This means algorithm

1 must terminate within the following number of iterations:

Φ(x0)− Φ?

c3

χ4 · ε
2

L

=
χ4

c3
· L(Φ(x0)− Φ?)

ε2
= O

(
L(Φ(x0)− Φ?)

ε2
ln4

(
dL∆Φ

ε2δ

))
Finally, we would like to ensure when Algorithm 1 terminates, the point it finds is actually

an ε-second-order stationary point. The algorithm can only terminate when the gradient mapping

is small, and the function value does not decrease after a perturbation and tthres iterations. We

shall show every time when we add perturbation to iterate x̃t, if λmin(∇2f(x̃t)) < −
√
ρε, then we

will have Φ(xt+tthres
)−Φ(x̃t) ≤ −Φthres. Thus, whenever the current point is not an ε-second-order

stationary point, the algorithm cannot terminate.

According to Algorithm 1, we immediately know ‖G(x̃t)‖ ≤ gthres (otherwise we will not add

perturbation at time t). By lemma 10 (recall the parameter setting stated before), we know this

event happens with probability at least 1− dL√
ρεe
−χ each time. On the other hand, during one entire

run of Algorithm 1, the number of times we add perturbations is at most:

1

tthres
· χ

4

c3
· L(Φ(x0)− Φ?)

ε2
=
χ3

c

√
ρε(Φ(x0)− Φ?)

ε2

22

By the union bound, for all these perturbations, with high probability lemma 10 is satisfied.

As a result Algorithm 1 works correctly. The probability of that is at least

1− dL
√
ρε
e−χ · χ

3

c

√
ρε(Φ(x0)− Φ?)

ε2
= 1− χ3e−χ

c
· dL(Φ(x0)− Φ?)

ε2

Recall our choice of χ = 3 max{ln(
dL∆f

cε2δ
), 4}, which gives e−χ/3 = min{ cε2δdl∆f

, 1
e4
}. Since

χ ≥ 12, we have χ3e−χ ≤ e−χ/3, this gives:

χ3e−χ

c
· dL(Φ(x0)− Φ?)

ε2
≤ e−χ/3dL(Φ(x0)− Φ?)

cε2
≤ δ

which finishes the proof.

Remarks on large λ We point out that when λ is large enough so that the g term alters

the local landscape of the objective function Φ(x), it is inevitable that new local minima will be

introduced to the landscape of the objective function, and potentially change the stability of saddle

points. We hypothesize that perturbed proximal descent will still converge to an ε-second-order

stationary point regardless of the magnitude of λ.

An example for the new local minima introduced by large λ is Fig. 1.3b. We see new wrinkles

are introduced to the four legs of the octopus function as λ increases from 1 to 10. If an iteration

starts in the neighborhood of creases, it can converge to the bottom of the creases. Fig. 1.3c is

an extreme scenario where the original landscape of the octopus function is completely altered to

conform to the behavior of `1 penalty term.

1.4.7 From ε-second-order stationary point to local minimizers

Assumption 3 (Non-degenerate Saddle). For all stationary points xc, ∃m > 0 such that

min
i=1,2,··· ,d

|λi(∇2f(xc))| > m > 0

where λi are the eigenvalues (not to be confused with the parameter λ).

23

(a) λ = 0.01 (b) λ = 10 (c) λ = 100

Figure 1.3: The octopus function with different λ values

With this non-degenerate saddle assumption, the main theorem can be strengthened to the

following corollary, whose proof is immediate as one sets the ε value in the main theorem as

m2/ρ and realizes that there is no eigenvalue of ∇2f existing between −√ρε and the first positive

eigenvalue.

Corollary 12. There exists an absolute constant cmax such that if f(·) satisfies assumptions 1, 2

and 3, then for any δ > 0,∆Φ ≥ Φ(x0) − Φ?, constant c ≤ cmax, and ε = m2

ρ , with probability

1− δ, the output of PPD(x0, L, ρ, ε, c, δ,∆f) will be a local minimizer of f + λ‖x‖1, and terminate

in iterations:

O
(
L(Φ(x0)− Φ?)

ε2
ln4

(
dL∆Φ

ε2δ

))

1.5 Numerical experiment

We set f to be the “octopus” function described in [DJL+17] and use perturbed proximal

descent to minimize the objective function Φ(x) = f(x) +λ‖x‖1. Plots of octopus function defined

in R2 for various λ are shown in Figure 1.3.

The “octopus” family of functions is parameterized by τ , which controls the width of the

“legs,” and M and γ which characterize how sharp each side is surrounding a saddle point, related

to the Lipschitz constant. The example illustrated in Fig. 1.3 uses parameters M = e, γ = 1, τ = e.

We are interested in the octopus family of functions because it can be generalized to any

dimension d, and it has d−1 saddle points (not counting the origin) which are known to slow down

24

standard gradient descent algorithms. The usual minimization iteration sequence, if starting at

the maximum value of the octopus function, will successively go through each saddle point before

reaching the global minimum, thus rendering the iteration progress easy to track and visualize.

Specifics of Octopus Function

We define octopus function in first quadrant of Rd. And then, by even function reflection,

the octopus can be continued to all other quadrants.

Define the auxiliary gluing functions as

G1(xi) = −γx2
i +
−14L+ 10γ

3τ
(xi − τ)3 +

5L− 3γ

2τ
(xi − τ)4

G2(xi) = −γ − 10(L+ γ)

τ3
(xi − 2τ)3 − 15(L+ γ)

τ4
(xi − 2τ)4 − 6(L+ γ)

τ5
(xi − 2τ)5

Define the gluing function and gluing balance constant respectively as

G(xi, xi+1) = G1(xi) + G2(xi)x
2
i+1

ν = −G1(2τ) + 4Lτ2 =
26L+ 2γ

3
τ2 +

−5L+ 3γ

2
τ3

For a given i = 1, · · · , d− 1, when 6τ ≥ x1, · · · , xi−1 ≥ 2τ, τ ≥ xi ≥ 0, τ ≥ xi+1, · · · , xd ≥ 0

f(x) =
i−1∑
j=1

L(xj − 4τ)2 − γx2
i +

d∑
j=i+1

Lx2
j − (i− 1)ν ≡ fi,1(x) (1.20)

and if 6τ ≥ x1, · · · , xi−1 ≥ 2τ, 2τ ≥ xi ≥ τ, τ ≥ xi+1, · · · , xd ≥ 0, we have

f(x) =
i−1∑
j=1

L(xj − 4τ)2 + G(xi, xi+1) +
d∑

j=i+2

Lx2
j − (i− 1)ν ≡ fi,2(x) (1.21)

and for i = d, if 6τ ≥ x1, · · · , xd−1 ≥ 2τ, τ ≥ xd ≥ 0

f(x) =
d−1∑
j=1

L(xj − 4τ)2 − γx2
d − (d− 1)ν ≡ fd,1(x) (1.22)

and if 6τ ≥ x1, · · · , xd−1 ≥ 2τ, 2τ ≥ xd ≥ τ

f(x) =

d−1∑
j=1

L(xj − 4τ)2 + G1(xd)− (d− 1)ν ≡ fd,2(x) (1.23)

and if 6τ ≥ x1, · · · , xd ≥ 2τ ,

f(x) =

d∑
j=1

L(xj − 4τ)2 − dν ≡ fd+1,1(x) (1.24)

25

Remark All saddle points happen at (±4τ,±4τ, · · · ,±4τ, 0, 0, · · · , 0), and the global min-

imum is at (±4τ, · · · ,±4τ). Regions in the form of [2τ, 6τ]×· · ·× [2τ, 6τ]× [τ, 2τ]× [0, τ]×· · ·× [0, τ]

are transition zones described by the gluing functions which connect separate pieces to make f a

continuous function. The octopus function can be constructed first in the first quadrant, and then

using even function reflection to define it in all other quadrants. A typical descent algorithm applied

to the octopus generates iterations that take multiple turns like walking down a spiral staircase,

each staircase leading to a new dimension.

1.5.1 Results

10
0

10
1

10
2

10
3

0

100

200

300

PPD

PGD

PD

GD

10
0

10
1

10
2

10
3

0

200

400

600

800

PPD

PGD

PD

GD

0 500 1000
0

500

1000

1500

PPD

PGD

PD

GD

0 500 1000
0

1000

2000

3000

PPD

PGD

PD

GD

Figure 1.4: Performance of our proposed PPD algorithm on the octopus function with λ = 0.01

We apply the perturbed proximal descent (PPD) on the octopus function plus 0.01‖x‖1 when

the dimension varies between d = 2, 5, 10, 20. We set the constant c = 3. For comparison, we apply

perturbed gradient descent (PGD) as well since ‖x‖1 is differentiable almost everywhere; for both

algorithms, the norm of the perturbation ξ is 0.1.

26

We see that PPD successfully finds the local minimum in the first three cases within 1000

iterations, and in the case of d = 20, PPD almost finds the local minimum within 1000 iterations.

In contrast, unperturbed proximal descent (PD), gradient descent (GD), and perturbed gradient

descent (PGD) sequences are trapped near saddle points.

1.6 Conclusion

This chapter provides an algorithm to minimize a non-convex function plus a `1 penalty of

small magnitude, with a probabilistic guarantee that the returned result is an approximate second-

order stationary point, and hence for a large class of functions, a local minimum instead of a saddle

point. The complexity is of O(ε−2) and the result depends on dimension in O(ln4 d).

The deficiency of the result is that the magnitude of `1 penalty needs to be small to let our

theoretical result hold. Meanwhile, we also notice that a large λ will lead to creation of new local

minima to the objective function altering the original landscape. Our future work will address the

case of large λ in the iteration process.

Chapter 2

Stochastic Gradient Langevin Dynamics with Variance Reduction

2.1 Introduction

In this chapter we consider the optimization algorithm stochastic gradient descent (SGD)

with variance reduction (VR) and Gaussian noise injected at every iteration step. For historical

reasons, the particular randomization format of injecting Gaussian noises bears the name Langevin

dynamics (LD). Thus, the scheme we consider is referred as stochastic gradient Langevin dynamics

with variance reduction (SGLD-VR). We point out the ergodicity property of SGLD-VR schemes

when used as an optimization algorithm, which the normal SGD method without the additional

noise does not have. As the ergodicity property implies the non-trivial probability for the LD

process to visit the whole space, the set of global minima may also be traversed during the iteration,

thereby revealing the potential of such a scheme for the purposes of global optimization. We provide

convergence results of SGLD-VR to local minima in similar style as those in chapter 1.

We apply the SGLD-VR scheme on the empirical risk minimization problem:

minimize f(ω) =
1

n

n∑
i=1

fi(ω) (2.1)

which is a sampled version of the stochastic optimization problem: min
ω
F (ω) =

∫
f(ω; x) dx,

where x is the collection of training data and ω is the parameter for the model. In the following

text we use x instead of ω as the input for the objective f . For empirical risk minimization, one may

construct the gradient estimator by subsampling terms in the summation of the objective (2.1) for

gradient evaluation in order to accelerate the optimization process, which coincides with the SGD

28

framework. Variance reduction is leveraged to accelerate convergence, and LD is further engaged

in the SGD scheme to enable ergodicity property and convergence property to local minima.

2.1.1 Prior art

The Langevin dynamical equation describes the trajectory X(t) of the following stochastic

differential equation

dXt = −∇U(Xt) dt+ σ dBt, (2.2)

which is a characterization for the continuous motion of a particle in a potential field U . Using this

dynamic as a master equation, through Kramers–Moyal expansion one can derive the Fokker-Planck

equation, which gives the spatial distribution of particles at a given time, thus a full characterization

of the statistical properties of a particle ensemble [Kra40].

LD and sampling The connection between Langevin dynamics (LD) and the distribution

of particle ensemble reveals the potential of applying LD on sampling. Suppose that the distribution

of interest is π(x) and that there exists a function U such that π(x) = exp(−U(x))∫
exp(−U(x)) dx

, then LD

equation which contains a Brownian motion term gives a Monte-Carlo-natured simulation based

on the distribution π(x), and the stationary distribution such a dynamic converges to is π(x). To

numerically implement LD equation for sampling purposes, one needs to discretize the continuous

LD equation. A simple version of the dicretization is the unadjusted Langevin algorithm (ULA),

xk+1 = xk − ηk∇U(xk) + δ0
√
ηkεk (2.3)

where εk ∈ N (0, Id), x ∈ Rd. The Gaussian noise term enables the scheme to explore the sam-

ple space and the drift term guides the direction of exploration. One common modified scheme

is Metropolis adjusted Langevin algorithm (MALA), where upon the suggested update by ULA,

there is an additional accept/reject step, with the probability of accepting the the update as

1 ∧ π(xk)p(xk|xk+1)
π(xk+1)p(xk+1|xk) .

Naturally two central questions related to this sample scheme arise: whether or not the

distribution of samples generated by LD converges, and if so, to π; and what is the mixing time of

29

LD (i.e., how long does it takes for the LD to approximately reach equilibrium hence generating valid

samples from the distribution π). The first question motivates the importance of MALA: in terms

of total variation (TV) norm, while ULA can fail to converge for either light-tailed or heavy-tailed

target distribution, MALA is guaranteed to converge to any continuous target distribution [MT09].

Regarding the second question about convergence speed, researchers have investigated the sufficient

conditions for ULA and MALA respectively to guarantee exponential (geometric) convergence to

target distribution. [MT96] shows for distributions over R, the necessary and sufficient condition for

MALA to converge to target distribution π(x) at geometric speed is that π(x) has exponential tails.

The sufficiency of this condition is generated to higher dimension in [RT96a]. The seminal work

[RT96b] shows that w.r.t. target distributions that are in essence non-localized, or heavy-tailed,

MALA cannot converge at geometric speed.

In parallel there have been works to show the convergence of LD for distribution approxima-

tion in terms of Wasserstein-2 distance [DK17] and KL-divergence respectively [CB18].

A particular case of interest for the application of LD on sampling is to find the posterior

distribution of parameters θ in the Bayesian setting, where the updates are set as

∆θk = ηk

(
∇p(θk) +

N∑
i=1

∇ log p(xi|θk)

)
+
√
ηkεk (2.4)

where εk ∼ N (0, I). To maximize the likelihood, [WT11] suggests to use the format of stochastic

gradient descent in the derivative term of (2.4). [BM99] shows that this minibatch-styled LD will

converge to the correct distribution in terms of KL divergence.

LD and optimization The main focus of this chapter is on optimization. LD offers an

exciting opportunity for global optimization due to the exploring nature of the Brownian motion

term. Simulating multiple particles to obtain information about the geometric landscape of the

objective function—thus locating a global minimum—is often too computationally expensive to be

practical. Notice that when one considers the convergence to a distribution, the exploring nature

of LD due to continually injected Gaussian noise of constant variance is the key factor, while for

the purpose of optimization, one usually exploits noises with diminishing variance since the goal is

30

to converge to a point.

The technique to achieve this point convergence is annealing, which means decreasing the

variance of the noise as t grows. Formally, let the objective function be U and we construct the

probability distribution pT (x) = 1
Z exp

(
−U(x)

T

)
, where Z is the normalization factor. The key

observation is that as the parameter T → 0, the distribution pT (x) will concentrate on the global

minima. This parameter T is usually referred to as temperature, alluding to the alloy annealing

process where as temperature decreases, the structure of the metal evolves into the most stable

one, hence reaching the state with minimum potential energy. To formulate LD for optimization,

one essentially takes the usual LD equation but with the variance term σ now a function of time,

σ =
√
T (t):

dxt = ∇U(xt) dt+
√
T (t) dBt

The pioneering work by Chiang et al. [CHS87] shows that with the annealing schedule T (t) ∝

(log t)−1, then LD will find the global minimum. The work by Chiang et al. does not specify how

to simulate the continuous version of Langevin dynamics, thus not providing information on the

convergence of discrete approximation (Euler-Maruyama method as an example) for LD. [GM91]

fills this gap by proving that with an annealing schedule ηk ∝ k−1 and Tk ∝ (k log log k)−1, then

discretized LD will converge to the global minima in probability. More recently, [RRT17] uses

optimal transport formalism to study the empirical risk minimization problem. Their proof uses

the Wasserstein-2 distance to evaluate distribution discrepancy and consists of two parts: first

show that the discretization error of LD from continuous LD accumulates linearly with respect to

the error tolerance level, and then show that the continuous LD will converge to the true target

distribution exponentially fast.

Variance reduction (VR) and LD In this chapter we aim to apply variance reduction

techniques in the setting of LD to acceleration the optimization process and to derive improved

time complexity dependence on error tolerance level.

The specific VR technique we use was originally proposed to reduce the variance of the

31

minibatch gradient estimator in stochastic gradient descent for convex objectives by [JZ13] and

separately by [DBLJ14]. [RHS+16, AZH16] have respectively generalized the application of VR

techniques to nonconvex objectives and provided convergence guarantee to first-order stationary

points.

In essence, we use the control variate technique to construct a new gradient estimator by

adding an additional term to the minibatch gradient estimator in SGD (∇SGD) and this term is

correlated with ∇SGD, thus reducing the variance of the gradient estimator as a whole. More

specifically, consider the classic gradient estimator of function f in (2.1) at point x: ∇SGD =

1
|I|
∑

i∈I ∇fi(x), where I ⊆ [n]. If there is another r.v. Y whose expectation is known, then we can

construct a new unbiased gradient estimator ∇̃ of function f at point x as ∇̃ = ∇SGD +α(Y −EY),

where α is a constant. If α = −Cov(∇SGD,Y)
Var[Y] , then the variance of new gradient estimator ∇̃ is

Var[∇̃] = (1 − ρ2
∇SGD,Y

)Var[∇SGD] ≤ Var[∇SGD], where ρ is the Pearson correlation coefficient

between ∇SGD and Y . Usually one may not be lucky enough to have access to such a r.v. Y whose

covariance with ∇SGD is known, therefore the constant α for the control variate needs to be chosen

in an empirical manner.

Motivated by applications in physics and neural network, there has been more interest in

guarantees for convergence to second-order stationary points by optimization algorithms. A con-

tinual line of work has relied on randomized first-order methods, in particular gradient descent

[JGN+17] and proximal descent [HB20a] to achieve this purpose. See section 1.1.1 in chapter 1 for

a detailed review for this line of work.

The main algorithm we consider in this chapter is stochastic gradient Langevin dynamics

(SGLD) with variance reduction, which consists of two sources of randomness: one from stochastic

gradients, the other from Gaussian noise injected at each step. Previous work have investigated

the SGLD for optimization to find local minimizers [CDT19, ZLC17], and reported results for

convergence to approximate second order stationary points. In particular, [XCZG18] show that with

constant-variance Gaussian noise injected at each step, SGLD-VR finds an approximate minimizer

with time complexity O(d
5

ε4
). We aim to improve the dependency on ε. We also point out that

32

when variance of Gaussian noise is set as constant in SGLD, the function value or the point distance

between optimal point and iterate can never go to zero, but can be bounded by a constant depending

on the size of variance.

Finally we want to mention that [DRP+16] introduces the VR technique to Bayesian inference

setting where the objective is the posterior and the gradient estimator is constructed with minibatch

of training data. However, the given convergence guarantee is in terms of mean squared error of

statistics evaluated based on posterior, instead of posterior distribution of the parameter.

Notation Bold symbols indicate vectors, for example a vector x ∈ Rd, where d stands for

the dimension of Euclidean space. We use o to indicate the starting index of a minibatch. We use

ηa:b as the shorthand for
∑b

i=a ηi.

2.2 Algorithm and main results

The main algorithm is given as algorithm 2.

Algorithm 2 Variance reduced stochastic gradient Langevin dynamics (VRSGLD)

Require: initial stepsize η0 > 0, stepsize decay order ν ≥ 1, initial Gaussian noise magnitude
parameter δ0, batch size Bb, epoch length Be

1: Initialize x0 = 0, x̃(0) = x0

2: for s = 0, 1, 2, · · · , TBe
− 1 do

3: w̃ = ∇f(x̃(s))
4: for l = 0, 1, · · · , Be − 1 do
5: set index t = sBe + l
6: randomly pick a subset It from [n] of size |It| = Bb; randomly draw εt ∼ N (0, I)
7: construct gradient estimator ∇̃t = 1

Bb

∑
it∈It

(
∇fit(xt)−∇fit(x̃(s)) + w̃

)
8: update xt+1 = xt − ηt∇̃t + ρtεt
9: end for

10: x̃(s) = x(s+1)Be

11: end for

In algorithm 2, the stepsize ηt and ρt is set as the following, for some ν ≥ 1:

ηt =
η0

tν
and ρt =

ρ0

tν/2
. (2.5)

Ergodicity In this work we show that the discretized variance reduced LD (VRSGLD) has

an ergodic property which gives the iteration process the potential of exploring wider space, thus

33

with positive possibility of traversing through the global optimal point.

