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Abstract Inspired by recent work on safe feature elimination for 1-norm regularized least-squares,
we develop strategies to eliminate features from convex optimization problems with non-negativity
constraints. Our strategy is safe in the sense that it will only remove features/coordinates from the
problem when they are guaranteed to be zero at a solution. To perform feature elimination we use
an accurate, but not optimal, primal-dual feasible pair, making our methods robust and able to be
used on ill-conditioned problems. We supplement our feature elimination problem with a method to
construct an accurate dual feasible point from an accurate primal feasible point; this allows us to use
a first-order method to find an accurate primal feasible point, then use that point to construct an
accurate dual feasible point and perform feature elimination. Under reasonable conditions, our feature
elimination strategy will eventually eliminate all zero features from the problem. As an application
of our methods we show how safe feature elimination can be used to robustly certify the uniqueness
of non-negative least-squares problems. We give numerical examples on a well-conditioned synthetic
non-negative least-squares problem and on a set of 40000 extremely ill-conditioned problems arising
in a microscopy application.
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1 Introduction

There is an expanding body of work on safe feature elimination for 1-norm regularized optimization
problems, particularly for 1-norm regularized least-squares (the lasso). Safe feature elimination re-
moves features/columns of the dictionary/observation matrix when they are guaranteed not to be
present in a solution. El Ghaoui et al.’s influential work in this direction [1] is based on using com-
plementary slackness between primal and dual optimization problems to identify zero coordinates in
a solution to the primal problem. Complementary slackness implies that if the dual optimal point
satisfies an inequality constraint strictly, then the corresponding primal optimal coordinate must be
equal to zero in any primal optimal point (we will make this statement precise shortly).
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Using duality to identify zero coordinates has been used before, of course; for instance duality has
been used to eliminate features in linear programs [2]. What is novel is that safe feature elimination
(SAFE) strategies are designed to avoid the use of the exact dual optimal point, which may be very
expensive to compute in practice. SAFE strategies instead use an auxiliary dual feasible point to
construct a compact set that is guaranteed to contain the dual optimal point. If all points in this
compact set satisfy a dual inequality constraint strictly, then the exact dual optimal point also satisfies
the inequality strictly and we can safely eliminate the corresponding primal coordinate. We refer the
reader to [3] (and the extensions and generalizations in [4,5,6]) for a discussion of numerous such safe
sets for the lasso and [7] for a survey on both safe and unsafe feature elimination strategies for lasso
problems. Safe elimination strategies for support vector machines (SVM) have also been proposed in
[8] and [9]. The work of [10] puts forth a more general theory of deriving SAFE rules for a wide class
of convex problems that includes the lasso, SVM, and other problems as examples.

In this paper we develop a SAFE strategy for non-negativity constrained convex optimization
problems which uses an accurate, but non-optimal, primal-dual feasible pair. This is similar to the
SAFE strategy for the lasso proposed in [3], which is more robust than El Ghaoui et al.’s original in
[1]. We show that under reasonable conditions, a sufficiently accurate primal-dual pair will eliminate
all zero coordinates from the problem.

A recent technique in super-resolution fluorescence microscopy uses many tens of thousands of
non-negative least-squares (NNLS) problems to form a super-resolved image. Motivated by these
problems we focus our efforts on the case where only an accurate primal feasible point is known, as
is usually the case when using first-order methods to solve the primal. To enable the use of SAFE we
propose an efficient method to construct an accurate dual feasible point from a given primal feasible
point. We also show that the construction depends continuously on the given primal feasible point,
meaning that as the primal feasible point converges to an optimal point (e.g., as one iterates a first-
order method) so too does the dual, and hence SAFE will eliminate all zero features.