The argument for ergodicity has two parts: In Lemma 13 we first give an explicit upper bound

of the expected time of visiting a given level set for the j-th time (j ≥ 1); then in Theorem 14 we

show that there is a positive possibility such that the LD iteration can visit any fixed point within

a level set.

Assumption 4 (Lipschitz Gradient). f is continuously differentiable, and there exists a positive

constant L such that for all x and y, ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

Assumption 5 (Regularization conditions for the objective function f). There exist non-negative

constants µ1, µ2 and ψ1, ψ2 such that for all x ∈ Rd,

‖∇f(x)‖2 ≥ µ1f(x)− ψ1 (2.6)

‖x‖2 ≤ µ2f(x) + ψ2 (2.7)

Remark We make the same regularization assumptions as in [CDT19]. A relevant regular-

ization condition commonly used in previous literature is the (m, b)-dissipative condition [MSH02,

RRT17, XCZG18, ZLC17], which reads that there exist positive constants m and b such that for all

x ∈ Rd, 〈∇f(x),x〉 ≥ m‖x‖2 − b. [DT20] shows that the dissipative condition implies (2.6), which

renders the assumption (2.6) weaker. Equation (2.7) implies that f is supercoercive [BC17], and

in particular coercive, and thus has bounded level sets.

Lemma 13 (Recurrence). Let n0 be the index such that ηn0 ≤ δ, and nk be the sequence of iteration

index nk+1 = mins{s : s > nk, ηnk:s ≥ δ}.

Under the regularization conditions in Assumption 5 and under Assumption 4, there exists a

constant C1 such that α = 1−2 exp(−(1−C1)µδ), B = 2(2η0L3

Be
f(x0)+

δ2
0Ld
2η0

) and K =
ln
f(xn0)

δB
(1−C1)µδ , with

the stopping time sequence {τk} defined as τ0 = K and τk+1 = min{t : t ≥ τk + 1, f(xnt) ≤ 2δB},

E [τj] ≤
4

α
+K + j

(
1

2αδ
+ 1

)
(2.8)

34

Theorem 14 (Ergodicity). Under the regularization conditions in Assumption 5 and under As-

sumption 4, with the same parameter setting as in Lemma 13, for any accuracy ε̃ > 0, failure

probability p > 0, and any point s ∈ Rd, there is a number

T = O

 1

pµ1

(
4η0L3 µ2f(x0)+2ψ2

Be
+

δ2
0
η0
Ld
)
1 + ln f(x0) +

(d‖s‖+ ε̃)d(
(4√

2π
− 1)e−1/2ε̃

)d
 (2.9)

such that

Pr(‖xt − s‖ ≤ ε̃ for some t < T) ≥ 1− p (2.10)

Convergence to a first-order stationary point We further compute the time complex-

ity for the LD to converge to a ε−first order stationary point. We define x? to be a ε-first order

stationary point if ‖∇f(x?)‖ ≤ ε.

Theorem 15. Under Assumption 4, for any p ∈ (0, 1), then with probability at least 1 − p, the

time complexity for the LD described in algorithm 2 to converge to an ε-first order stationary point

x? is O
(

∆fd

ε2p

)
, where ∆f = f(x0)− f(x?).

Convergence to an ε-second-order stationary point An ε-second-order stationary

point is a more restrictive type of ε-first order stationary point, and is more likely to be an actual

local minimizer.

Definition 16. Consider a smooth function f(x) with continuous second order derivative. A point

x is an ε-second-order stationary point if

‖∇f(x)‖ ≤ ε and λ
(
∇2f(x)

)
min
≥ −ε2 (2.11)

where λ(·)min is the smallest eigenvalue.

We make the strict saddle assumption which is common in nonconvex optimization literature

[GHJY15, LSJR16, JGN+17, MOJ18, LPP+19, VGFP19, SLQ+19, LY19, Li19, HB20a],: i.e.,

Assumption 6 (strict saddle). There exists a constant q > 0 such that for all first-order stationary

points xfsp, we have

|λ(∇2f(xfsp))| ≥ q > 0.

35

Assumption 7 (Hessian Lipschitz). f is twice continuously differentiable, and there exists a pos-

itive constant L2 such that for all x and y, ‖∇2f(x)−∇2f(y)‖ ≤ L2‖x− y‖.

Theorem 17. Under Assumptions 4, 6 and 7, setting the stepsize decay parameter ν ∈ [1, 2]

and ρ0 = O(ε), with probability O
(

εd−1

Γ(d−2
2

)Ld−1qd−1

)
· exp(−O(εd)), the time complexity for the

LD described in algorithm 2 to converge to an ε-second order stationary point x? is O
(

∆f

ε2

)
+

exp (O(εd)), where ∆f = f(x0)− f(x?).

method w. VR noise magnitude setting convergence target Time complexity m

[RRT17] no constant global min. Õ
(
d+ 1/δ0

δ0ε4

)
[XCZG18] yes constant global min. Õ

(
1

ε5/2

)
exp(Õ(d))

[ZLC17] no constant local min. O
(

∆fd
4L2

ε4

)
This work yes diminishing w. poly. speed local min.∗ O

(
∆f

ε2

)
+ exp (O(εd))

Table 2.1: Comparison between convergence results for variants of LD optimization schemes. ∗

indicates convergence target is actually a ε-second-order stationary point, which coincides with a

local minimizer when ε <
√
q under assumption 6.

method Bounded Grad. Lip. Hess. Lip. Regularization others

[RRT17] f and ‖∇f‖ yes no (m, b)-dissipative

(1) stoch. grad. sub-exp. tails

(2) init. pt. sub-Gauss. tails

[XCZG18] none yes no (m, b)-dissipative none

[ZLC17] ‖∇f‖ and ‖∇2f‖ yes yes (1, 0)-dissipative grad. sub-exp. tails

This work none yes yes Assumption 5 strict saddle

Table 2.2: Comparison between assumptions made for variants of LD optimization schemes. The

Hessian Lipschitz assumption is used for second-order convergence property if made.

36

2.3 First-order stationary point convergence property

In this section we show proof of the result for first-order convergence property (theorem 15)

and the needed lemmas as preparation. We first bound the expectation of the square of the gradient

norm in a minibatch of using SGLD-VR for minimization. Requiring the gradient norm to be less

than pre-designated threshold leads to the first-order stationary point (fsp). To estimate the time

needed to converge to a fsp, we exploit the dependence of the gradient norm bound on iteration

count t. The quantity that plays a central role in the argument is the Lyapunov function, which is

essential in constructing the upper bound for gradient norm and connects the argument between

successive minibatches.

Lemma 18 (Bound of variance of SVRG gradient estimator [RHS+16]). In an epoch, the SVRG

gradient estimator satisfies

E [‖∇̃t‖2] ≤ 2E [‖∇f(xt)‖2] + 2
L2

Be
E [‖xt − x̃‖2]. (2.12)

The proof of the above lemma can be found in [RHS+16].

Adapting the framework in [RHS+16] for the LD setting, the following lemma bounds the

expectation of the gradient norm for the SGLD-VR iteration sequence in a minibatch:

Lemma 19. Define the weight sequence {ct} recursively as ct = ct+1(1 + βtηt + 2
η2
tL

2

Be
) +

η2
tL

3

Be
with

cBe = 0, and then define the Lyapunov function Rt = E [f(xt) + ct‖xt− x̃‖2] for each epoch. Define

the normalization sequence γt = ηt− ct+1

βt
ηt−η2

tL−2ct+1η
2
t with ηt and βt > 0 set to ensure γt > 0.

Under Assumption 4, inside an epoch,

E [‖∇f(xt)‖2] ≤ Rt −Rt+1

γt
+

(
L

2
+ ct+1

)
dρ2

t

γt
.

Proof. We find upper bounds to the Lyapunov functions Rt in terms of the negative norm of the

SVRG gradient estimator, thus proving the lemma. We bound the two terms in the Lyapunov

functions respectively. For notational simplicity let ∇f(xt) = ∇t = E It [∇̃t].

37

For the first term f(xt+1) in the Lyapunov function,

E [f(xt+1)] ≤ E
[
f(xt) + 〈∇f(xt),xt+1 − xt〉+

L

2
‖xt+1 − xt‖22

]
= E

[
f(xt)− ηt‖∇t‖2 +

L

2

(
η2
t ‖∇̃t‖2 + ρ2

t ‖εt‖2
)]

where the first inequality uses the L-smooth of function f and the second equality uses the SVRG

update in algorithm 2 (xt+1 − xt = −ηt∇̃t + ρtεt) and the unbiasedness of the gradient estimator

∇̃t.

For the second term ‖xt+1− x̃‖, as 〈∇t, x̃−xt〉
CS
≤ ‖∇t‖‖xt− x̃‖

Young

≤ 1
2βt
‖∇t‖2 + βt

2 ‖xt− x̃‖2,

E [‖xt+1 − x̃‖2] = E [‖xt+1 − xt + xt − x̃‖2] = E [‖xt+1 − xt‖2 + ‖xt − x̃‖2 + 2〈xt+1 − xt,xt − x̃〉]

= E
[
η2
t ‖∇̃t‖2 + ρ2

t ‖εt‖2 + ‖xt − x̃‖2 + 2ηt〈∇t, x̃− xt〉
]

≤ E
[
η2
t ‖∇̃t‖2 + ρ2

t ‖εt‖2 + (1 + ηtβt)‖xt − x̃‖2 +
ηt
βt
‖∇t‖2

]
Putting these two terms together into Rt+1, we have

Rt+1 ≤ E
[
f(xt) +

(
ηtct+1

βt
− ηt

)
‖∇t‖2 +

(
L

2
+ ct+1

)
(η2
t ‖∇̃t‖2 + ρ2

t ‖εt‖2)

+ (1 + ηtβt)ct+1‖xt − x̃‖2
]

(2.12)

≤ E
[
f(xt) +

(
ηtct+1

βt
− ηt + (L+ 2ct+1)η2

t

)
‖∇t‖2 +

(
L

2
+ ct+1

)
ρ2
t ‖εt‖2

+
(
(1 + ηtβt)ct+1 + (L+ 2ct+1)

η2
tL

2

Be

)
‖xt − x̃‖2

]
= E

[
f(xt)− γt‖∇t‖2 +

(
L

2
+ ct+1

)
ρ2
t ‖εt‖2 + ct‖xt − x̃‖2

]
= Rt − E

[
γt‖∇t‖2] + E

[(
L

2
+ ct+1

)
ρ2
t ‖εt‖2

]
= Rt − E

[
γt‖∇t‖2] +

(
L

2
+ ct+1

)
ρ2
td.

We set (βt) and η0 properly (see the remark below this proof) such that −γt = ηtct+1

βt
− ηt + (L+

2ct+1)η2
t ≤ 0 for all t = 0, 1, · · · , Be− 1. This can always be achieved as ct is a decreasing sequence

and ct is negatively related to βt. Then

E [γt‖∇t‖2] ≤ −Rt+1 +Rt +

(
L

2
+ ct+1

)
ρ2
td. (2.13)

38

Remark We show that the η0 and {βt} sequence setting in the end of the proof of lemma

19 always exists. For now we can assume βt = β̃ is a constant. Then we can define an upper bound

sequence for {ct} as

c̃t = c̃t+1(1 + β̃η0 + 2
η2

0L
2

Be
) +

η2
0L

3

Be

with c̃Be = 0. Then, ct ≤ c̃t for 1 ≤ t ≤ Be. Consequently, for expression simplicity assuming

q = 1 + β̃η0 + 2
η2

0L
2

Be
and D =

η2
0L

3

Be

β̃η0+
2η2

0L
2

Be

=
η0L

3

Be

β̃+
2η0L

2

Be

, we have

c̃t +D

c̃t+1 +D
= q.

It follows that 1
qBe

(c̃0 +D) = c̃Be +D = D, and c̃0 = (qBe − 1)D. We need to set β̃ in a way such

that γt > 0 for all 1 ≤ t ≤ Be. As

γt ≥
(

1− c̃0

β̃
− η0L− 2c̃0η0

)
ηt

need
> 0,

a sufficient condition to assure the second inequality above is

c̃0

(
1

β̃
+ 2η0

)
+ η0L < 1 (2.14)

Let β̃η0 be small while β̃ > 1, then the l.h.s. of (2.14) is of the order Beη0

β̃η0L
3

Be

β̃2+2
β̃η0L

2

Be

, which can

ensure (2.14) to hold.

Now we use the bound of gradient norm within a minibatch to build that for the whole

iteration in the following lemma:

Lemma 20. Let γ̄ = min0≤t≤T−1 γt where γt is defined in the previous lemma, and ν > 0. Then

under Assumption 4,

E [‖∇f(xa)‖2] ≤ f(x0)− f(x?)

T γ̄
+
d

γ̄

(
L

2
+ c0

)
C0

T ν
, (2.15)

where xa is randomly chosen from the entire iterate sequence and C0 is a universal constant.

39

Proof. We set cBe = 0 so that R
(α)
0 = f(x

(α)
0) and R

(α)
Be

= f(x
(α)
Be

) for the fixed epoch α. Per line

10 in Algorithm 2, the ending point of the previous epoch is the starting point of the next epoch,

i.e., x
(α)
0 = x

(α−1)
Be

. Summing up all the iteration steps in each epoch, we have

T
Be
−1∑

α=0

Be−1∑
l=0

E [∇f(x
(α)
l)] ≤ f(x0)− f(xT)

γ̄
+

E [‖ε‖2]

γ̄

T−1∑
t=0

(
L

2
+ c(t mod Be)+1

)
ρ2
t

When ρt is set as O(1
tν/2

) where ν ≥ 1, as ct is bounded w.r.t. a fixed epoch,
∑T−1

t=0 ρ2
t =

O(T 1−ν). (The ν = 1 case leads to logarithmic growth of summation of ρ2
t , which does not affect

the following result.) Then consider the LHS of the inequality as the average over all iterates, then

E [‖∇f(xa)‖2] ≤ f(x0)− f(x?)

T γ̄
+

E [‖ε‖2]

T γ̄

T−1∑
t=0

(
L

2
+ c(t mod Be)+1

)
ρ2
t

≤ f(x0)− f(x?)

T γ̄
+

d

T γ̄

(
L

2
+ c0

) T−1∑
t=0

(
L

2
+ c0)ρ2

t

=
f(x0)− f(x?)

T γ̄
+
d

γ̄

(
L

2
+ c0

)
C0

T ν
. (2.16)

Proof of Thm. 15. Per (2.16), we see that the time complexity for the LD to converge to an ε-

first order stationary point is O
(∆fd

γ̄ε2

)
. Another way to phrase the time complexity is through the

hitting time of LD to a first-order stationary point (fsp) τfsp. To estimate the expected time for

the iteration sequence to enter a fsp neighborhood,

Pr(τfsp > T) = Pr(‖∇f(xt)‖ > ε, ∀t ≤ T) ≤ Pr

(
1

T

T∑
t=1

‖∇f(xt)‖ > ε

)

≤
E [1

T

∑T
t=1 ‖∇f(xt)‖]
ε

=
E [‖∇f(xa)‖]

ε
≤
√
E [‖∇f(xa)‖2]

ε
,

where the 2nd inequality is due to Markov’s inequality, and the expectation in the final line is taken

over choosing a uniformly from {1, . . . , T} in addition to the other random variables, and the final

inequality is Jensen’s inequality.

40

Thus, using Lemma 20,

Pr(τfsp > T) ≤ 1

ε

√
∆f

T γ̄
+
d

γ̄

(
L

2
+ c0

)
C0

T ν
let
= p, (2.17)

where p is the failure probability. As γ̄ is a positive constant independent of d, ε and T , the equation

above transforms into
∆f

T γ̄ + d
γ̄

(
L
2 + c0

)
C0
T ν = ε2p. As ν ≥ 1, T = O

(
∆fd

γ̄ε2p

)
.

2.4 Ergodicity property of SGLD

The argument of ergodicity comprises of two parts: recurrence and reachability. The LD

term in the optimization scheme, due to its random-walk nature, is the key for the reachability

argument. In this section we follow the framework of [CDT19] while giving new specific proofs.

2.4.1 Recurrence

We first show that with Langevin dynamics, the iteration process will visit sublevel sets of

interest, for instance the collection of compact neighborhoods of all local minimums, infinitely many

times. Lemma 13 is the first pillar to establish the ergodicity result.

In its proof, we first give a more explicit characterization of function value decrease between

two successive SGLD-VR updates, as Lyapunov function Rt defined in lemma 19 involves sequences

βt and ct whose analytical expression is hard to work with. Next, we construct a supermartingale

involving the objective function value and iteration count. Through the introduction of a stop-

ping time sequence which records the time of the iteration visiting targeted sublevel sets, one can

establish the expectation of any entry in this stopping time sequence, thus proving the lemma.

Lemma 21 (Recurrence, repeat of lemma 13). Let n0 be the index such that ηn0 ≤ δ, and nk be

the sequence of iteration index nk+1 = mins{s : s > nk, ηnk:s ≥ δ}.

Under the regularization conditions in Assumption 5 and under Assumption 4, there exists a

constant C1 such that α = 1−2 exp(−(1−C1)µδ), B = 2(2η0L3

Be
f(x0)+

ρ2
0Ld
2η0

) and K =
ln
f(xn0)

δB
(1−C1)µδ , with

the stopping time sequence {τk} defined as τ0 = K and τk+1 = min{t : t ≥ τk + 1, f(xnt) ≤ 2δB},

E [τj] ≤
4

α
+K + j

(
1

2αδ
+ 1

)
(2.18)

41

Remark As we have assumed that f ≥ 0 which caters for the non-negativity property of

the empirical risk, it is desirable that f(xnt) goes to 0 as the iteration proceeds. Thus, the choice

of δ for analytical purposes would be δ ∝ ε̂

B
for some ε̂-target level one deems appropriate.

Proof. Recall from proof in FSP, conditioned on Ft−1 and f(x̃) < f(x0), we have

E [f(xt+1)]

≤ f(xt)− ηt‖∇t‖2 + E
η2
tL

2
‖∇̃t‖2 +

ρ2
tL

2
E ‖εt‖2

(2.12)

≤ f(xt)− ηt‖∇t‖2 +
η2
tL

2
(2‖∇t‖2 + 2

L2

Be
‖xt − x̃‖2) +

ρ2
tLd

2

= f(xt)− (ηt − η2
tL)‖∇t‖2 +

η2
tL

3

Be
‖xt − x̃‖2 +

ρ2
tL

2
E ‖εt‖2

(2.7)

≤ f(xt)− (ηt − η2
tL)‖∇t‖2 +

2η2
tL

3

Be

(
µ2(f(xt) + f(x0)) + 2ψ2

)
+
ρ2
tLd

2

= (1 +
2η2
tL

3µ2

Be
)f(xt)− (ηt − η2

tL)‖∇t‖2 +
2η2
tL

3

Be

(
µ2f(x0) + 2ψ2

)
+
ρ2
tLd

2
(2.6)

≤ (1 +
2η2
tL

3µ2

Be
)f(xt)− (ηt − η2

tL)
(
µ1f(xt) + ψ1

)
+

2η2
tL

3

Be

(
µ2f(x0) + 2ψ2

)
+
ρ2
tLd

2

=

(
1− µ1ηt + η2

t (
2L3µ2

Be
+ µ1L)

)
f(xt)− (ηt − η2

tL)ψ1 +
2η2
tL

3

Be

(
µ2f(x0) + 2ψ2

)
+
ρ2
tLd

2

≤ exp (−(1− C1)µ1ηt) f(xt) +
2η2
tL

3

Be

(
µ2f(x0) + 2ψ2

)
+
ρ2
tLd

2
(2.19)

Here C1 is a positive constant such that η0(2L3µ2

µ1Be
+ L) < C1 < 1 for small enough η0.

We introduce index partition to characterize the function value decrease. Let n0 be the index

such that ηn0 ≤ δ, and nk be the sequence of iteration index nk+1 = mins{s : s > nk, ηnk:s ≥ δ}.

Then ηnk:nk+1
≤ 2δ.

Before the proof proceeds, we recall the setting of ηt and ρt: let ν ≥ 1,

ηt =
η0

tν
and ρt =

ρ0

tν/2

42

Thus ρt = ρ0

√
ηt
η0

. Iterating (2.19) m times, we have

E f(xt+m) ≤ exp (−(1− C1)µ1ηt:t+m−1) f(xt) +

t+m−1∑
i=t

exp (−(1− C1)µ1ηi+1:t+m−1) ηi

(
2ηiL

3

Be

(
µ2f(x0) + 2ψ2

)
+
ρ2

0Ld

2η0

)

≤ exp (−(1− C1)µ1ηt:t+m−1) f(xt) +
t+m−1∑
i=t

ηi

(
2ηiL

3

Be

(
µ2f(x0) + 2ψ2

)
+
ρ2

0Ld

2η0

)
≤ exp (−(1− C1)µ1ηt:t+m−1) f(xt) + ηt:t+m−1

(
2ηtL

3

Be

(
µ2f(x0) + 2ψ2

)
+
ρ2

0Ld

2η0

)
(2.20)

Setting t = nk−1 and m = nk − nk−1, inequality (2.20) takes the form

E f(xnk)

≤ exp
(
−(1− C1)µ1ηnk−1:nk−1

)
f(xnk−1

) + ηnk−1:nk−1

(
2ηnk−1

L3

Be

(
µ2f(x0) + 2ψ2

)
+
ρ2

0Ld

2η0

)
≤ exp (−(1− C1)µ1δ) f(xnk−1

) + ηnk−1:nk−1

(
2ηnk−1

L3

Be

(
µ2f(x0) + 2ψ2

)
+
ρ2

0Ld

2η0

)
(2.21)

≤ exp (−(1− C1)kµ1δ) f(xn0) + δ 2

(
2η0L

3

Be

(
µ2f(x0) + 2ψ2

)
+
ρ2

0Ld

2η0

)
︸ ︷︷ ︸

:=B

. (2.22)

Consider a function value threshold M := 2δB. From (2.22), it follows that E f(xnk) ≤ M

when

k ≥
ln

f(xn0)
δB

(1− C1)µ1δ
:= K

Now we show that the expected time for the function value to decrease to below this threshold

M is upper bounded by a finite number, thus justifying the recurrence of the iteration process to a

compact sub-level set. To better exploit the indices partition {nk} of the iteration sequence, define

f(xnk) := Vk, and τ = min{k : k ≥ K, f(xnk) ≤M}. We claim that

Vτ∧k + αδB · (τ ∧ k)

is a supermartingale with α = 1− 2 exp (−(1− C1)µ1δ), i.e.

E [Vτ∧(k+1) + αδB(τ ∧ (k + 1))|Vτ∧k] ≤ Vτ∧k + αδB(τ ∧ k) (2.23)

43

When τ ≤ k, (2.23) holds trivially. When τ ≥ k + 1, then Vk+1 > M . The relation (2.23)

to show in this case takes the form αδB ≤ Vk − E [Vk+1|Vk]. To let this happen, taking (2.22) into

consideration, a sufficient condition is E [Vk+1|Vk] ≤ exp(−(1 − C1)µ1δ)Vk + δB ≤ Vk − αδB, i.e.

(1 + α)δB ≤ (1− exp(−(1− C1)µ1δ))Vk. Considering that τ > k + 1 implies Vk > M , then the

previous sufficient condition to show can be further strengthened to (1 + α)δB ≤ (1 − exp(−(1 −

C1)µ1δ)M , which is catered for per definition of α.

To show that a compact sub-level set is going to be visited by the iteration sequence for

infinitely many times, we introduce the stopping time sequence {τk} where τ0 = K and τk+1 =

min{t : t ≥ τk + 1, f(xnt) ≤ M}. Per the same argument as in previous paragraph, E
[
Vτk+1

+

αδBτk+1

∣∣τk] ≤ Vτk+1 + αδB(τk + 1), which gives

αδB E [τk+1 − τk − 1|τk] ≤ Vτk+1 − E [Vτk+1
|τk]

Taking total expectation, and summing over all k from 0 to j with τ0 = K, we have

αδB (E [τj]−K − j) ≤
j∑

k=0

E [Vτk+1 − Vτk+1
] (2.24)

By (2.19), E [Vτk+1] ≤ exp (−(1− C1)µ1ητk)Vτk + B
2 ≤ Vτk + B

2 , thus

αδB (E [τj]−K − j) ≤ E [VK − Vτj] + j
B

2
≤ 2M + j

B

2

i.e.

E [τj] ≤
4

α
+K + j(

1

2αδ
+ 1)

2.4.2 Reachability

We show that when the SGLD iteration sequence starts from a recurrent compact set, there

is a positive possibility for the sequence to visit every nearby first-order stationary points. The

following Lemma 22 is stated as a fact, whose proof is straightforward computation, and will be

needed for bounding the variance of the variance-reduced gradient estimator later in this section.

44

Lemma 22 (Variance of subset selection). Consider a dataset {ai}Ni=1 with mean

ā =
1

N

N∑
i=1

ai.

Select b elements uniformly (1 ≤ b ≤ N) out of this dataset, and denote the index set of these

selected elements as I. The subsampled mean, which is a random variable, is

ξ =
1

b

∑
i∈I

ai.

The variance of ξ is

E I‖ξ − ā‖2 = E I(ξ2 − 2〈ξ, ā〉+ ā2) = E Iξ2 − ā2

=
N − b
N2b

Var[a] =
N − b

(N − 1)b

(
1

N

N∑
i=1

‖ai − ā‖2
)

(2.25)

Lemma 23 will be used to show that inside a stepsize batch, the reachability property will not

be hindered by the gradient descent part in the iteration, thus allowing the Gaussian noise terms

to give the desired property.

Lemma 23. For any sequence ak > 0 such that there is a constant ν and
∑n

j=1 aj ≤ 2ν, let Fz

denote the σ-algebra generated by z1, · · · , zn. Suppose ξk is a sequence of random vectors such that

E (ξk | Fz) = 0 E (‖ξk‖2 | Fz) ≤ C2

Let yk =
∑k

j=1 ajξj, then

Pr(‖yk‖ ≤ 4ν
√
C2) ≥ 1

2
(2.26)

Proof. In the proof for this lemma, all expectations are conditioned on Fz. With Jensen’s inequality,

(E ‖ξk‖)2 ≤ E (‖ξk‖2) ≤ C2. By Markov’s inequality,

Pr(‖yk‖ ≥ 4ν
√
C2) ≤ E ‖yk‖

4ν
√
C2

=
E ‖
∑k

j=1 ajξj‖
4ν
√
C2

≤
E
∑k

j=1 aj‖ξj‖
4ν
√
C2

≤ 1

2

45

Lemma 24 is the core lemma to establish ergodicity result for the LD optimization scheme.

The core idea behind its proof is to leverage the exploratory potential of a radial Brownian motion

process to show that there is a non-trivial probability for the Gaussian noise accumulation in the

LD scheme to visit a pre-designated point in space.

Lemma 24 (Ergodicity due to Brownian motion). Given any sequence ak > 0, let zk =
∑k

i=1 ρ0
√
aiεi

where εi ∼ N (0, Id), for any target vector z? and distance r, there exists a non-negative function

p1 such that

Pr(‖zn − z?‖ ≤ r, ‖zk‖ ≤ ‖z?‖+ r ∀k = 1, · · · , n) ≥ p1(r, ρ0, tn, z
?)

such that p1(0, ρ0, tn, z
?) = p1(r, 0, tn, z

?) = 0.

Proof. We first give lower bounds to factors Pr(‖zn−z?‖ ≤ r) and Pr(‖zk‖ ≤ ‖z‖+r ∀k = 1, · · · , n)

respectively, and then conclude the proof with Pr(‖zn − z?‖ ≤ r, ‖zk‖ ≤ ‖z‖+ r ∀k = 1, · · · , n) ≥

Pr(‖zn − z?‖ ≤ r) ·Pr(‖zk‖ ≤ ‖z‖+ r ∀k = 1, · · · , n).

For Pr(‖zn − z?‖2 ≤ r), ‖zn − z?‖2 ≤ ‖zn − z?‖1 =
∑d

dim=1 |(zn)dim − z?dim|, therefore

Pr(‖zn − z?‖2 ≤ r) ≥ Pr(|(zn)dim − z?dim| ≤
r
d ∀dim ∈ [d]) =

∏d
dim=1 Pr(|(zn)dim − z?dim| ≤

r
d). Notice that (zn)dim has the distribution of the Brownian motion Btn where tk = ρ2

0

∑k
i=1 ai,

k = 1, 2, · · · , n. By [KT75], Pr(|(zn)dim − z?dim| ≤
r

d
) =

∫ z?dim+ r
d

max{z?dim−
r
d
,0}
ptn(z?dim, y) dy, where

pt(x, y) =
√

2
πt exp(−x2+y2

2t) cosh(xyt). Hence,

Pr(‖zn − z?‖2 ≤ r) ≥

(
min
dim

∫ z?dim+ r
d

max{z?dim−
r
d
,0}
ptn(z?dim, y) dy

)d
(2.27)

For Pr(‖zk‖ ≤ ‖z?‖+ r, ∀k ∈ [n]), we have the following lower bound:

Pr(‖zk‖ ≤ ‖z?‖+ r, ∀k ∈ [n]) ≥ Pr

(
max
k
|(zk)dim| ≤

‖z?‖+ r√
d

, ∀dim ∈ [d]

)

= Pr

max
k
| (zk)1︸ ︷︷ ︸

1D B.M.

| ≤ ‖z?‖+ r√
d

d

=

(
1−Pr

(
max
k
|(zk)1| ≥

‖z?‖+ r√
d

))d

46

Now notice Pr(maxk |(zk)1| ≥ ‖z?‖+r√
d

) = Pr

(
maxk(zk)1 >

‖z?‖+r√
d

or mink(zk)1 < −‖z
?‖+r√
d

)
≤

Pr
(

maxk(zk)1 >
‖z?‖+r√

d

)
+ Pr

(
mink(zk)1 < −‖z

?‖+r√
d

)
= 2Pr

(
maxk(zk)1 >

‖z?‖+r√
d

)
. Then, by the

reflection principle of Brownian motion,

Pr

(
max
k

(zk)1 >
‖z?‖+ r√

d

)
= 2Pr

(
(zn)1 ≥

‖z?‖+ r√
d

)
Therefore,

Pr(‖zk‖ ≤ ‖z?‖+ r, ∀k ∈ [n]) ≥

1− 4Pr

 (zn)1︸ ︷︷ ︸
∼N (0,tn)

≥ ‖z
?‖+ r√
d

d

=

(
1− 4Pr

(
(zn)1√
tn
≥ ‖z

?‖+ r√
dtn

))d
=

(
1− 2Pr

(
(zn)1√
tn
≥ ‖z

?‖+ r√
dtn

)
− 2Pr

(
(zn)1√
tn
≤ −‖z

?‖+ r√
dtn

))d
=

(
1− 2

(
1−Pr

(
−‖z

?‖+ r√
dtn

≤ (zn)1√
tn
≤ ‖z

?‖+ r√
dtn

)))d

=

2

∫ ‖z?‖+r√
dtn

− ‖z
?‖+r√
dtn

exp(−x2/2)√
2π

dx− 1

d

≥
(

4
‖z?‖+ r√

2πdtn
exp

(
−1

2

(‖z?‖+ r)2

dtn

)
− 1

)d
(2.28)

Let p1(r, ρ0, tn, z
?) be the product of two lower bounds (2.27) and (2.28) above, recall that

tn = ρ2
0

∑n
i=1 ai, we define p1(r, ρ0, tn, z

?) as the following,

p1(r, ρ0, tn, z
?) :=

(
min
dim

∫ z?dim+ r
d

max{z?dim−
r
d
,0}
ptn(z?dim, y) dy

)d
·
(

4
‖z?‖+ r√

2πdtn
exp

(
−1

2

(‖z?‖+ r)2

dtn

)
− 1

)d
(2.29)

where ptn(x, y) =
√

2
πt exp(−x2+y2

2tn
) cosh(xytn).

To make the dependence of the first factor in p1 on parameters more explicit, for some

47

ξ ∈ (max{z?dim −
r
d , 0}, z

?
dim + r

d),∫ z?dim+ r
d

max{z?dim−
r
d
,0}
ptn(z?dim, y) dy ≥

√
2

πtn
exp(−

(z?dim)2 + ξ2

2tn
) cosh(

z?dimξ

tn
)
r

d

=

√
2

πtn

(
exp(−

(z?dim − ξ)2

2tn
) + exp(−

(z?dim + ξ)2

2tn
)

)
r

2d

≥
√

2

πtn
2

√
exp(−

(z?dim − ξ)2

2tn
−

(z?dim + ξ)2

2tn
)
r

2d

=

√
2

πtn
exp(−

(z?dim)2 + ξ2

2tn
)
r

d

≥
√

2

πtn
exp(−

(z?dim)2 + (z?dim + r
d)2

2tn
)
r

d

We thus redefine p1 as

p1(r, ρ0, tn, z
?) :=(

min
dim

√
2

πtn
exp(−

(z?dim)2 + (z?dim + r
d)2

2tn
)
r

d

)d
·
(

4
‖z?‖+ r√

2πdtn
exp

(
−1

2

(‖z?‖+ r)2

dtn

)
− 1

)d
(2.30)

then we have the lemma 24.

We leverage lemma 24 to show the reachability of SGLD-VR scheme, which is the second

pillar to establish the ergodicity result. The core idea behind the proof of lemma 25 is to balance

the influence on the iterates from gradient descent and Gaussian noise accumulation respectively,

and show that the exploratory potential behind the Gaussian noise accumulation will fulfill the

desired property of reachability.

Lemma 25 (Reachability). Assume the same stepsize batch setting as in lemma 13 and the gradient

Lipschitz condition in assumption 4, with respect to an arbitrary target point s, suppose that DF =

1
2ρ0dL, for any ε > 0,

Pr
(
‖xni+1 − s‖ ≤ ε̃

)
> p2(ε̃, ρ0, tni+1 , s) (2.31)

where ε̃ = ε+ 2δ
√
C2 + δDF , and p2(ε, ρ0, tn, s) = 1

2p1(ε, ρ0, tn, s)

48

Proof. Denote xo = xni and d = s− xo. Recall the SGLD scheme in a batch goes as

xk+1 = xk − ηk∇̃k + ρkεk = xo −
k∑
l=0

ηl∇̃l + ρlεl

= xo −
k∑
l=0

ηl+o

(
∇f(xl+o) +

(1

B
∇fIl+o(xl+o)−∇f(xl)

)
−
(1

B
∇fIl+o(x̃)−∇f(x̃)

))

+

k∑
l=0

ρl+oεl+o

= xo −
k∑
l=0

ηl+o∇f(xl+o)− yk + zk (2.32)

where we define yk :=
∑k

l=0 ηl
(

1
B∇fIl(xl)−∇f(xl)

)
−ηl
(

1
B∇fIl(x̃)−∇f(x̃)

)
and zk :=

∑k
l=0 ρ0

√
ηl
η0
εl.

Note that x̃ can change as moving from stepsize batch i to i+ 1 may involve different SVRG batch

reference points.

Let m = ni+1 − ni. Per law of total probability, Denote the event Ei+1 = {‖zni+1−1 − d‖ ≤

ε, ‖zk‖ ≤ ‖d‖+ ε ∀k ∈ [m] + ni}, then

Pr
(
‖xni+1 − s‖ ≤ ε̃

)
≥ Pr

(
‖xni+1 − s‖ ≤ ε̃

∣∣ Ei+1

)
·Pr (Ei+1) (2.33)

where Pr (Ei+1) is lowered bounded by p1 from lemma 24. What is left in this proof is to bound

the first factor in the above equation.

Now we bound the gradient terms and gradient difference terms in (2.32), thus computing the

probability Pr
(
‖xni+1 − s‖ ≤ ε̃

∣∣ Ei+1

)
. Recall that the Langevin dynamics has the corresponding

continuous form dx(t) = −η(t)∇f
(
x(t)

)
dt + ρt dW(t) where W(t) is a d-dimensional Brownian

motion.

Consider the target function v(t,xt) = f(xt). Per Feynman-Kac formula [Pha09], the target

function f(xt) satisfies the linear parabolic PDE

−‖∇f(xt)‖2 +
1

2
ρ2
tTr[∇2f(xt)] = 0

Owing to Lipschitz assumption about gradient, Tr[∇2f] ≤ dL, which gives

‖∇f‖2 ≤ 1

2
ρtdL ≤

1

2
ρ0dL := DF (2.34)

49

which gives the boundedness of the gradient in the iteration process. Furthermore, by assumption

5, {xt} is also bounded within a stepsize batch.

As the gradient is bounded inside a stepsize batch {ηni : ηni+1−1}, by lemma 22, each sum-

mation term in yk has the following variance upper bound

n−B
(n− 1)B

1

n

n∑
i=1

‖∇fi(xl)−∇f(xl)‖2 ≤
n−B

(n− 1)B

1

n
max
l∈[m]+o

n∑
i=1

‖∇fi(xl)−∇f(xl)‖2 := C2

Unbiasedness of SVRG gradient estimator makes lemma 23 applicable to yk.

Pr(‖xni+1 − s‖ ≤ ε̃ | Ei+1) = Pr(‖xo −
ni+1−1∑
l=0

ηl+o∇f(xl+o)− yni+1−1 + zni+1−1 − s‖ ≤ ε̃ | Ei+1)

= Pr(‖ −
ni+1−1∑
l=0

ηl+o∇f(xl+o)− yni+1−1 + zni+1−1 − d‖ ≤ ε̃ | Ei+1)

≥ Pr(‖
ni+1−1∑
l=0

ηl+o∇f(xl+o)‖ ≤ δDF , ‖yni+1−1‖ ≤ 4δC2, | Ei+1)

≥ Pr(‖yni+1−1‖ ≤ 4δC2, | Ei+1) ≥ 1

2

where the last inequality is due to the fact that the gradient of the objective f is bounded by DF .

Now we are ready to prove the ergodicity result for the SGLD-VR scheme with the recurrence

and reachability results above.

Theorem 26 (Repeat of theorem 14). Under regularization condition 5 and gradient assumption

4, with the same parameter setting as in lemma 13, for any ε̃ > 0, p > 0 and a point s, there is a

T = O

 1

pµ1

(
4η0L3 µ2f(x0)+2ψ2

Be
+

ρ2
0
η0
Ld
)
1 + ln f(x0) +

(d‖s‖+ ε̃)d(
(4√

2π
− 1)e−1/2ε̃

)d
 (2.35)

such that

Pr(‖xt − s‖ ≤ ε̃ for some t < T) ≥ 1− p (2.36)

Proof. Recall the definition of the stopping time sequence: τ0 = K, τt+1 = min{t : t ≥ τk +

1, f(xnt) ≤ M}. Further define τ∗ = min t : t > 0, ‖xnt − s‖ ≤ ε. We show that Pr(τ∗ ≥ T) ≤ p̃

50

with a proper choice of T . For any J ,

Pr(τ∗ ≥ T) = Pr(τ∗ ≥ T, τJ > T) + Pr(τ∗ ≥ T, τJ < T)

≤ Pr(τJ > T) + Pr(‖xnτk+1 − s‖ > ε, τJ ≤ T, ∀k ∈ [J])

≤ Pr(τJ > T) + Pr(‖xnτk+1 − s‖ > ε, ∀k ∈ [J])

Lemma 13 gives that E τJ ≤ 4
α +K + J(1

2αδ + 1), thus by Markov inequality

Pr(τJ > T) ≤ E [τJ]

T
≤

4
α +K + J(1

2αδ + 1)

T
(2.37)

To ensure the last bound is below the pre-specified threshold
1

2
p, we need to take

T =

[
4
α +K + J(1

2αδ + 1)
p
2

]
+ 1 (2.38)

By lemma 25, there is a p2 > 0 such that

Pr(‖xnτk+1 − s‖ > ε̃, ∀k ∈ [J]) =

J∏
k=1

Pr(‖xnτk+1 − s‖ > ε̃) ≤ (1− p2)J
let
≤ p

2
(2.39)

To ensure the upper bound to be less than p
2 , a sufficient condition is that

J >
ln p

2

ln(1− p2(ε̃, ρ0, tnτJ+1))
>

ln 2
p

p2(ε̃, ρ0, tnτJ+1)
.

We consider the dependence of T on the error tolerance ε̃, dimension d and initial perturbation

parameter ρ0. Recall the definition of p2 and we will upper bound it to rid of the dependence on

tn:

p2(ε̃, ρ0, tn, s)

=
1

2

(
min
dim

√
2

πtn
exp(−

(sdim)2 + (sdim + ε̃
d)2

2tn
)
ε̃

d

)d
·
(

4
‖s‖+ ε̃√

2πdtn
exp

(
−1

2

(‖s‖+ ε̃)2

dtn

)
− 1

)d

≤ 1

2

min
dim

√√√√ 2

π
(

(sdim)2 + (sdim + ε̃
d)2
) exp(−1

2
)
ε̃

d

d

·
(

4
1√
2π
− 1

)d
Therefore, a sufficient condition for (2.39) to hold is

J >

(
ln

2

p

)
max
dim

2(√
2

π((sdim)2+(sdim+ ε̃
d

)2)
exp(−1

2) ε̃d

)d
·
(

4 1√
2π
− 1
)d (2.40)

51

Combining (2.38) and (2.40), the total amount of time needed for (2.36) to hold is

T =

[
4
α +K + J(1

2αδ + 1)
p
2

]
+ 1

Recall from lemma 13 parameter settings B = 2
(

2η0L3

Be

(
µ2f(x0) + 2ψ2

)
+

ρ2
0Ld
2η0

)
, α = 1 −

2 exp(−(1− C1)µ1δ) and K =
ln
f(xn0)

δB
(1−C1)µ1δ

. In the light of the remark post the lemma 13, δ is to be

set as δ ∝ B−1 for minimizing the empirical risk purposes, hence

T = O

 1

pµ1

(
4η0L3 µ2f(x0)+2ψ2

Be
+

ρ2
0
η0
Ld
)
1 + ln f(x0) +

(d‖s‖+ ε̃)d(
(4√

2π
− 1)e−1/2ε̃

)d
 (2.41)

2.5 Second-order stationary point convergence property

By far in the literature there are two common ways to argue the convergence to second-order

stationary points (SSP)

• show that f(xT)−f(x0) < ∆f with probabilistic guarantee to ensure the continual function

value decrease at saddle point [JGN+17]

• show that ‖xT − x?‖ decreases in the probabilistic sense as T increases [KLY18].

The time complexity of this approach has the exponential dependency on the inverse of the

error tolerance. So in this work we resort to the previous approach.

The argument to show sufficient function value decrease from a FSP uses two iterate sequences

to demonstrate the continual function value decrease at saddle point. Now that the noise is injected

at every iteration, the geometric intuition that the trapping region is thin plus the probabilistic

argument should be able to give a similar proof.

In the LD setting we exploit the property of Brownian motion to show the escape from saddle

point, i.e. to characterize the perturbed iterate has high probability in the direction of descent,

(xt − xfsp)ᵀ∇2f(xfsp)(xt − xfsp) ≤ −ζ

52

Proof of Thm. 17. Step 1: Assume the stepsize decay parameter ν ∈ [1, 2] for simplicity. We

show that ∆i :=
∑ni+1−1

l=ni

√
ηiεi will lead to saddle point escape, i.e. ∆ᵀ

i∇2f(xfsp)∆i ≤ −ζ. Specifi-

cally, show that ∆i has projection on the direction of λmin more than ζ with high probability, which

exploits the property of Brownian motion and the idea that the trapping region is thin when faced

with LD [HB20a].

At a fixed first-order stationary point xfsp, due to the spatial homogeneity of Brownian

motion, w.l.o.g. assume that e1 is the unit eigenvector corresponding to the smallest eigen-

value of ∇2f(xfsp). To let ∆ᵀ
i∇2f(xfsp)∆i ≤ −ζ, a sufficient condition is λmin(∇2f(xfsp))(∆i)

2
1 +

L(‖∆i‖2 − (∆i)
2
1) ≤ −ζ. Assume for now that ‖∆i‖2 ≤ r2, then this condition can be phrased as

λmin(∇2f(xfsp))(∆i)
2
1 + L(r2 − (∆i)

2
1) ≤ −q(∆i)

2
1 + L(r2 − (∆i)

2
1) ≤ −ζ, i.e.

(∆i)
2
1 ≥

ζ + Lr2

L+ q
:= Q (2.42)

Now we compute the probability for (2.42) to fail within the time Ti :=
∑ni+1−1

l=ni

√
ηl for a standard

1D Brownian motion. Define τQ = min{t |
(
(∆i)1(t)

)2 ≥ Q}. Then

Pr((2.42) fails to hold within time Ti) = Pr(τQ > Ti) ≤
E τQ
Ti

=
Q

dTi
.

Here we point out that the failure probability for (2.42) is low due to the large denominator. Ti =∑ni+1−1
l=ni

√
ηl ≤

√
(ni+1 − ni)

∑ni+1−1
l=ni

ηl ≈
√

(ni+1 − ni)δ. Note that ni+1 − ni = O (ni exp(δ)),

then ni = O(exp(iδ)), thus

Ti = exp(O(iδ)) (2.43)

(
Remark: consider the case ν = 1 as an example for the preceding claim. As

∑ni+1−1
l=ni

ηl ≈ δ

and n0 = 1, ni ≈ exp(iδ) and ni+1 = ni exp(δ). The corresponding time in continuous do-

main Ti =
∑ni+1−1

l=ni

√
ηl ≈

∫ ni+1−1
ni

√
η0

1√
t

dt = 2
√
η0(
√
ni+1 − 1 − √ni) ≈ 2

√
η0(
√
ni+1 −

√
ni) =

2
√
η0ni(

√
exp(δ)− 1) = 2

√
η0 exp(iδ)(

√
exp(δ)− 1).

)
Step 2: We show that when x ∈ U(xfsp, r) where ‖∆j‖ < r for j = ni, ni + 1, · · · , ni+1− 1,

‖∇f(x)‖ < ε, thus the first order expansion does not contribute to function value change. Due to

53

gradient Lipschitz, set

r = max{ ε
L
,

√
3

Lq
ε}.

While projection onto e1 builds up, we compute the probability that the iteration is still

constrained within the ε-neighborhood of xfsp.

Pr(∆2
i − (∆i)

2
1 ≤ r2 −Q when t ≤ Ti) = Pr(

d∑
i=2

x̂2
i ≤ r2 −Q when t ≤ Ti)

=

∫ √r2−Q

0
(Ti)

− d−1
2

1

Γ(d−2
2)

exp(− y2

2Ti
)yd−2 dy

≈ (Ti)
− d−1

2
1

Γ(d−2
2)

∫ √r2−Q

0
yd−2 dy

= (Ti)
− d−1

2
1

Γ(d−2
2)

(r2 −Q)
d−1

2 := Pi (2.44)

As Ti increases exponentially w.r.t. index i, Pi decreases accordingly. I.e. , within a stepsize

batch, the probability for the iteration to remain bounded within the vicinity of a FSP is decreasing.

Hence, the saddle point escape process can be thought of as a binomial trial with decreasing success

probability, and the expected time for the iteration process to escape all saddle points is at least

proportional to Γ(d−2
2).

Step 3: Show that the update x′ = x + ∆i will lead to function value decrease, thus the

SGLD algorithm has to terminate, thus converging to SSP.

Denote the eventAi = {∆ᵀ
i∇2f(xfspi)∆i ≤ −ζ and ‖∆i‖ ≤ r}. From steps 1 and 2, Pr(Ai) ≥

(1− Q
dTi

)Pi. We show that under the assumption that event Ai happens, function value decrease is

54

guaranteed. Note that within a minibatch,

E ‖xt − x̃‖2 = E

∥∥∥∥∥
Be−1∑
u=o

xu+1 − xu

∥∥∥∥∥
2

= E

∥∥∥∥∥
Be−1∑
u=o

ηu
(
∇fiu(xu+1)−∇fiu(x̃) +∇f(x̃)

)
− ρuεu

∥∥∥∥∥
2

≤ 2E ‖
Be−1∑
u=o

ηu
(
∇fiu(xu+1)−∇fiu(x̃) +∇f(x̃)

)
‖2 + 2E ‖

Be−1∑
u=o

ρuεu‖2

= 2E ‖
Be−1∑
u=o

ηu
(
∇fiu(xu+1)−∇fiu(x̃) +∇f(x̃)

)
‖2 + 2E ‖

Be−1∑
u=o

ρuεu‖2

≤ 2E
Be−1∑
u=o

η2
u

(
‖∇fiu(xu+1)‖2 + ‖∇f(x̃)−∇fiu(x̃)‖2

)
+ 2d

Be−1∑
u=o

ρ2
u

(2.25)

≤ 2DF

Be−1∑
u=o

η2
u(1 +

2

Be
) + 2d

Be−1∑
u=o

ρ2
u (2.45)

For function value decrease in the descent process, we have

f(xt)− E f(xt+1) ≥ E
[
〈∇f(xt),xt − xt+1〉 −

L

2
‖xt − xt+1‖2

]
= E

[
〈∇f(xt), ηk∇̃k〉 −

L

2
‖ηk∇̃k − ρkεk‖2

]
= E

[
ηt‖∇f(xt)‖2 −

L

2
(η2
t ‖∇̃t‖2 + ρ2

t ‖εt‖2)

]
≥ E

[
ηt‖∇f(xt)‖2 −

L

2

(
η2
t

(
2[‖∇f(xt)‖2] + 2

L2

Be
[‖xt − x̃‖2]

)
+ ρ2

t ‖εt‖2
)]

(2.45)

≥ (ηt − η2
tL)‖∇f(xt)‖2 −

L3

Be
η2
t (3DF

Be−1∑
u=o

η2
u + 2d

Be−1∑
u=o

ρ2
u)− L

2
ρ2
td︸ ︷︷ ︸

R

= O
(
ε2
)

Here notice that
∑Be−1

u=o η2
u = O(η0ν

−1) and
∑Be−1

u=o ρ2
u = O(ρ0ν

−1), and set Be = max{L
3Dfd

ε2
, 1}

and δ = O(r) (which consequently gives the order of η2
t), then R = O(ε2).

55

When a saddle point is encountered, within a minibatch with probability (1− Q
dTi

)Pi, we have

f(xo)− f(xo + ∆i) = f(xo)− f(xfsp) + f(xfsp)− f(xfsp + ∆i) + f(xfsp + ∆i)− f(x0 + ∆i)

= f(xfsp)−
(
f(xfsp) +

1

2
∆ᵀ
i∇

2f(xfsp)∆i +
L2

6
‖∆i‖3

)
+ f(xo)− f(xfsp)

+ f(xfsp + ∆i)− f(x0 + ∆i)

≥ f(xo)− f(xfsp) + f(xfsp + ∆i)− f(x0 + ∆i)−
1

2
∆ᵀ
i∇

2f(xfsp)∆i +
L2

6
‖∆i‖3

≥ f(xo)− f(xfsp) + f(xfsp + ∆i)− f(x0 + ∆i) +
ζ

2
− L2

6
r3

≥ ζ

2
− L2

6
r3 − 2Lr2 = O

(
ε2
)

Set ζ = 5ε2

2L , the time complexity to attain sufficient function value decrease before reaching a SSP

is O
(
f(x0)− f?

ε2

)
.

Step 4: Now we give the description of τSSP to finish the proof. In the light of set-

ting ζ = 5
2Lε

2, consequently r2 − Q = ε2

2Lq(L+q) . From (2.44) together with (2.43), the prob-

ability for constrained perturbation accumulation within the stepsize batch i is given as Pi =

O
(

εd−1

Γ(d−2
2

)Ld−1qd−1

)
· 1

exp(O(iδd)) .

Assume the iteration sequence escapes saddle points in each stepsize batch where a saddle

point is encountered, then with probability O
(

εd−1

Γ(d−2
2

)Ld−1qd−1

)
· 1

exp(O(δd)) , the SGLD converges to

a local minimum within time

τSSP = O
(
f(x0)− f?

ε2

)
+ exp (O(εd)) , (2.46)

where the first term accounts for the step needed for sufficient function value decrease, and the

second term accounts for the time needed to escape saddle points as computed in equation (2.43).

Chapter 3

Spectral Estimation from Simulations via Sketching

Large-scale computer simulations are a common tool in many disciplines like astrophysics,

cosmology, fluid dynamics, computational chemistry, meteorology and oceanography, to name just

a few. In many of these fields, a key goal of the simulation is an estimate of the power spectral

density (or equivalently autocorrelation) of some dynamic or thermodynamic state variable or

derived function.

Computing a full autocorrelation becomes prohibitively expensive for largescale simulations

since it requires storing the entire dataset in memory. The textbook strategy to combat this prob-

lem is to subsample in time, often with clever logarithmic or multi-level spacing strategies [FS02].

Other simple solutions subsample particles or grid points, or both time and particles/points. Unfor-

tunately, these ad hoc methods lack rigorous performance guarantees and can have arbitrarily large

error. This article shows how to leverage results from the new field of randomized linear algebra to

derive subsampling methods that work better in practice and have theoretical guarantees on the

accuracy. These new subsampling methods, known as sketching methods, essentially exploit the

fact that when multiplying by a multivariate Gaussian to do compression there are no worst-case

inputs; in comparison, simple subsampling methods do well on some inputs but catastrophically

bad on other inputs. Section 3.1 gives a toy example of this, and the rest of the paper shows how

this applies to sampling data for spectral estimation.

Throughout the paper, we pay attention to computation and communication costs. In partic-

ular, the sketches are linear operators and can be applied to a data stream, so they can be applied

57

during a simulation with negligible memory overhead and in a reasonable time. Our methods are

also simple to implement. Indeed, a reason that more sophisticated sampling schemes are not used

in practice may be due to the cumbersome book-keeping required for normalizations, but we review

a simple trick to deal with this (Remark 32), and other than sampling, our methods do not require

any “on-the-fly” computation, as the estimates are formed in post-processing.

Background Spectral estimation arises in molecular dynamic (MD) simulations based on

time-dependent density functional theory (TDDFT) [RG84], which is a prominent methodology

for electronic structure calculations. Depending on the original variable (position, velocity, dipole-

moment, etc.), applications of spectral estimation in TDDFT include calculating vibrational or

rotational modes (as used in infrared and Raman spectroscopy) [SR96], optical absorption spec-

tra [YB96], and circular dichroism spectra [VELA+09]. Many of these quantities can be experi-

mentally measured, so one use of the spectrum is to verify that the simulation matches with reality,

or to predict properties of novel materials.

Similarly, temporal autocorrelations may be computed during numerical solutions of partial

differential equations (PDE). For one example, in fluid dynamics, the autocorrelations computed via

direct numerical simulation of the Navier-Stokes equations can be used to validate large-eddy sim-

ulation models [RLBPS11]. Another example is oceanography where modern simulation codes rely

on multi-scale numerical methods that cannot fully resolve the smallest scales, and so use stochas-

tic models to inform the simulation [GM13, GK19]. The stochastic process can be constrained to

conform to a given autocorrelation function.

MD simulations operate on particles, while standard numerical methods for PDE operate on

(possibly unstructured) grids and elements. In both cases, the exact sample time-autocorrelation

function can be computed provided the data (particles or grid points, at all times) is stored. Due

to advances in computing power and algorithm design, it is now feasible to run extremely large

simulations. A consequence of this is that many largescale simulations generate more data than can

be stored. As an example, running the billion-atom Lennard Jones benchmark on the MD LAMMPS

software [Pli95] for the equivalent of 1 ns of simulation time on argon atoms [Rap04] takes 4.9 hours

58

on a 288 node GPU computer from 2012 [LAM12], making it a modest largescale computation.

Storing the 6 coordinates of position and velocity in double precision for the 105 timesteps would

require 4.26 PB, well beyond a typical high-end cluster disk quota of 150 TB. Longer simulations,

or simulations of molecules, only exacerbate the problem. Standard compression methods for

scientific data, like fpzip [LI06] and ZFP [Lin14], improve this by one or two orders of magnitude

at best [SFH+18].

3.1 Sketching

Sketching is used to reduce dimensionality from N dimensions to some m� N . A family of

sketches is a probability distribution on the set of real or complex m×N matrices such that if Ω

is drawn from this family, for any fixed vectors v,w ∈ RN , then ‖Ωv − Ωw‖2 ≈ ‖v − w‖2 with

high probability. Hence the sketch preserves distances, and by the polarisation formula, preserves

inner products as well. The core ideas behind sketching have been in place since the 1980s, and

were well-known in theoretical computer science literature, but the field has expanded in the past

15 years as many applications in scientific computing were developed. In particular, sketching is

often used to efficiently find solutions of large least-square regression problems [CDMI+13, Cla05,

MM13, SW11, WZ13, CW12], and to determine the row and column space of large matrices for

low-rank matrix decomposition [HMT11, DMM08, MD09].

Formally, a probability distribution on m×N matrices is a Johnson-Lindenstrauss Transform

with parameters ε, δ and d if for any fixed set of d vectors {vi}di=1 ⊂ RN , if Ω is drawn from this

distribution, then with probability at least 1− δ it holds that

(1− ε)‖vi − vj‖22 ≤ ‖Ωvi −Ωvj‖22 ≤ (1 + ε)‖vi − vj‖22

for all i, j ∈ {1, . . . , d}. When no confusion arises, it is common to not distinguish between the

random variable and the distribution, and write Ω ∈ JLT(ε, δ, d) to encode the notion. The name

Johnson-Lindenstrauss Transform honours Johnson and Lindenstrauss’ well-known result which

shows that such distributions exist for m = O(ε−2 log(d)) [JL84].

59

Intuition The classic example of a sketch is an appropriately scaled Gaussian matrix with

independent entries. To gain insight, consider the case when Ω ∈ R1×N is a sketch that compresses

v ∈ RN to a single number, and without loss of generality, let ‖v‖2 = 1. All sketches we consider

will be unbiased, meaning EΩTΩ = IN×N where I is the identity matrix. We wish to preserve

norm, so we look at ‖Ωv‖22, or equivalently (Ωv)2 when m = 1. Then any unbiased sketch has

E (Ωv)2 = 1.

Simple subsampling can be written as a sketch by defining Ω =
√
Neᵀi where ei is the ith

canonical basis vector in RN , and i is chosen uniformly from {1, . . . , N}; one can easily show this is

unbiased. If the input v has weight evenly distributed over all coordinates, such that |vj | = N−1/2

for all j = 1, . . . , N , then this is a good sketch, since the variance is Var((Ωv)2) = 0. However, if

the input is v = ek for any fixed k, then an elementary calculation shows that Var((Ωv)2) = N−1,

which in high dimensions is too large to be useful.

In contrast, if we define the sketch Ω as 1×N independent standard normal random variables,

then Ω is also an unbiased sketch, and furthermore Var((Ωv)2) = 2 independent of the fixed vector

v. The Gaussian sketch is not always more efficient than the subsampling sketch, but it is never

much worse, and sometimes it is better by a factor of N .

Types of sketches In this work we consider the following three types of distributions of

sketching matrices Ω (Matlab code available via [Bec19]; some Python implementations are part

of the random projection module of scikit learn):

Gaussian sketch Each entry of Ω is independently drawn from the scaled normal distribution

N (0, 1
m).

Haar sketch Draw Ω̃ as in the Gaussian case and then define the rows of Ω to be the output

of Gram-Schmidt orthogonalisation applied to the rows of Ω̃, scaled by
√

N
m . This is

equivalent to sampling the first m columns of a matrix from the Haar distribution on

orthogonal matrices, and can also be computed via the QR factorisation algorithm with

post-processing [Mez07]. This is essentially the case originally considered by Johnson and

60

Lindenstrauss.

FJLT The Fast Johnson-Lindenstrauss Transformation (FJLT) as is usually implemented [Woo14]

is a structured matrix of the form Ω =
√

N
mPᵀHD where D is a diagonal matrix with

Rademacher random variables on the diagonal (i.e., independent, ±1 with equal probablity),

H is a unitary or orthogonal matrix, and Pᵀ a simple subsampling matrix such that Pᵀv

chooses m of the coordinates from v uniformly at random (with replacement), so that P

consists of m canonical basis vectors. To be useful, each entry of H should be as small as

possible (≈ 1/
√
N), and H should be computationally fast to apply to vector. Standard

choices for H are the (Walsh-)Hadamard, discrete Fourier, and discrete Cosine transforms,

all of which have fast implementations that takeO(N logN) flops to apply to a vector. Since

applying D and Pᵀ take linear and sub-linear time, respectively, the cost of computing Ωv

isO(N logN), better than theO(Nm) cost of the Gaussian and Haar sketches. The original

FJLT proposed in [AC09] is a slight variant that uses a different sparse matrix P.

There are other types of sketches such as the count-sketch [Cor11], leverage-score based

sketches [Mah11], and entry-wise sampling [AM07, AKL13] which can be combined with precondi-

tioning [PAB17]. Some of these sketches are not Johnson-Lindenstrauss transforms but are instead

the related notion of subspace embeddings. See [Woo14, Mah11, MT20] for surveys on sketching

literature.

Guarantees

Table 3.1 summarizes the required compressed dimension size m for the corresponding sketch-

ing matrix to be a JLT(ε, δ, d).

61

Method Compressed dimension m

Gaussian [Woo14] O(ε−2 log(d/δ))

Haar [Ver18] O(ε−2 log(d/δ))

FJLT O
(
ε−2 log

(
d

δ−N− log3(N)

)
log4(N)

)

Table 3.1: Compressed dimension requirement for JLTs.

The result for the FJLT, which holds when H is a Hadamard, discrete Fourier or discrete

Cosine transform, is not explicitly in the literature but follows by combining [KW11, Thm. 3.1] with

[FR13, Thm. 12.31]. The constants hidden in the asymptotic notation are not bad. For example,

for the Gaussian sketch, with d = 103 points (in arbitrary dimension), for failure probability δ ≤ 0.1

and error ε ≤ 1/3, the number of samples required is m ≥ 535.

3.2 Approximating autocorrelation with sketching

Throughout the article, we think of the data as a signal x(t, ϕ) in time t and space ϕ, where

ϕ can encode a grid location or a particle number depending on the type of simulation (for space

indices in dimension greater than one, we flatten the indices into a large one-dimensional list). Let

t have unit spacing ∆T = 1, t ∈ {1, 2, . . . , T}, and let space be indexed by {ϕ1, . . . , ϕN}. We

organize the data into a matrix X ∈ RT×N .

In what follows, we consider classical methods for estimating the autocorrelation. There are

powerful alternative methods, based on parametric models — most notably, autoregressive-moving-

average (ARMA) models [Bro06]. However, these methods excel when T is small, and do not clearly

extend to N > 1, and are not natively suited to on-the-fly calculations during a simulation as they

require significant post-processing and parameter tuning.

Autocorrelation and the Wiener-Khinchin Theorem

For a continuous signal x, the time autocorrelation function of lag τ of signal x is

R(τ) = E ϕ lim
T→∞

1

2T

∫ T

−T
x(t, ϕ)x(t+ τ, ϕ) dt.

62

For the corresponding discretized signal of length T , the (sample) time autocorrelation of lag τ is

defined as

R̂τ [X] =
1

N

1

T − τ

T−τ∑
t=1

N∑
i=1

x(t, ϕi)x(t+ τ, ϕi). (3.1)

As our goal will be to approximate the sample autocorrelation R̂τ , we drop the ̂ notation for

clarity and simply write Rτ .

Remark 27 (Cross-terms). Calculating Eq. 3.1 requires storing N × T parameters. If one instead

computed
∑T−τ

t=1

(∑N
i=1 x(t, ϕi)

)(∑N
i=1 x(t+ τ, ϕi)

)
(with appropriate normalization), then only

O(T) storage is required, but unfortunately this is not equivalent to Eq. 3.1 due to the presence of the

cross-terms. One way to view sketching methods is that the sketching adds in suitable randomness

so that when using the O(T) formula, the cross-terms vanish in expectation.

Letting the shifted, unnormalized (sample) covariance matrix be Σ = XXᵀ, our first obser-

vation is that Rτ is a linear function of Σ, since

(Σ)t,t′ =

N∑
i=1

x(t, ϕi)x(t′, ϕi)

so Rτ is the scaled sum of the τ th diagonal of Σ, and hence we use the notation Rτ [Σ], and also

write R[Σ] = (R0[Σ], R1[Σ], · · · , RT−1[Σ])ᵀ when working with all T possible lags.

The time autocorrelation is often of interest itself, but it can also be used to derive the power

spectral density,

S(ω) = lim
T→∞

E ϕ

∣∣∣∣ 1√
2T

∫ T

−T
x(t, ϕ)e−iωt dt

∣∣∣∣2 .
If x is a wide-sense stationary random process, under certain conditions, the Wiener-Khinchin

Theorem states that the spectral density is the Fourier transform of R(τ), and the discrete power

spectral density can be estimated by the discrete Fourier transform of R.

Thus both autocorrelation and power spectrum can be reduced to the problem of finding an

accurate estimate of Σ. Note that Σ is a T × T matrix and is impractical to store, and is used

only for analysis. Our actual software implementation only needs a factored form Σ = X̂X̂ᵀ for

63

X̂ ∈ RT×m, and works directly with X̂. Furthermore, due to linearity, implementations can exploit

existing autocorrelation software (which typically use the fast Fourier transform to do convolutions

efficiently). Specifically, if the columns of X̂ are v1, . . . ,vm, then Rτ [Σ] = Rτ [
∑m

i=1 viv
ᵀ
i] =∑m

i=1Rτ [viv
ᵀ
i] and Rτ [viv

ᵀ
i] is performed implicitly via an efficient autocorrelation implementation.

In the next section, we will use standard results from the sketching literature to create an

estimator Σ̂ and bound ‖Σ−Σ̂‖F < ε, where ‖ ·‖F denotes the Fröbenius (Hilbert-Schmidt) norm.

To use those results, we first show that R is Lipschitz continuous so that a small ε implies an

accurate autocorrelation (and hence an accurate power spectrum).

Lemma 28. Let Σ and Σ̂ both be symmetric T × T matrices. Then

‖R[Σ̂]−R[Σ]‖1 ≤
√

1 + log T

N
‖Σ− Σ̂‖F (3.2)

‖R[Σ̂]−R[Σ]‖∞ ≤
1

N
‖Σ− Σ̂‖F (3.3)

where ‖R[Σ̂]−R[Σ]‖1 =
∑T−1

τ=0

∣∣Rτ [Σ]−Rτ [Σ̂]
∣∣, and ‖R[Σ̂]−R[Σ]‖∞ = maxτ=0,...,T−1

∣∣Rτ [Σ]−

Rτ [Σ̂]
∣∣.

Proof. Define the difference between true covariance matrix and the estimate as ∆ = Σ− Σ̂. For

the ∞-norm case, using linearity of R,

‖R[∆]‖∞ = max
τ
‖Rτ [∆]‖

=
1

N
max
τ

∣∣∣∣ 1

T − τ

T−τ∑
t=1

∆t,t+τ

∣∣∣∣
≤ 1

N
max
t,t′
|∆t,t′ | ≤

1

N
‖∆‖F

From this, we immediately have the bound ‖R[∆]‖1 ≤ T
N ‖∆‖F , but this is loose, and we

64

show below how to derive a better dependence on T :

∥∥R[Σ]−R[Σ̂]
∥∥

1
=

T−1∑
τ=0

∣∣Rτ [∆]
∣∣

≤ 1

N

T−1∑
τ=0

1

T − τ

T−τ∑
t=1

|∆t,t+τ |

1
≤ 1

N

T−1∑
τ=0

√√√√ 1

T − τ

T−τ∑
t=1

|∆t,t+τ |2

2
≤ 1

N

√√√√T−1∑
τ=0

1

T − τ

√√√√T−1∑
τ=0

T−τ∑
t=1

|∆t,t+τ |2

=
1

N

√√√√ T∑
τ=1

1

τ

√√√√‖∆‖2F − ∑
α∈lower triang.
off-diag elems

∆2
α

≤
√

1 + log T

N
‖∆‖F (3.4)

where 1 is due to Jensen’s inequality, and 2 is due to Cauchy-Schwarz.

3.3 Theoretical guarantees

We give bounds on the error of autocorrelation evaluation due to sketching the rows of X, i.e.,

X̂ᵀ = ΩXᵀ. Each row consists of the data at a given time t, so this can be trivially implemented

in a streaming fashion. The overall compression ratio is γ = m
N , independent of T .

Theorem 29. For any ε > 0, and for a data matrix X ∈ RT×N , compute X̂ = XΩᵀ ∈ RT×m

for Ω ∈ JLT(ε, δ, 2T), and define Σ = XXᵀ and Σ̂ = X̂X̂ᵀ. Then with probability at least

1 − δ, the computed autocorrelation based solely on the data sketch satisfies the following error

characterisations:

‖R[Σ̂]−R[Σ]‖1
‖X‖2F

≤
√

1 + log T

N
ε (3.5)

‖R[Σ̂]−R[Σ]‖∞
‖X‖2F

≤ 1

N
ε. (3.6)

In particular, if Ω is a Gaussian, Haar or FJLT sketch, then Ω ∈ JLT(ε, δ, 2T) if m is chosen as

in Table 3.1.

65

Proof. A standard sketching result due to Sarlós [Sar06] gives the error bound for using JLT to

estimate matrix products as the following: let X ∈ RT1×N and Y ∈ RN×T2 . If Ω is a JLT(ε, δ, T1 +

T2), then

P(‖XY −XΩᵀΩY‖F ≤ ε‖X‖F ‖Y‖F) ≥ 1− δ

Applying Lemma 28 with Y = X gives the result immediately.

To quantitatively characterize how the error in autocorrelation evaluation depends on the

compression ratio, we have the following corollary which follows immediately using the theorem

and Table 3.1.

Corollary 30. Under the setting of Theorem 29, assuming the data matrix X has bounded en-

tries, then the required compression ratio γ = m/N to have ‖R[Σ̂] − R[Σ]‖1 ≤ ε with proba-

bility greater than 1 − δ is γ = O
(T 2 log T log(2T/δ)

ε2N

)
for Gaussian or Haar matrix sketches, and

γ = O
(T 2 log T log(2T/(δ−e− log4 N))

ε2N

)
for FJLT sketches.

The corollary suggests that as the simulation time T →∞, our compression ratio grows, until

at some point it is not useful. However, T should be seen as inversely proportional to the lowest

desired frequency in the power spectrum, not total simulation time. For longer simulation times

Tlong, the data should be blocked into B matrices X(1), . . . ,X(B), each of size T = Tlong/B, and then

form Σ = 1
B

∑B
b=1 X(b)X

ᵀ
(b), and similarly for Σ̂, with fresh sketches Ω(b) drawn for each block. If

for some reason one needed arbitrarily low frequencies, and wanted the sample time autocorrelation

to converge to the true time autocorrelation, then choose B ∝
√
Tlong [BD87, PM06], but otherwise

choose B ∝ Tlong and hence the block size T is constant.

Thus given a fixed time T , the corollary says that γ ≈ O(1/N) and hence as the amount of

data increases, the compression savings are great; in fact, the absolute number of measurements m

is independent of the spatial size N . For example, this means that if one increases the resolution

of a grid or mesh, the amount of data needed to be stored actually stays constant. This holds not

just for 1D grids, but 3D or any dimension grids.

66

We also note that the matrix Σ need not represent all grid points or particles, but could

instead represent a subset of grid points or particles, and then the calculations are done indepen-

dently for each Σ and averaged in the end. This may be beneficial in parallel and distributed

computing, where each Σ might represent just the spatial locations stored in local memory.

3.4 Numerical experiments

The pseudo-code for the proposed sketching algorithm is in Algo. 3. It exploits existing fast

implementations of sample autocorrelation, e.g., xcorr in Matlab or numpy.correlate in Python.

We use Matlab indexing notation, with X(:, j) meaning the jth column of X, and X(i, :) the ith row.

For our data, the mean was near zero and was not subtracted explicitly. Bartlett windowing [PM06]

was performed to reduce spectral leakage whenever B > 1.

Algorithm 3 Sketching for autocorrelation and power density estimation. Requires existing im-
plementation of autocorr.

Require: Simulation time Tlong, number of blocks B, compression size m
1: T = Tlong/B
2: for b = 0, 1, 2, . . . , B − 1 do
3: Draw Ω ∈ Rm×N . One of the sketches from §3.1
4: Initialize empty array X̂ ∈ RT×m
5: for t = 1, 2, . . . , T do
6: Generate data xᵀ ∈ R1×N according to simulation (at time t + bB); equivalent to row

X(t, :)
7: Compute and store row X̂(t, :) = (Ωx)ᵀ

8: Discard x from memory
9: end for

10: Compute R(b) = 1
N

∑m
i=1 autocorr(X̂(:, i))

11: end for
12: R = 1

B

∑B−1
b=0 R(b) . autocorrelation

13: S = FFT(R) . power spectral density

Remark 31. Conceptually, the algorithm forms X̂ = XΩ, though the full-size data matrix X is

never actually formed, as X̂ is built up row-by-row (and old rows of X are discarded). Similarly,

the estimated covariance matrix Σ̂, which is introduced for discussion on theoretical properties of

sketching methods, is never explicitly constructed for computation, as discussed in Section 3.2.

67

3.4.1 Baseline methods

Many existing algorithms for computing autocorrelation require complete data, such as the

utility routines provided with the popular MD simulator LAMMPS [Pli95], so we do not compare

with these since they work with the full data. Among subsampling approaches, we will compare

with the following three types of subsampling (recall the data matrix is structured as X ∈ RT×N ,

where T is the total length of time and N is the total number of particles or grid size), all of which

sample with replacement:

Time dimension compression Given a compression ratio γ, sample time points I ⊂ {1, . . . , T}

with size |I| = dγT e (where dae rounds a up to the nearest integer) by selecting rows from

the data matrix X. The natural unbiased estimator for the autocorrelation Rτ [X] is

1

N

1

zIτ

∑
t|t,t+τ∈I

N∑
i=1

X(t, i)X(t+ τ, i) (3.7)

where zIτ is a normalization coefficient that is the number of t such that t ∈ I and t +

τ ∈ I (for full sampling, this is zIτ = T − τ as in (3.1)). Efficient computation of this

autocorrelation estimate is discussed in Remark 32. When the index I is sufficiently small,

not all lags τ will have an estimate, thus making computation of the PSD unclear. In these

cases, we interpolate the missing lag values using cubic splines.

There are several common choices for I:

(1) Choosing I (pseudo-)randomly according to the uniform distribution. This is the

method we use in the experiments unless otherwise noted, as it has the best perfor-

mance among these types of methods.

(2) Choosing I via a power-series sampling scheme that is common in simulation of polar

liquids (where Rτ [X] is only needed for short lags τ due to the rapid decorrelation).

Given a block length k, let I0 = {1, 2, 4, 8, . . . , 2k}, and then the index set I is divided

into blocks I = I0 ∪
(
2k + I0

)
∪
(
2k+1 + I0

)
∪ This scheme is intended to give

dense sampling for low lags, and some sampling for higher lags while still allowing for

68

reasonable book-keeping due to its structured nature. See Fig. 3.1 for a comparison

of this scheme with random sampling; it generally underperforms random sampling,

so we do not present further comparisons.

(3) Sparse ruler sampling. As shown in Fig. 3.1, the power-series scheme does not generate

all possible lags. Sampling schemes that do generate all possible lags (up to some

point) are known as rulers, and rulers with only a few samples are sparse rulers, and

are used in signal processing [RL13]. One can modify the power-series scheme so

that each block I0 is a sparse ruler (we used Wichmann Rulers). The scheme still

underperforms random sampling; see supplementary information 1.A for more details.

(4) Sampling blocks (Algorithm 8 in [FS02]), which gives good estimates of Rτ [X] for

small τ , but does not attempt to estimate Rτ [X] for τ larger than the block size. This

does not perform well and details in left for the supplementary information section

1.A.

(5) Hierarchical sampling schemes (Algorithm 9 in [FS02]), designed to improve on block

sampling by giving a small amount of large lag information. This method is exact for

some derived quantities (like diffusion coefficients) but ad-hoc for estimating the large-

lag autocorrelation. This method has high errors (see supplementary information 1.A

for details).

These last two methods (4 and 5) are different than all the other baseline methods we

discuss as they require “on-the-fly” computation to record the estimate of Rτ [X] for a

subset of the lags τ , and this estimate is then updated. These methods do not simply

sample X and then postprocess. Both method 4 and 5 do not give accurate estimates for

large lags, hence we do not present further simulation results with these methods.

Particle dimension compression Given a compression ratio γ, randomly sample particles (or

grid points) to form I ⊂ {1, . . . , N} with size |I| = dγNe by uniformly selecting columns

69

from the data matrix X. The natural unbiased estimator of Rτ [X] is then

1

|I|
1

T − τ

T−τ∑
t=1

∑
i∈I

X(t, i)X(t+ τ, i).

Näıve uniform sparsification (both time and particles) Given a compression ratio γ, uni-

formly sample dγTNe entries from X. This approach has the same estimator for auto-

correlation of lag τ as the case time dimension compression, except that the sampling set

I and normalization constant now depend on the column i. We refer to this as “näıve”

since it uses a uniform distribution, in contrast to complicated weighted sampling schemes

like [AKL13] used in the sampling literature. With an appropriate normalization zIτ,i, the

unbiased estimate of Rτ [X] is

1

zIτ,i

N∑
i=1

∑
t, such that

(t,i),(t+τ,i)∈I

X(t, i)X(t+ τ, i).

which can be calculated via the above formula or via Remark 32.

One can combine time dimension and particle dimension compression (doing time-then-

particle, or particle-then-time), but for a given overall compression level, we did not find that

this improved accuracy, and therefore do not include it in the results.

Remark 32. To efficiently compute the estimate of the autocorrelation for any time dimension

compression scheme, i.e., Eq. 3.7, one can use existing fast autocorrelation functions. Specifically,

set the non-sampled entries to zero, so they do not contribute to the sum, and put each column of X

through a standard autocorrelation function and then average the results. To find the normalization

factor zIτ , one can create an indicator vector ξ where ξt = 1 if t ∈ I and ξt = 0 if t 6∈ I (think of this

as a “book-keeping” particle that can be stored as an extra particle or grid-point), and then compute

the autocorrelation of ξ to get the normalization zIτ . Computing the value by hand is possible but

tedious and the programming is error-prone, which may be a reason why simple (non-random) time

compression schemes have historically been favoured.

70

0 10 20 30 40 50

Lags

-4

-2

0

2

4

Ground Truth
Gaussian sketch
time subsampling, random
time subsampling, power series

0 10 20 30 40 50 60 70

Frequency

0

200

400

600
Ground Truth
Gaussian sketch, 50.0x compression
time subsampling, random, 50.0x compression
time subsampling, power series, 51.3x compression

0 10 20 30 40 50

Lags

-40

-30

-20

-10

0

observed
interpolated
observed
interpolated

0 10 20 30 40 50 60 70

Frequency

0

200

400

600
Ground Truth
Gaussian sketch, 50.0x compression
time subsampling, random, 50.0x compression
time subsampling, power series, 51.3x compression

Po
we

r (
A.

U.
)

Au
to

co
rre

la
tio

n
(A

.U
.)

Figure 3.1: Autocorrelation (top) and power spectral density (bottom) for the two frequency sim-

ulation.

To illustrate the different types of time dimension compression schemes, we conduct a basic

experiment of N = 104 particles and T = 2000 time points with unit spacing, where each particle is

randomly assigned one of two possible frequencies (one fast, one slow), and with a random phase;

the autocorrelation is the fast sinusoid modulated by the slow sinusoid. The power spectral density

ranges up to 500 Hz, of which the first 70 Hz are shown in the bottom of Fig. 3.1. The ground truth

would show two delta functions if T = ∞ but are spectrally broadened by the finite time sample.

Fig. 3.1 shows that, at 50× compression, the time sampling approaches have no observations for

some lags and must be interpolated. The random time subsampling is more accurate than the

power series approach. The Gaussian sketching method is significantly more accurate than both

time compression methods.

71

3.4.2 Methanol ensemble simulation data

Our dataset is a MD simulation using the LAMMPS software [Pli95] for N = 384 methanol

molecules with time step 1 fs for 10 ps, with potentials between pairs of bonded atoms, between

triplets and between quadruplets of atoms set as harmonic, and potential for pairwise interactions

set as the hybrid of the “DREIDING” hydrogen bonding Lennard-Jones potential and the Lennard-

Jones with cut-off Coulombic potential [PAM+11]. The quantity of interest is the power spectral

density of the velocity of the molecules. Except in Fig. 3.5, no blocking was performed, so B = 1

and T = Tlong = 10000. The true sample autocorrelation, up to τ = 100, is shown in Figure 3.2.

The actual simulation was run for 20000 time steps (20 ps) but the first 10 ps are ignored as the

simulation was equilibrating.

Figure 3.3 shows the corresponding true power spectral density (PSD), as well as the PSD

computed via the three proposed sketching methods (with Gaussian, Haar and FJLT sketches),

as well as the three benchmark methods, using only about 1% of the data. The three sketching

methods faithfully recover the true peaks of the spectrum, while the baseline methods (in blue)

either have spurious peaks (time compression and naive uniform compression) or miss/distort peaks

(particle compression).

0 10 20 30 40 50 60 70 80 90 100

Lags (ps)

-2

-1

0

1

2

3

4

5

A
u
to

c
o
rr

e
la

ti
o
n
 (

A
.U

.)

Figure 3.2: Ground truth of autocorrelation of the velocity of methanol molecules up to τ = 100.

72

10 20 30 40 50
0

2

4

6

10 20 30 40 50
0

2

4

6

10 20 30 40 50
0

2

4

6

10 20 30 40 50
0

2

4

6

10 20 30 40 50
0

2

4

6

10 20 30 40 50
0

2

4

6

10 20 30 40 50
0

2

4

6

10 20 30 40 50
0

2

4

6

10 20 30 40 50
0

2

4

6

10 20 30 40 50
0

2

4

6

10 20 30 40 50
0

2

4

6

10 20 30 40 50
0

2

4

6

10 20 30 40 50
0

2

4

6

10 20 30 40 50
0

2

4

6

10 20 30 40 50
0

2

4

6

10 20 30 40 50
0

2

4

6

10 20 30 40 50
0

2

4

6

10 20 30 40 50
0

2

4

6

10 20 30 40 50
0

2

4

6

10 20 30 40 50
0

2

4

6

10 20 30 40 50
0

2

4

6

10 20 30 40 50
0

2

4

6

10 20 30 40 50
0

2

4

6

10 20 30 40 50
0

2

4

6

10 20 30 40 50
0

2

4

6

10 20 30 40 50
0

2

4

6

10 20 30 40 50
0

2

4

6

10 20 30 40 50
0

2

4

6

10 20 30 40 50
0

2

4

6

10 20 30 40 50
0

2

4

6

10 20 30 40 50
0

2

4

6

10 20 30 40 50
0

2

4

6

10 20 30 40 50
0

2

4

6

10 20 30 40 50
0

2

4

6

10 20 30 40 50
0

2

4

6

Frequency (THz)Frequency (THz)

Po
w

er
/H

z
(A

.U
.)

Baseline methods Proposed methods

Figure 3.3: Power spectral density for methanol data. The compression ratio is 1% for each method.

For systematic and quantitative comparison, we consider three metrics for evaluating the

estimated PSD ŝ = Ŝ(ω) compared to the true PSD s = S(ω). First, we use the relative `2 norm

‖ŝ − s‖2/‖s‖2 which also captures the relative `2 error for the autocorrelation (since the Fourier

transform is unitary, i.e., Parseval’s identity). Second, we use the relative `∞ error, which is defined

as maxi,si 6=0
|ŝi−si|
|si| . Third, we use a relative `1 error, defined as ‖ŝ−s‖1/‖s‖1, where ‖s‖1 =

∑
i |si|.

When computing the compression ratio, a sketching method with Ω ∈ Rm×N achieves a

γ = m/N compression ratio, as no meta-data needs to be stored. The time dimension and particle

dimension subsampling methods must also save the time or particle/space indices I as meta-data,

though this is typically insignificant, so they achieve approximately |I|/T and |I|/N compression

ratios, respectively. The näıve uniform sparsification, which samples in both space and time,

must save both time and particle/space indices; this is done implicitly by storing the data as a

sparse matrix in compressed sparse column format. The overhead of storing these indices can be

significant, which is why the compression ratio for “näıve uniform” is slightly worse than the target

of |I|/(TN).

73

10
-2

10
-1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10
-2

10
-1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10
-2

10
-1

10
0

10
1

Figure 3.4: The error due to approximating the PSD for the proposed methods (Haar, Gaussian,

and FJLT-Hadamard) compared to baselines, on the methanol data. Left: relative `1 error. Middle:

relative `2 error. Right: relative `∞ error.

Figure 3.4 shows the error metrics as a function of compression ratio γ in the interesting

regime where γ � 1. We see that sketching methods perform better than baseline methods in the

`1, `2 and `∞ metrics, and the advantage is most significant when the compression ratio is small.

74

10
2

10
3

10
4

10
-1

10
0

10
1

10
2

10
3

10
4

10
-2

10
-1

10
2

10
3

10
4

10
-2

10
-1

FJLT_Hadamard

Figure 3.5: Three metrics characterizing the discrepancy between estimated autocorrelation of first

15 lags and the ground truth vs. total length of time signals. The full time signal is divided into

B =
√
Tlong blocks, each of which is used to evaluate the first 15 lags of autocorrelation.

Figure 3.5 shows that the `1, `2 and `∞ errors decay to zero as the time series becomes

arbitrarily long. Specifically, we take the total simulation time Tlong →∞, and set B = T =
√
Tlong

(this is necessary, since the simpler choice of B = 1 and T = Tlong does not give a consistent

estimator even with fully sampled data). The evaluation of the errors of the autocorrelation are

with respect to the first 15 lags. The compression ratio of all sketching methods is fixed as 10%.

The figure shows that all methods appear to be consistent, with the sketching methods significantly

more accurate compared to the ad hoc baselines.

Synthetic data The performance of the sketching methods over the classical benchmark

methods is significant, but in fact the discrepancy can be arbitrarily large. The supplementary

material (1.B) shows a synthetic data set created to be adversarial for the classical methods, for

75

which they perform poorly, whereas the sketching methods do well. The data is created to have a

few “special” particles which contribute significantly but are unlikely to be sampled by the particle

sampling methods, and to have a few short pulses, so that the relevant time dynamics is likely

to be missed by the time sampling methods. The sketching methods are not susceptible to such

adversarial examples.

3.5 Conclusions

Since second order statistics like autocorrelation and power density spectral can be computed

via the empirical covariance matrix, this means that sketching methods can be used to preserve

statistical properties of the data. These sketching methods come with well-understood theory, little

extra computational burden, straightforward implementation, and excellent practical performance.

For these reasons, we hope they find their place in the numerical simulation toolkit. An interest-

ing future question is whether even more powerful practical estimators of autocorrelation can be

achieved by bypassing the estimation of the covariance matrix.

3.6 Further experiments

3.6.1 Alternative baseline methods

We expand on other alternatives for time-dimension compression (beyond the (1) random

and (2) power-series sampling), namely

(3) Sparse ruler sampling. The power-series scheme does not generate all possible lags. Sam-

pling schemes that do generate all possible lags (up to some point) are known as rulers, and

rulers with only a few samples are sparse rulers. One can modify the power-series scheme

so that each block I0 is a sparse ruler (we used Wichmann Rulers).

(4) Sampling blocks (Algorithm 8 in [FS02]), which gives good estimates of Rτ [X] for small τ ,

but does not attempt to estimate Rτ [X] for τ larger than the block size.

76

(5) Hierarchical sampling schemes (Algorithm 9 in [FS02]), designed to improve on block sam-

pling by giving a small amount of large lag information. This method is exact for some

derived quantities (like diffusion coefficients) but ad-hoc for estimating the large-lag auto-

correlation. This method has high errors.

Fig. 3.6 compares the sparse ruler sampling and block sampling (Algorithm 8), as well as

using the Gaussian sketch. This uses the same N = 10000 and T = 2000 synthetic data as in

Figure 1 in the main text. Both the sparse ruler sampling and block sampling only observe the

autocorrelation for short lags. For this reason, the autocorrelation cannot even be interpolated

at missing lags, but rather these values must be extrapolated. Rather than do this, the PSD is

computed using only the short time lags, but this has the effect of lowering the resolution of the

PSD. The bottom part of the figure shows the PSD.

Fig. 3.7 demonstrates the hierarchical sampling scheme on the same data. This scheme

samples in blocks (giving a good estimate of short-time autocorrelation lags, much like the block

sampling scheme), but then also aggregates blocks to estimate longer lag autocorrelation. For some

quantities, such as the diffusion constant when defined as the integral of autocorrelation (e.g., in

the discrete case, this is just a sum), this aggregation-by-averaging results in no loss. However, for

estimating the autocorrelation itself, the estimate is highly inaccurate. The corresponding PSD is

not shown as it is considerably inaccurate.

3.6.2 Synthetic data

The main paper presents realistic data and shows that newly proposed sketching methods

outperform classical methods. Here, we show that the difference in performance can be made

almost arbitrarily large by choosing adversarial synthetic data. The specific random nature of the

sketching methods makes it impossible to create generic adversarial examples, whereas the classical

methods which rely on weaker notions of randomness are much more susceptible.

Creation of the data set Consider a collection of N = 10,000 particles among which

9997 of them share the same eigenfrequency ω while 3 particles have an additional eigenfrequency

77

ω′. The existence of special particles contributes to the inhomogeneity of the ensemble dynamics.

Furthermore, there are 2 pulses in the time range for every particle in the ensemble. Each pulse can

be represented by p1(t) = p(t − t1), p2(t) = p(t − t2) and p(t) = 10 sin
(
π
δ t
)
1(− δ

2 ≤ t ≤ δ
2), where

δ ≈ 0.6 · 2πω which accounts for more than half of a period of the signal with common eigenfrequency,

and 1 is the 0-1 indicator function. Each particle has a random phase ϕi ∈ [0, 2π). Specifically,

9997 particles have the “common” dynamics

(i = 1, . . . , 9997) xcommon
i (t) = sin(ωt+ ϕi) + p1(t) + p2(t) + εi(t)

while 3 “special” particles have one more ingredient in their dynamics

(j = 9998, 9999, 10000) xspecial
j (t) = sin(ωt+ ϕj) + 80 sin(ω′t+ ϕ′j) + p1(t) + p2(t) + εj(t)

so that when taking the expectation the additional frequency component demonstrate significant

importance in the overall spectrum, and ε(t) is white noise. Figure 3.8 shows the signal example

of a common particle and a special particle, while the ground truth autocorrelation and power

spectral density are shown in Figure 3.9.

Figure 3.10 shows the performance of each sketching method on evaluating the power spectral

density of the synthetic data set. The sketching methods perform well, whereas the classical

baseline methods perform so poorly as to be unusable. For the sketching methods, even when

compression is around 1%, the characteristic peak in the PSD formed by the 3 special particles is

still correctly identified, whereas it is completely missed by all 3 classical methods. This is mostly

demonstrated by the relative `∞ error which captures the largest discrepancy in PSD evaluation

at any frequency. In fact, all the baseline methods have over 100% relative error on the `∞ error,

regardless of compression.

78

0 10 20 30 40 50

Lags

-4

-2

0

2

4

Ground Truth
Gaussian sketch
time subsampling, sparse ruler
Frenkel & Smit, Algo 8

0 50 100 150 200 250
0

200

400

600
Ground Truth
Gaussian sketch, 50.0x compression
time subsamp., sparse ruler, 66.7x compr.
Frenkel & Smit, Algo 8, 50.0x compression

0 10 20 30 40 50

Lags

-40

-30

-20

-10

0

observed
observed

unobserved
unobserved

0 50 100 150 200 250
0

200

400

600
Ground Truth
Gaussian sketch, 50.0x compression
time subsamp., sparse ruler, 66.7x compr.
Frenkel & Smit, Algo 8, 50.0x compression

Frequency

Po
we

r (
A.

U.
)

Au
to

co
rre

la
tio

n
(A

.U
.)

Figure 3.6: Top: autocorrelation, and bottom: Power spectral density (PSD) for a synthetic sim-
ulation. The sparse ruler subsampling and the block (Algorithm 8) subsampling miss sampling
the autocorrelation at long lags, with the effect of making the PSD estimate have low resolution.
Y-axis in arbitrary units for both plots.

79

0 5 10 15 20 25 30 35 40
-20

-10

0

10

Ground truth
Frenkel & Smit, Algo 9, 44.4x compression

0 200 400 600 800 1000

lags

-20

-10

0

10

20

Au
to

co
rre

la
tio

n
(A

.U
.)

Au
to

co
rre

la
tio

n
(A

.U
.)

(zoom)

0 5 10 15 20 25 30 35 40
-20

-10

0

10

Ground truth
Frenkel & Smit, Algo 9, 44.4x compression

0 200 400 600 800 1000

lags

-20

-10

0

10

20

20

400

1

Lags(see above)

Figure 3.7: Autocorrelation, demonstrating the hierarchical sampling scheme of Algorithm 9. The
top plot is a zoomed in version of the bottom plot. The estimate of the autocorrelation at long lags
is inaccurate, and the resulting PSD is unusable.

80

900 950 1000 1050 1100

-10

0

10

common particle

900 950 1000 1050 1100

-100

-50

0

50

100

special particle

Figure 3.8: Example of particle dynamics in synthetic data. The left subfigures shows the signal of
a common particle and the right subfigure shows the signal of a particle with two eigen-frequencies.
2 pulses exist in the synthetic signal and are introduced apart from each other thus not merging
their peaks, while we show the zoomed version of one pulse, which is marked in the colour of
magenta.

0 100 200 300 400 500
-5

0

5

10

100 200 300 400 500

200

400

600

Figure 3.9: Autocorrelation and power spectral density of the synthetic data. The red peak in the
power spectral density exists because of special particles, and the red lags in autocorrelation are
due to existence of pulses.

81

10
-2

10
-1

10
-2

10
-1

10
0

10
1

10
-2

10
-1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10
-2

10
-1

10
-2

10
-1

10
0

10
1

10
2

FJLT_Hadamard

Figure 3.10: Three metrics characterizing accuracy of sketching methods on the PSD in the case
of adversarial synthetic data.

Chapter 4

Improved convex relaxations using exact subset selection for `0 optimization

problems

A theme of the previous chapters was finding efficient algorithms to solve a given optimization

problem, often using randomization. In this chapter, we examine the optimization problem itself.

We propose a new model for sparse recovery in terms of a novel convex optimization problem, and

show how one can find the minimizers of this problem.

4.1 Introduction and main idea

Main idea This work considers a novel solver for the sparse signal recovery problem based

on a small number of linear measurements. The sparsity of a signal has practical meaning in image

compression/restoration [MBP+09], signal denoising [MMB14] and image feature identification

identification [MBP14]. The prototype for such sparse recovery problem is formulated through the

regression problem with `0 constraint:

min
x

1

2
‖Ax− b‖22 s.t. ‖x‖0 ≤ s (4.1)

where A is n× p, usually with n < p, and ‖x‖0 is the number of nonzero elements in the vector x.

While (4.1) is a combinatorial problem and NP-Hard, if one adds the constraint that ‖x‖∞ ≤ M

then [BKM16] shows that this can be solved using mixed-integer quadratic programming (MIQP)

techniques with improved performance or to deliver better lower bound certificates. [BKM16] argues

that mixed-integer linear programming (MILP) and MIQP solvers, which have combinatorially bad

83

worst-case complexity, have very good heuristics to make them efficient, and that in practice, they

can exactly solve problems for p around, say, 104 (note that n has little effect, as long as we can

compute A>A). The argument is compelling: for a moderate amount of data, why solve the least

absolute shrinkage and selection operator (lasso) (i.e. min
x

1

2
‖Ax− b‖22 such that ‖x‖1 ≤ s), which

is a convex relaxation of the integer constraint, when you can do exact subset selection for a bit

of extra computation? But despite the good solvers, these problems are still hard, and if a state-

of-the-art MIQP solver can solve the problem in an hour, it may take weeks to solve a problem

with ten times more variables. The central idea behind of the design of the solver proposed in this

chapter is to leverage the mature MIQP solver for medium-sized sparse subset selection problems in

order to make a better model/relaxation for huge subset selection problems, and meanwhile tackle

the rest of the dimension with classic `1 relaxation.

In this chapter, we consider a similar MILP in the basis pursuit style:

min
x
‖x‖0

s.t. Ax = b. (4.2)

To exploit theoretical guarantees in convex analysis, one can derive the Fenchel-Rockafellar

dual (FR dual) problem of the primal problem, which is convex and gives a lower bound on the

objective, and then apply classic algorithms in convex analysis such as interior-point methods and

projected gradient methods to produce a lower bound for the primal problem. Thus instead of

solving the primal problem exactly, we propose a hybrid algorithm to solve the FR dual problem

of (4.2), which is a convexly relaxed version of the primal MILP problem, and then map back to

the primal space to return the solution to the primal problem. Using the MIQP solver allows us to

use a tighter relaxation than the usual `1 relaxation.

We use an `1-solver (defined in (4.3)) or orthogonal-matching-pursuit solver (OMP) [TG07]

to provide an initial starting point y0 and to pre-select a potential support T ⊂ {1, 2, . . . , p} for

the solution. We will see in the analysis in section 2 that with the introduction of pre-selected

support T , the optimization problem can be written as the sum of two parts: one part regarding

84

the support T of solution vector (P1), the other regarding the complement of the support of the

solution vector (P2). We use MIQP for P1 to update the gradient for descent purposes, and we can

analytically update the gradient for P2. Then the two gradients are combined for descent purposes

on the FR dual of the primal problem.

Mathematical details of dual relaxation of `0 constraint The following formulation

min
x
‖x‖1

subject to Ax = b, (4.3)

known variously as basis pursuit or the lasso, serves as a classic relaxation of the `0 objective, and

we refer to it as the `1 solver and will use it as a baseline method for comparison. In contrast to

the lasso, our formulation of the `0 to be discussed in the next section is a more specific relaxation

of the primal problem. To introduce the Fenchel-Rockafellar dual problem, we first need to define

Fenchel-Legendre conjugate function of a function f as

f∗(y) = sup
x
〈x,y〉 − f(x) (4.4)

We consider the double dual function of `0 with an additional elementwise upper-boundedness

assumption for non-triviality. When f is lower semicontinuous and convex, f = f∗∗. We do not

assume convexity of the objective, so the double dual serves as a lower bound for the primal

objective function [solving the dual and the double-dual problem are equivalent, but the double-

dual formulation is often more clear since the variables have the same meaning as in the primal

formulation]. The following proposition explains why `1 is a convex relaxation for `0 objective.

This is included for didactic purposes, as the result is well-known (e.g., it is a special case of the

matrix version in [FHB01]).

Proposition 33. Let f(x) = ‖x‖0 + ι{‖x‖∞≤λ}(x), then

f∗∗(x) = λ−1‖x‖1 + ι‖x‖∞≤λ(x)

where λ > 0 is a constant, and for a set C, the indicator function ι is defined as ιC(x) = 0 if x ∈ C

and +∞ otherwise.

85

Proof. Recall the Fenchel-Legendre dual of f(x) is f∗(y) = max
x
〈y,x〉 − ‖x‖0 − ι{‖x‖∞≤λ}(x).

Observe that f is separable in its components, so we can analyze f∗(y) componentwise. For a fixed

yi,

• Case xi = 0, then f∗(yi) = 0

• Case xi 6= 0, |xi| ≤ λ. Then we consider xiyi − ‖xi‖0 − ι{|xi|≤λ}(x). If yi ≥ 0, then by

observation the maximum is achieved at xi = λ with maximum value λyi − 1. Similarly if

yi ≤ 0, then the maximizer is xi = −λ with maximum value λ|yi| − 1.

In conclusion, f∗(yi) = max
{

0 (when x = 0), |λyi| − 1 (when xi 6= 0 and |xi| ≤ λ)
}

=
[
λ|yi| − 1

]
+

.

For a multi-variable function, we have correspondingly

f∗(y) =
[
λ|y| − 1

]
+
. (4.5)

Regarding f∗∗(x) , for each component, with λ > 0, we have

f∗∗(xk) = sup
yk

〈xk, yk〉 − [|λyk| − 1]+ =

0 if xk = 0∣∣x
λ

∣∣ if |xk| ≤ λ

∞ if |xk| > λ

Hence, for f(x) = ‖x‖0 + ι{‖x‖∞≤λ}(x), we have

f∗∗(x) = sup
y
〈x,y〉 −

n∑
i=1

[
|λyi| − 1

]
+

= λ−1‖x‖1 + ι{‖x‖∞≤λ}(x)

4.1.1 Prior art

The line of related research starts from `1 regularization, which is the well-studied lasso

formulation known to encourage sparse solutions. A variant of lasso which also aims to find sparse

representation among a large collection of basis vectors is basis pursuit (BP) [CDS98]: minx ‖x‖1

such that Ax = b. All these problems culminate in the systematic discussion on the relation

86

between underlying composition of the signal and the property of the observation matrix, which is

summarized in the topic of compressed sensing [CRT06].

We briefly review established algorithms for solving sparsity constrained optimization prob-

lems directly without preprocessing by convex relaxation. Iterative methods to approximately solve

the sparsity constrained problems include iterative hard thresholding (IHT) [BD09] and greedy

methods like orthogonal matching pursuit. The iterative methods on a high level intend to extract

information from the residual of the current solution, thus update the solution and/or the support

and repeat, while the greedy method repeatedly seeks the subspace of the column space of the

measurement matrix onto which the projection of the signal is maximized. Other hard threshold-

ing algorithms to assure sparsity constraints include CoSamp [NT09] and conjugate gradient IHT

(CGIHT) [BTW15]. The theoretical guarantees for CoSamp and CGIHT requires the measurement

matrix A to satisfy the restricted isometry property, which is NP-hard to verify and does not always

hold.

4.2 Design of the hybrid solver

4.2.1 Pre-selected support and the separability of the FR-dual problem

First we use OMP-solver to solve for the support T . We assume the prior knowledge of the

upper bound of the sparsity of the solution vector x; i.e., ‖x‖0 ≤ s.

Recall that A is n × p dimensional. Let T be a subset of 1, . . . , p of size n or less, so that

AT (that is, the matrix formed by choosing the columns if A where the column belongs to T ; in

Matlab-notation, A(:,T)) is invertible. Let xT be the corresponding entries of the p-dimensional

vector x. For exposition, assume T is 1, 2, . . . , |T | so that we may write x = [xT ,xT c] where T c is

the complement of T , i.e., T c = {|T |+ 1, . . . , p}.

We reformulate the original optimization problem (4.2) with additional domain constraints

87

into minimizing the objective function

F (x) = ‖x‖0 + ιB(x) + ι{Ax=b}(x)

= ‖xT ‖0 + ιBT (xT)︸ ︷︷ ︸
FT (xT)

+ ‖xT c‖0 + ιBTc (xT c)︸ ︷︷ ︸
FTc (xTc)

+ι{Ax=b}(x) (4.6)

Here we define the set B = BT × BT c , where

• BT = {xT | ‖ATxT − b‖2 ≤ ε and ‖xT ‖∞ ≤ λ}

• BT c = {xT c | ‖xT c‖∞ ≤ λleak}.

Consequently F (x) can be written as F (x) = FT (xT) + FT c(xT c) + ι{Ax=b}(x), where we let

FT (xT) = ‖xT ‖0 + ιBT (xT) and FT c(xT c) = ‖xT c‖0 + ιBTc (xT c). This formulation separates the

original primal problem into two subproblems that are coupled via the Ax = b constraint.

Define f(x) = ‖x‖0 + ιB(x), and g(x) = ιx=b(x). Then, the primal problem to solve is

minimizex F (x) = f(x) + g(Ax). Following [BC11], the Fenchel-Rockafellar dual problem of

minimizing (4.6) is defined as

minimizey G(y) where G(y) = f∗(A>y) + g∗(−y). (4.7)

To solve the convexly-relaxed version of (4.2), we minimize G(y). We denote the minimizer of

G(y) as y?, which we will use to discover the minimizer x? for (4.6) by choosing x? as (see results

in chapter 19 in [BC11] regarding FR-dual framework)

x? = ∂A>yf
∗(A>y?). (4.8)

where the notation ∂xf(x0) means the subgradient of f w.r.t. x evaluated at the point x0. With this

above x? in (4.8), if y? is optimal for dual FR problem, then x? is optimal for primal FR problem.

−G(y) serves as a lower bound to the primal objective F (x) as maxy −G(y) ≤ minx F (x), and

considering thatG(y) is convex due to the convexity of Fenchel-Legendre conjugate function, −G(y)

is a convexly relaxed version of F (x), and the dual FR problem is a convexly relaxed problem of

the primal FR problem. (see chapter 15 in [BC11])

88

4.2.2 Subgradient descent algorithm

To compute f∗(A>y), we find

f∗(A>y) =
[

max
xT
〈(AT)>y,xT 〉 − ‖xT ‖0 − ι{‖ATxT−b‖2≤ε,‖xT ‖∞≤λ}(xT)

]
︸ ︷︷ ︸

f∗1 (A>y)

+

∑
i∈T c

[
λleak|(AT c)

>y|i − 1
]
+︸ ︷︷ ︸

f∗2 (A>y)

and by the definition of Fenchel-Legendre conjugate, g∗(−y) = −〈b,y〉. Hence,

G(y) =
[

max
xT
〈(AT)>y,xT 〉 − ‖xT ‖0 − ι{‖ATxT−b‖2≤ε,‖xT ‖∞≤λ}(xT)

]
︸ ︷︷ ︸

G1(y)

+
∑
i∈T c

[
λleak|(AT c)

>y|i − 1
]
+︸ ︷︷ ︸

G2(y)

−〈b,y〉 (4.9)

We can see that the optimization problem is separable in xT and xT c , where for the former

we use MIQP in the (sub)gradient descent process, and for the latter, it reduces to a closed-form

calculation. We will use subgradient descent algorithms (or variants) to minimize G(y), hence we

need to determine at least one subgradient vector ∂G of the function G.

We determine ∂G1(y) through a MIQP solver. Recall that a conjugate function f∗(y) of

any function f(x) is defined as f∗(y) = max
x
〈y,x〉 − f(x), so that if x ∈ arg max

x
〈y,x〉 − f(x),

then x ∈ ∂[f∗(y)] (see chapter 16 in [BC11]). Similarly, for f∗(Ay) = max
x
〈Ay,x〉 − f(x), if

x ∈ arg max
x
〈Ay,x〉− f(x), then A>x ∈ ∂y[f∗(Ay)], which contributes to the first part of ∂G1(y).

Regarding ∂G2(y), taking the subgradient with respect to yk, we have

∂G2(y)

∂yk
= ∂k

(∑
i∈Tc

[
λleak|(AT c)

>y|i − 1
]
+

)

= ∂k

(∑
i∈Tc

[
λleak(−1)sgn[((ATc)>y)i]((AT c)

>y)i − 1
]
+

)

= ∂k

(∑
i∈T c

[
λleak(−1)sgn[((ATc)>y)i]((AT c)

>y)i − 1
]
χi

)

=
∑
i∈T c

λleak(−1)sgn[(A>Tcy)i]χi · ((AT c)
>)ik

89

where we have defined χi =

1 if (−1)sgn[(A>Tcy)i]((AT c)

>y)i ≥ 1
λleak

0 if (−1)sgn[(A>Tcy)i]((AT c)
>y)i <

1
λleak

.

To map the dual variable y back to the primal space, we define the map x = Φ(y) from dual

space to primal space as the following. For the support of x on T , compute ∂A>y[f∗1 (A>y)] as

xT ∈ arg max
xT
〈(AT)>y,xT 〉 − ‖xT ‖0 − ι{‖ATxT−b‖2≤ε,‖xT ‖∞≤λ}(xT).

For the support on T c of ∂A>y[f∗(A>y)], we find

xT c = ∂A>y[f∗2 (A>y)] =

λleak · sgn((AT c)

>y) if λleak|(AT c)
>y|i − 1 ≥ 0

0 if λleak|(AT c)
>y|i − 1 < 0

In summary, we give the following Naive Subgradient Descent Algorithm, Algo. 4. We expect

that the weak duality may compromise the accuracy of the solution, while the improved convex

relaxation should render the gap narrower than the case for lasso.

Algorithm 4 Naive Subgradient Descent with MIQP

Require: A, b, MaxIter, sparsity target s
1: Determine y0 with `1-solver or OMP-solver as iteration starting point for FR-dual problem.
2: Select indices of largest s components in magnitude from x0, the primal solution returned by

the warmup solver, as the support index set T ;
3: k = 0
4: while k < MaxIter do
5: Use MIQP solver (or method presented in [BKM16]) to solve

dT ∈ arg max
xT
〈(AT)>yk,xT 〉 − ‖xT ‖0 − ι{‖ATxT−b‖2≤ε,‖xT ‖∞≤λ}(xT) (4.10)

6: Let ξk ∈ ∂G(yk) = ATdT + ∂

(∑
i

[
λleak|(AT c)

>yk|i − 1
]
+

)
− b

7: Update yk+1 = yk − ηkξk, where ηk is the step size used in kth step
8: end while
9: Return the final solution as x? = ∂A>yf

∗(A>y?) = [xT ,xT c] . The order of rows of x should
be identical to the partition of T and T c

4.2.3 Acceleration with the bundle method, and the algorithm of hybrid solver

We notice that the subgradient descent does not converge fast enough, so we introduce the

bundle method into the naive version of the solver in the hope of accelerating the convergence

speed of the subgradient descent. The fundamental ideas of bundle methods [BKM14] is that one

90

can leverage all information accumulated from previous iterations, which is stored in the bundle,

to provide the most informed update to the solution at current iteration.

Specifically, at each iteration, a subgradient is computed at that iteration point. Therefore,

a new supporting hyperplane to the graph of the objective function is generated based on this new

subgradient vector; this plane is known as a cutting plane. A “bundle” is composed of some of

the cutting planes to the objective function through the process of subgradient descent. With this

bundle we can construct quadratic programming problems with the help of the local approximation

to the objective function at the current iteration point to seek next update. At k-th iteration,

the collection of all previous subgradient gives the cutting plane union as the linearized local

approximation to the objective F (x):

F̃k(x) = max
j∈Jk
{F (xj) + ξ>j (x− xj)}, (4.11)

where Jk = {1, 2, · · · , k−1} (this F̃k(x) is a lower bound for the objective F (x)). Therefore, at the

iteration point xk, one can use the following quadratic optimization problem to seek for direction

dk for next update:

min
dk

{
F̃k(xk + dk) +

µk
2
‖dk‖2

}
, (4.12)

where we set

xk+1 = xk + dk.

Here the quadratic term with magnitude µk/2 is introduced to ensure a minimizer dk always exists

since F̃k(x) is potentially not lower bounded at k-th iteration when there are not sufficiently many

hyperplanes in the bundle. A more sophisticated penalty term can be in the form of 1
2dᵀ

kMdk

for some positive-definite matrix M, which characterizes the variation of curvatures along different

dimensions of the geometry of objective F . To leverage the available linear programming solver such

as Gurobi1 or MOSEK2 to solve (4.12), it needs to be cast into a smooth quadratic programming

1 https://www.gurobi.com/products/gurobi-optimizer/
2 https://www.mosek.com/

91

problem as the following [Mä02]:

min
v,dk

v +
µk‖dk‖2

2

s.t. ξᵀjdk −
(
F (xk)− F (xj)− ξᵀj (xk − xj)

)
︸ ︷︷ ︸
linear approx. error for j-th hyperplane

≤ v ∀ j ∈ Jk (4.13)

Line 6 in algorithm 4 is executed based on (4.13).

Optional protocol: support exploration To further explore the range of the measure-

ment matrix A, we suggest an optional protocol to update the support index set T in each iteration

out of potential missed shots incurred by the warmup solver. When the k-th update is made in

each iteration, one can compute xk = Φ(yk), and re-select the indices of the largest s components

to be combined with previous support Tk−1 as the new support Tk. This protocol expands the

size of support under consideration, which provides more expressiveness for the MIQP subproblem.

Similar support refresh protocol appears in the solver CoSamp.

To conclude, we propose a hybrid solver Algo. 5.

92
Algorithm 5 Subgradient Descent Accelerated by Bundle Method (BM)

Require: A, b, MaxIter, sparsity target s

1: Determine y0 with L1-solver or OMP-solver as iteration starting point for FR-dual problem;

2: Select indices of largest s components of the primal solution x0 returned by the warmup solver

as the support index set T

3: while count of iteration < MaxIter do

4: Use MIQP solver (or method presented in [BKM16]) to solve

max
xT
〈(AT)>yk,xT 〉 − ‖xT ‖0 − ι‖ATxT−b‖2≤ε,‖xT ‖∞≤λ(xT) (4.14)

. Denote the maximizer of (4.14) as dT

5: Let ξk ∈ ∂G(yk) = ATdT + ∂

(∑
i

[
λleak|(AT c)

>yk|i − 1
]
+

)
− b . BM Step 1: expand

the subgradient bundle

6: Let ynew = arg min
y

{
max
j∈Jk

{
G(yk) + ξ>j (y − yk)

}
+
µk
2

(y − yk)
2

}
7: Define Gk(y) := max

j∈Jk

{
G(yk) + ξ>j (y − yk)

}
8: if ∃m ∈ (0, 1

2) such that G(ynew)−G(yk) ≤ m
(
Gk(ynew)−G(yk)

)
then

9: let yk+1 = ynew; . BM Step 2: descent step (executed if the update is wise)

10: else

11: yk+1 = yk

12: end if

13: end while

14: Return the final solution as x? = ∂A>yf
∗(A>y?) = [xT ,xT c] . The order of rows of x should

be identical to the partition of T and T c

4.3 Numerical results

Baseline methods We use an `1 solver and Orthogonal Matching Pursuit (OMP) as

baselines to compare the hybrid solver with. Recall that the `1 model is minx ‖x‖1 subject to

Ax = b, which is a linear program, and the Gurobi solver is used to solve it. OMP method is

93

implemented by the wmpalg package in Matlab3 .

Results Figure 4.1 shows the performance comparison between three solvers. We test

three solvers on synthetic datasets where, in Matlab notation, A = randn(m,2000), xground truth =

a random sparse vector in R2000 with sparsity 100 and b = Axground truth. The test is repeated for

various measurement setting m.

1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a) The measurement matrix A ∈ Rm×2000, the pro-

posed hybrid solver uses the `1 solver to compute T ;

in relative `2 error

1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(b) The measurement matrix A ∈ Rm×2000, the pro-

posed hybrid solver uses OMP to compute T ; in rel-

ative `2 error

Figure 4.1: Comparison between three solvers in the moderate measurement-sparsity ratio regime.

The sparsity is 100.

Although unlikely to fundamentally renovate the performance of the hybrid solver with a

more informed hyperparameter setting, we report the following combination which generates the

best performances among all combinations we have tested. The following are the hyperparameters

involved in the implementation of bundle methods to create Figure 4.1:

• Infinity norm constraint bound λ and λleak: λ = 3‖y0‖ and λleak = 0.1λ

• Bundle method regularization parameter for the quadratic term µk (like an inverse stepsize):

µk+1 = (k − 1)3µk when line 10 in algorithm 5 is reached; µk+1 = 10
k3µk when line 8 is

executed instead.

3 https://www.mathworks.com/help/wavelet/ref/wmpalg.html

94

• Tolerance parameter ε for MIQP subproblem: ε = 2 max{‖Ax0 − b‖, 0.01}, where x0 is

the primal solution returned by the `1 solver

• Support T : we have tried two ways dealing with support. The first is to combine the support

of largest s-entries of solutions returned by `1 solver and OMP solver, which has maximally

2s nonzero entries, and hard-threshold the returned solution when exitting algorithm 5.

The second is to use the optional support exploration protocol.

4.3.1 Conclusion

We do not observe improvement in evaluation accuracy by implementing the hybrid solver in

terms of relative `2 error or relative `∞ error when the measurement-sparsity ratio is greater than

1, regardless of the choice of warmup solvers.

The stability of the hybrid solver with OMP solver as warmup is poor, demonstrated by

frequent breakdown of the bundle method with the pre-selected support returned by OMP solver.

It appears that the breakdown is due to the failure of solving the quadratic programming problem

(4.13) for new descent direction vector. As there is not an obvious starting dual point with OMP

used as warmup solver, the heuristic of using the dual point returned by `1 solver as the iteration

start point coupled with pre-determined support returned by OMP solver leads to this instability.

Also, the support expansion protocol does not mitigate this issue.

In the case of using the `1 solver for warmup, the slow convergence of subgradient descent

may be a factor for the low accuracy improvement of the hybrid solver. The convergence in dual

space does not necessarily correspond to the convergence in the primal space due to the dual-primal

gap. The computation complexity is high, due to repeatedly solving the MIQP and QP within the

hybrid solver, which makes it expensive to run many iterations.

We point out that the comparison result between these three solvers still holds in the same

measurement-sparsity ratio domain when the measurement outcome b is corrupted with Gaussian

noise ε as b = Ax + ε.

95

In summary, this chapter is a first attempt at using a finer convex relaxation to improve the

solution accuracy of sparse recovery problems, compared to established solvers like `1 and OMP.

Our numerical results are not promising, and this specific convex relaxation does not appear to

help. However, we have opened up a new line of research: how can one leverage powerful MIQP

solvers that can exactly solve the combinatorial problem in medium dimensions, in order to better

solve sparse recovery problems in very high dimensions?

Bibliography

[ABS11] H. Attouch, J. Bolte, and B.F. Svaiter. Convergence of descent methods for semi-
algebraic and tame problems: proximal algorithms, forward–backward splitting, and
regularized Gauss-Seidel methods. Mathematical Programming, pages 1–39, 2011.

[AC09] N. Ailon and B. Chazelle. The fast Johnson-Lindenstrauss transformation and approx-
imate nearest neighbors. SIAM J. Computing, 39(1):302–322, 2009.

[AKL13] Dimitris Achlioptas, Zohar Karnin, and Edo Liberty. Near-optimal entrywise sampling
for data matrices. In Proceedings of the 26th International Conference on Neural
Information Processing Systems - Volume 1, NIPS’13, pages 1565–1573, USA, 2013.
Curran Associates Inc.

[AM07] D. Achlioptas and F. Mcsherry. Fast computation of low-rank matrix approximations.
J. ACM, 54(2), April 2007.

[AZH16] Z. Allen-Zhu and E. Hazan. Variance reduction for faster non-convex optimization. In
International Conference on Machine Learning, pages 699–707, 2016.

[AZL18] Zeyuan Allen-Zhu and Yuanzhi Li. Neon2: Finding local minima via first-order oracles.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
editors, Advances in Neural Information Processing Systems 31, pages 3716–3726.
Curran Associates, Inc., 2018.

[BC11] H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator Theory
in Hilbert Spaces. Springer-Verlag, New York, 2011.

[BC17] H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator Theory
in Hilbert Spaces. Springer-Verlag, New York, 2 edition, 2017.

[BCN18] R.I. Bot, E.R.. Csetnek, and D-K Nguyen. A proximal minimization al-
gorithm for structured nonconvex and nonsmooth problems. arXiv preprint
arXiv:1805.11056v1[math.OC], 2018.

[BD87] P. J. Brockwell and R. A. Davis. Time Series: Theory and Methods. Springer, 1987.

[BD09] T. Blumensath and M. E. Davies. Iterative hard thresholding for compressed sensing.
Harm. Anal., 27(3):265–274, 2009.

[Bec17] A. Beck. First-Order Methods in Optimization. MOS-SIAM Series on Optimization,
2017.

97

[Bec19] Stephen Becker. Matlab code for sketching. https://github.com/stephenbeckr/

randomized-algorithm-class/blob/master/Code/sketch.m, 2019.

[BKM14] Adil Bagirov, Napsu Karmitsa, and Marko M. Mäkelä. Bundle Methods, pages 305–
310. Springer International Publishing, Cham, 2014.

[BKM16] Dimitris Bertsimas, Angela King, and Rahul Mazumder. Best subset selection via a
modern optimization lens. Ann. Statist., 44(2):813–852, 04 2016.

[BM99] V.s Borkar and Sanjoy Mitter. A strong approximation theorem for stochastic recursive
algorithms. Journal of Optimization Theory and Applications, 100:499–513, 03 1999.

[Bro06] Petrus Broersen. Automatic autocorrelation and spectral analysis. Springer Science
& Business Media, 2006.

[BST14] J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized minimization
for nonconvex and nonsmooth problems. Math. Prog., 146(1-2):459–494, 2014.

[BTW15] Jeffrey D. Blanchard, Jared Tanner, and Ke Wei. CGIHT: conjugate gradient iterative
hard thresholding for compressed sensing and matrix completion. Information and
Inference: A Journal of the IMA, 4(4):289–327, 11 2015.

[CB18] Xiang Cheng and Peter Bartlett. Convergence of langevin mcmc in kl-divergence.
In Firdaus Janoos, Mehryar Mohri, and Karthik Sridharan, editors, Proceedings of
Algorithmic Learning Theory, volume 83 of Proceedings of Machine Learning Research,
pages 186–211. PMLR, 07–09 Apr 2018.

[CDHS18] Y. Carmon, J. Duchi, O. Hinder, and A. Sidford. Accelerated methods for nonconvex
optimization. SIAM Journal on Optimization, 28(2):1751–1772, 2018.

[CDMI+13] Kenneth L. Clarkson, Petros Drineas, Malik Magdon-Ismail, Michael W. Mahoney,
Xiangrui Meng, and David P. Woodruff. The fast Cauchy transform and faster robust
linear regression. In Proceedings of the Twenty-fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’13, pages 466–477, Philadelphia, PA, USA, 2013.
Society for Industrial and Applied Mathematics.

[CDS98] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit.
SIAM J. Sci. Comput., 20:33–61, 1998.

[CDT19] Xi Chen, Simon S. Du, and Xin T. Tong. On Stationary-Point Hitting Time
and Ergodicity of Stochastic Gradient Langevin Dynamics. arXiv e-prints, page
arXiv:1904.13016, April 2019.

[CHS87] Tzuu-Shuh Chiang, Chii-Ruey Hwang, and Shuenn Jyi Sheu. Diffusion for global
optimization in Rn. SIAM Journal on Control and Optimization, 25(3):737–753, 1987.

[Cla05] Kenneth L. Clarkson. Subgradient and sampling algorithms for l1 regression. In
Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’05, pages 257–266, Philadelphia, PA, USA, 2005. Society for Industrial and
Applied Mathematics.

https://github.com/stephenbeckr/randomized-algorithm-class/blob/master/Code/sketch.m
https://github.com/stephenbeckr/randomized-algorithm-class/blob/master/Code/sketch.m

98

[Cor11] Graham Cormode. Sketch techniques for approximate query processing. In Synposes
for Approximate Query Processing: Samples, Histograms, Wavelets and Sketches,
Foundations and Trends in Databases. NOW publishers, 2011.

[CRS17] F.E. Curtis, D.P. Robinson, and M. Samadi. A trust region algorithm with a

worst-case iteration complexity of O(ε
3
2) for nonconvex optimization. Mathematical

Programming, 162(1):1–32, Mar 2017.

[CRT06] E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information. IEEE Trans. Inform.
Theory, 52(2):489–509, 2006.

[CW05] P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward
splitting. SIAM Multiscale Model. Simul., 4(4):1168–1200, 2005.

[CW12] Kenneth L. Clarkson and David P. Woodruff. Low Rank Approximation and Regres-
sion in Input Sparsity Time. Journal of the ACM, 63(6):1–45, 2012.

[DBLJ14] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremen-
tal gradient method with support for non-strongly convex composite objectives. In
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, edi-
tors, Advances in Neural Information Processing Systems 27, pages 1646–1654. Curran
Associates, Inc., 2014.

[DJL+17] Simon S Du, Chi Jin, Jason D Lee, Michael I Jordan, Aarti Singh, and Barnabas Poc-
zos. Gradient descent can take exponential time to escape saddle points. In Advances
in Neural Information Processing Systems, pages 1067–1077, 2017.

[DK17] Arnak S. Dalalyan and Avetik G. Karagulyan. User-friendly guarantees for the langevin
monte carlo with inaccurate gradient, 2017.

[DMM08] Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Relative-error cur
matrix decompositions. SIAM J. Matrix Anal. Appl., 30(2):844–881, September 2008.

[DPG+14] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio. Iden-
tifying and attacking the saddle point problem in high-dimensional non-convex opti-
mization. In Advances in Neural Information Processing Systems, pages 2933–2941,
2014.

[DRP+16] Avinava Dubey, Sashank J. Reddi, Barnabás Póczos, Alexander J. Smola, Eric P.
Xing, and Sinead A. Williamson. Variance reduction in stochastic gradient langevin
dynamics. In Proceedings of the 30th International Conference on Neural Information
Processing Systems, NIPS’16, page 1162–1170, Red Hook, NY, USA, 2016. Curran
Associates Inc.

[DT20] Jing Dong and Xin T. Tong. Replica exchange for non-convex optimization, 2020.

[FHB01] M. Fazel, H. Hindi, and S. P. Boyd. A rank minimization heuristic with applica-
tion to minimum order system approximation. In Proceedings of American Control
Conference, volume 6, pages 4734–4739. IEEE, 2001.

99

[FR13] Simon Foucart and Holger Rauhut. A Mathematical Introduction to Compressive
Sensing. Birkhäuser, New York, NY, 2013.

[FS02] Daan Frenkel and Berend Smit. Chapter 4 - molecular dynamics simulations. In
Daan Frenkel and Berend Smit, editors, Understanding Molecular Simulation (Second
Edition), pages 63 – 107. Academic Press, San Diego, second edition, 2002.

[GHJY15] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points —
online stochastic gradient for tensor decomposition. In Peter Grünwald, Elad Hazan,
and Satyen Kale, editors, Proceedings of The 28th Conference on Learning Theory,
volume 40 of Proceedings of Machine Learning Research, pages 797–842, Paris, France,
03–06 Jul 2015. PMLR.

[GJP95] F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural networks archi-
tectures. Neural computation, 7(2):219–269, 1995.

[GK19] Ian Grooms and William Kleiber. Diagnosing, modeling, and testing a multiplicative
stochastic gent-mcwilliams parameterization. Ocean Modelling, 133:1–10, 2019.

[GM91] Saul B. Gelfand and Sanjoy K. Mitter. Recursive stochastic algorithms for global
optimization in Rd. SIAM Journal on Control and Optimization, 29(5):999–1018,
1991.

[GM13] Ian Grooms and Andrew J Majda. Efficient stochastic superparameterization for geo-
physical turbulence. Proceedings of the National Academy of Sciences, 110(12):4464–
4469, 2013.

[HB20a] Zhishen Huang and Stephen Becker. Perturbed proximal descent to escape saddle
points for non-convex and non-smooth objective functions. In Luca Oneto, Nicolò
Navarin, Alessandro Sperduti, and Davide Anguita, editors, Recent Advances in Big
Data and Deep Learning, pages 58–77, Cham, 2020. Springer International Publishing.

[HB20b] Zhishen Huang and Stephen Becker. Spectral estimation from simulations via sketch-
ing, 2020.

[HMT11] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM
Review, 53(2):217–288, 2011.

[JGN+17] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and Michael I. Jordan.
How to escape saddle points efficiently. In Doina Precup and Yee Whye Teh, editors,
Proceedings of the 34th International Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pages 1724–1732, International Convention
Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

[JL84] William B Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into
a Hilbert space. Contemporary mathematics, 26(189-206):1, 1984.

[JRSPS16] S. J. Reddi, S. Sra, B. Poczos, and A.J. Smola. Proximal stochastic methods for nons-
mooth nonconvex finite-sum optimization. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems
29, pages 1145–1153. Curran Associates, Inc., 2016.

100

[JZ13] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive
variance reduction. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 26,
pages 315–323. Curran Associates, Inc., 2013.

[KLY18] Bobby Kleinberg, Yuanzhi Li, and Yang Yuan. An alternative view: When does SGD
escape local minima? In Jennifer Dy and Andreas Krause, editors, Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pages 2698–2707, Stockholmsmässan, Stockholm Sweden,
10–15 Jul 2018. PMLR.

[Kra40] H.A. Kramers. Brownian motion in a field of force and the diffusion model of chemical
reactions. Physica, 7(4):284 – 304, 1940.

[KT75] Samuel Karlin and Howard M. Taylor. Chapter 7 - brownian motion. In Samuel
Karlin and Howard M. Taylor, editors, A First Course in Stochastic Processes (Second
Edition), pages 340 – 391. Academic Press, Boston, second edition edition, 1975.

[KW92] J. Kuczyński and H. Woźniakowski. Estimating the largest eigenvalue by the power
and lanczos algorithms with a random start. SIAM Journal on Matrix Analysis and
Applications, 13(4):1094–1122, 1992.

[KW11] Felix. Krahmer and Rachel. Ward. New and improved Johnson–Lindenstrauss embed-
dings via the restricted isometry property. SIAM Journal on Mathematical Analysis,
43(3):1269–1281, 2011.

[LAM12] LAMMPS benchmarks. https://lammps.sandia.gov/bench.html#billion, 2012.
Accessed: 2020-02-13.

[LI06] Peter Lindstrom and Martin Isenburg. Fast and efficient compression of floating-point
data. IEEE transactions on visualization and computer graphics, 12(5):1245–1250,
2006.

[Li19] Zhize Li. Ssrgd: Simple stochastic recursive gradient descent for escaping saddle points.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems 32, pages 1523–1533.
Curran Associates, Inc., 2019.

[Lin14] Peter Lindstrom. Fixed-rate compressed floating-point arrays. IEEE transactions on
visualization and computer graphics, 20(12):2674–2683, 2014.

[LPP+19] Jason D. Lee, Ioannis Panageas, Georgios Piliouras, Max Simchowitz, Michael I. Jor-
dan, and Benjamin Recht. First-order methods almost always avoid strict saddle
points. Math. Program., 176(1–2):311–337, July 2019.

[LSJR16] Jason D. Lee, Max Simchowitz, Michael I. Jordan, and Benjamin Recht. Gradient
descent only converges to minimizers. In Vitaly Feldman, Alexander Rakhlin, and
Ohad Shamir, editors, 29th Annual Conference on Learning Theory, volume 49 of
Proceedings of Machine Learning Research, pages 1246–1257, Columbia University,
New York, New York, USA, 23–26 Jun 2016. PMLR.

https://lammps.sandia.gov/bench.html#billion

101

[LTP19] Puya Latafat, Andreas Themelis, and Panagiotis Patrinos. Block-coordinate and in-
cremental aggregated proximal gradient methods for nonsmooth nonconvex problems,
2019.

[LY19] Yanli Liu and Wotao Yin. An envelope for davis—yin splitting and strict saddle-point
avoidance. J. Optim. Theory Appl., 181(2):567–587, May 2019.

[Mah11] M. Mahoney. Randomized algorithms for matrices and data. Found. Trends Machine
Learning, 3(2):123–224, 2011.

[MBP+09] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-local sparse models for
image restoration. In 2009 IEEE 12th International Conference on Computer Vision,
pages 2272–2279, Sep. 2009.

[MBP14] J. Mairal, F. Bach, and J. Ponce. Sparse Modeling for Image and Vision Processing.
now, 2014.

[MD09] Michael W. Mahoney and Petros Drineas. CUR matrix decompositions for improved
data analysis. Proceedings of the National Academy of Sciences, 106(3):697–702, 2009.

[Mez07] F. Mezzadri. How to generate random matrices from the classical compact groups.
Notices of the American Mathematical Society, 54(5):592–604, 2007.

[MG15] James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored
approximate curvature. In Proceedings of the 32nd International Conference on
International Conference on Machine Learning - Volume 37, ICML’15, page 2408–2417.
JMLR.org, 2015.

[MM13] Xiangrui Meng and Michael W. Mahoney. Low-distortion subspace embeddings in
input-sparsity time and applications to robust linear regression. In Proceedings of
the Forty-fifth Annual ACM Symposium on Theory of Computing, STOC ’13, pages
91–100, New York, NY, USA, 2013. ACM.

[MMB14] Christopher A. Metzler, Arian Maleki, and Richard G. Baraniuk. From denoising to
compressed sensing. IEEE Transactions on Information Theory, 62:5117–5144, 2014.

[MOJ18] Aryan Mokhtari, Asuman Ozdaglar, and Ali Jadbabaie. Escaping saddle points in
constrained optimization. In Proceedings of the 32nd International Conference on
Neural Information Processing Systems, NIPS’18, page 3633–3643, Red Hook, NY,
USA, 2018. Curran Associates Inc.

[MSH02] J.C. Mattingly, A.M. Stuart, and D.J. Higham. Ergodicity for sdes and approxima-
tions: locally lipschitz vector fields and degenerate noise. Stochastic Processes and
their Applications, 101(2):185 – 232, 2002.

[MT96] K. L. Mengersen and R. L. Tweedie. Rates of convergence of the hastings and metropo-
lis algorithms. ANNALS OF STATISTICS, 24:101–121, 1996.

[MT09] Sean Meyn and Richard L. Tweedie. Markov Chains and Stochastic Stability. Cam-
bridge University Press, USA, 2nd edition, 2009.

102

[MT20] Per-Gunnar Martinsson and Joel Tropp. Randomized numerical linear algebra: Foun-
dations & algorithms. arXiv preprint arXiv:2002.01387, 2020.

[Mä02] Marko Mäkelä. Survey of bundle methods for nonsmooth optimization. Optimization
Methods and Software, 17(1):1–29, 2002.

[Nes83] Y. Nesterov. A method for unconstrained convex minimization problem with the
rate of convergence O(1/k2). Doklady AN SSSR, translated as Soviet Math. Docl.,
269:543–547, 1983.

[NP06] Yurii Nesterov and Boris T. Polyak. Cubic regularization of newton method and its
global performance. Math. Program., 108:177–205, 2006.

[NT09] D. Needell and J. A. Tropp. CoSaMP: Iterative signal recovery from incomplete and
inaccurate samples. Appl. Comput. Harmon. Anal, 26:301–321, 2009.

[PAB17] F. Pourkamali-Anaraki and S. Becker. Preconditioned data sparsification for big data
with applications to PCA and K-means. IEEE Trans. Info. Theory, 63(5):2954–2974,
2017.

[PAM+11] S. Plimpton, A.Thompson, S. Moore, A. Kohlmeyer, and R. Berger. Lammps dreiding
example. https://github.com/lammps/lammps/tree/master/examples/dreiding,
2011.

[Pha09] Huyn Pham. Continuous-time Stochastic Control and Optimization with Financial
Applications. Springer Publishing Company, Incorporated, 1st edition, 2009.

[Pli95] S. Plimpton. Fast parallel algorithms for short-range molecular dynamics. J. Comp.
Phys., 117:1–19, 1995. http://lammps.sandia.gov.

[PM06] John G. Proakis and Dimitris K. Manolakis. Digital Signal Processing (4th Edition).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006.

[Rap04] Dennis Rapaport. The art of molecular dynamics simulation. Cambridge university
press, 2004.

[RG84] E. Runge and E. K. U. Gross. Density-functional theory for time-dependent systems.
Phys. Rev. Lett., 52:997–1000, Mar 1984.

[RHS+16] Sashank J. Reddi, Ahmed Hefny, Suvrit Sra, Barnabás Póczós, and Alex Smola.
Stochastic variance reduction for nonconvex optimization. In Proceedings of the 33rd
International Conference on International Conference on Machine Learning - Volume
48, ICML’16, page 314–323. JMLR.org, 2016.

[RL13] D. Romero and G. Leus. Compressive covariance sampling. In 2013 Information Theory
and Applications Workshop (ITA), pages 1–8, 2013.

[RLBPS11] I. Rodŕıguez, O. Lehmkuhl, R. Borrell, and C.D. Pérez-Segarra. On DNS and LES of
natural convection of wall-confined flows: Rayleigh-Bénard convection. In H. Kuerten,
B. Geurts, V. Armenio, and J. Fr ohlich, editors, Direct and Large-Eddy Simulation
VIII, volume 15 of ERCOFTAC Series, pages 389–394. Springer, 2011.

https://github.com/lammps/lammps/tree/master/examples/dreiding
http://lammps.sandia.gov

103

[RRT17] Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex learning via
stochastic gradient langevin dynamics: a nonasymptotic analysis. In Satyen Kale and
Ohad Shamir, editors, Proceedings of the 2017 Conference on Learning Theory, vol-
ume 65 of Proceedings of Machine Learning Research, pages 1674–1703, Amsterdam,
Netherlands, 07–10 Jul 2017. PMLR.

[RT96a] G. O. ROBERTS and R. L. TWEEDIE. Geometric convergence and central limit theo-
rems for multidimensional Hastings and Metropolis algorithms. Biometrika, 83(1):95–
110, 03 1996.

[RT96b] Gareth O. Roberts and Richard L. Tweedie. Exponential convergence of langevin
distributions and their discrete approximations. Bernoulli, 2(4):341–363, 1996.

[RZS+17] Sashank J Reddi, Manzil Zaheer, Suvrit Sra, Barnabas Poczos, Francis Bach, Ruslan
Salakhutdinov, and Alexander J Smola. A Generic Approach for Escaping Saddle
points. arXiv e-prints, page arXiv:1709.01434, Sep 2017.

[Sar06] T. Sarlos. Improved approximation algorithms for large matrices via random projec-
tions. In 2006 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’06), pages 143–152, Oct 2006.

[SFH+18] Maher Salloum, Nathan D Fabian, David M Hensinger, Jina Lee, Elizabeth M Allen-
dorf, Ankit Bhagatwala, Myra L Blaylock, Jacqueline H Chen, and Irina Templeton,
Jeremy Aand Tezaur. Optimal compressed sensing and reconstruction of unstructured
mesh datasets. Data Science and Engineering, 3(1):1–23, 2018.

[Sho62] N. Z. Shor. An application of the method of gradient descent to the solution of the
network transportation problem. Materialy Naucnovo Seminara po Teoret i Priklad.
Voprosam Kibernet. i Issted. Operacii, Nucnyi Sov. po Kibernet, Akad. Nauk Ukrain.
SSSR, vyp, 1:9–17, 1962.

[SLQ+19] Tao Sun, Dongsheng Li, Zhe Quan, Hao Jiang, Shengguo Li, and Yong Dou. Heavy-ball
algorithms always escape saddle points. pages 3520–3526, 08 2019.

[SQW15] Ju Sun, Qing Qu, and John Wright. When are nonconvex problems not scary?, 2015.

[SR96] A. P. Scott and L. Radom. Harmonic vibrational frequencies: an evaluation of hartree-
fock, møller- plesset, quadratic configuration interaction, density functional theory, and
semiempirical scale factors. J. Phys. Chem., 100(41):16502–16513, 1996.

[STP17] L. Stella, A. Themelis, and P. Patrinos. Forward-backward quasi-Newton methods for
nonsmooth optimization problems. Computational Optimization and Applications,
67(3):443–487, 2017.

[SW11] Christian Sohler and David P. Woodruff. Subspace embeddings for the l1-norm with
applications. In Proceedings of the Forty-third Annual ACM Symposium on Theory
of Computing, STOC ’11, pages 755–764, New York, NY, USA, 2011. ACM.

[TG07] J. A. Tropp and A. C. Gilbert. Signal recovery from random measurements via or-
thogonal matching pursuit. IEEE Tran. Info. Theory, 53(12), 2007.

104

[TSJ+18] Nilesh Tripuraneni, Mitchell Stern, Chi Jin, Jeffrey Regier, and Michael I. Jordan.
Stochastic cubic regularization for fast nonconvex optimization. In Proceedings of the
32Nd International Conference on Neural Information Processing Systems, NIPS’18,
pages 2904–2913, USA, 2018. Curran Associates Inc.

[VELA+09] D. Varsano, D. A. Espinosa-Leal, X. Andrade, M. A. L. Marques, R. di Felice, and
A. Rubio. Towards a gauge invariant method for molecular chiroptical properties in
tddft. Phys. Chem. Chem. Phys., 11:4481–4489, 2009.

[Ver18] Roman Vershynin. High-Dimensional Probability: An Introduction with Applications
in Data Science. Cambridge Series in Statistical and Probabilistic Mathematics. Cam-
bridge University Press, 2018.

[VGFP19] Emmanouil-Vasileios Vlatakis-Gkaragkounis, Lampros Flokas, and Georgios Piliouras.
Efficiently avoiding saddle points with zero order methods: No gradients required. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems 32, pages 10066–10077.
Curran Associates, Inc., 2019.

[Woo14] D. P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and
Trends R© in Theoretical Computer Science, 10(1–2):1–157, 2014.

[WT11] Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient langevin
dynamics. In Proceedings of the 28th International Conference on International
Conference on Machine Learning, ICML’11, page 681–688, Madison, WI, USA, 2011.
Omnipress.

[WZ13] David P. Woodruff and Qin Zhang. Subspace Embeddings and `p-Regression Us-
ing Exponential Random Variables. In Shai Shalev-Shwartz and Ingo Steinwart, edi-
tors, COLT - The 26th Annual Conference on Learning Theory, volume 30 of JMLR
Workshop and Conference Proceedings, pages 546–567, Princeton University, NJ, USA,
June 2013. JMLR.org.

[XCZG18] Pan Xu, Jinghui Chen, Difan Zou, and Quanquan Gu. Global convergence of langevin
dynamics based algorithms for nonconvex optimization. In Proceedings of the 32nd
International Conference on Neural Information Processing Systems, NIPS’18, page
3126–3137, Red Hook, NY, USA, 2018. Curran Associates Inc.

[XJY18] Y. Xu, R. Jin, and T. Yang. First-order stochastic algorithnms for escaping from saddle
points in almost linear time. arXiv preprint, 2018. arXiv:1711.01944v3 [math.OC].

[YB96] K. Yabana and G. F. Bertsch. Time-dependent local-density approximation in real
time. Phys. Rev. B, 54:4484–4487, Aug 1996.

[ZLC17] Yuchen Zhang, Percy Liang, and Moses Charikar. A Hitting Time Analysis of Stochas-
tic Gradient Langevin Dynamics. arXiv e-prints, page arXiv:1702.05575, February
2017.

	Perturbed Proximal Descent to Escape Saddle Points for Non-convex and Non-smooth Objective Functions
	Introduction
	Related literature

	Algorithm
	Main result: escaping saddle points through perturbed proximal descent
	Sketch of the proof of main theorem

	Technical proofs
	Lemma: Iterates remain bounded if stuck near a saddle point
	Preparation for building pillars
	Lemma: perturbed iterates will escape the saddle point
	Combining previous results
	Main lemma
	Main theorem, and its proof
	From -second-order stationary point to local minimizers

	Numerical experiment
	Results

	Conclusion

	Stochastic Gradient Langevin Dynamics with Variance Reduction
	Introduction
	Prior art

	Algorithm and main results
	First-order stationary point convergence property
	Ergodicity property of SGLD
	Recurrence
	Reachability

	Second-order stationary point convergence property

	Spectral Estimation from Simulations via Sketching
	Sketching
	Approximating autocorrelation with sketching
	Theoretical guarantees
	Numerical experiments
	Baseline methods
	Methanol ensemble simulation data

	Conclusions
	Further experiments
	Alternative baseline methods
	Synthetic data

	Improved convex relaxations using exact subset selection for l0 optimization problems
	Introduction and main idea
	Prior art

	Design of the hybrid solver
	Pre-selected support and the separability of the FR-dual problem
	Subgradient descent algorithm
	Acceleration with the bundle method, and the algorithm of hybrid solver

	Numerical results
	Conclusion

	 Bibliography