We apply our SAFE strategy to the task of robustly certifying the uniqueness of solutions to NNLS
problems. In a small synthetic numerical example we compare our method with an existing uniqueness
sufficient condition that relies on a strong assumption on the structure of the data matrix. The
strong assumption is that the columns are in general linear position (19), which can be checked
only for very small matrices or if the matrix has a generating model of a certain form. In a real-
data numerical example of a much larger size we use our SAFE strategy to certify the uniqueness of
reconstructed images from a microscopy application. It is infeasible to check if the columns of the
data matrix are in general linear position, so the existing uniqueness condition cannot be used. We
instead find an approximate solution (a reconstructed image) to the NNLS problem using an efficient
gradient method and use our SAFE strategy to confirm that the exact reconstructed image is unique.

Constructing the dual feasible point and performing feature elimination costs about as much as a
primal gradient evaluation, which is to say that it is not expensive. Although we do not explore this
direction in this work, the inexpensiveness of our SAFE strategy likely allows it to be used to decrease
the cost of solving the primal problem with a first-order method, as has already been demonstrated
for the lasso [7].

The rest of this paper is organized as follows. In Section 2 we state a general non-negativity
constrained primal problem, develop a dual problem, and state KKT optimality conditions. Section 3
derives the general structure of a SAFE strategy using an accurate primal-dual feasible pair. We also
give a simple, but effective, instantiation of this strategy. To enable SAFE to work with first-order
methods, Section 4 derives and analyses a dual line search that allows us to construct an accurate
dual feasible point from an accurate primal feasible point. Section 5 gives the proof that our SAFE
strategy eventually eliminates all zero features. Sections 6 and 7 discuss robustly certifying solution
uniqueness for NNLS problems.

2 Preliminaries

Let R := R∪{±∞} be the set of extended real values and Rn
+ = {x ∈ Rn : x ≥ 0} be the non-negative

orthant. We denote the standard inner product on Rn by both 〈x, y〉 and xT y, and the induced norm
by ‖x‖ =

√
xTx. The convex conjugate of a function f is defined via

f∗(y) := sup
x
〈y, x〉 − f(x).
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We denote the domain of a function f by dom f and the ith coordinate of a vector x by xi or {x}i.
Except for the convex conjugate, we use a superscript ∗ to denote the value of a quantity at an
optimum, e.g., p∗ for the optimal value of a primal optimization problem.

We consider a general optimization problem involving a convex objective f subject to a non-
negativity constraint on the optimization variables:

minx f(Ax)
s.t. x ≥ 0.

(1)

For example, this generic problem structure captures non-negative least-squares (NNLS) with f(z) =
1
2‖z − b‖2. We assume the following throughout the paper:

– f : Rm → R is proper and convex,
– f has globally L-Lipschitz continuous gradient with L > 0 (f is L-smooth),
– A 6= 0 is a real m× n matrix,
– the primal optimal value is attained.

A sufficient condition for the primal optimal value to be attained is to apply Slater’s constraint
qualifications to the dual problem (2), and in many cases this simplifies. For example, if f is strongly
convex, as is the case when f(z) = 1

2‖z − b‖2, then in particular f is supercoercive and hence f∗

has full domain [11, Cor. 11.17, Prop. 14.15], thus a strictly feasible dual point is any ν satisfying
AT ν > 0. Such a point is guaranteed in cases such as when the entries of A are positive, as occurs in
the microscopy example of Subsection 7.2.

Note that one could generalize to f taking on values in the extended real line, i.e., dom f ( Rn,
in which case we need to add the assumption that int dom f ∩ ARn

+ is non-empty, since this implies
Slater’s constraint qualification holds for the primal, which is needed for strong duality and for Lemma
4.2.

We begin by deriving a dual problem to (1). The problem (1) fits naturally into the framework
of Fenchel-Rockafellar duality (though one can use Lagrange duality to find the same dual problem;
see [12]). See the text [13] for a self-contained introduction or [11] for a thorough treatment. We can
write (1) as

p∗ = min
x

f(Ax) + ιRn
+
(x)

where ιRn
+

is the indicator function for the non-negative orthant, i.e. ιRn
+
(x) is 0 if x ≥ 0 and +∞

otherwise.
We can directly write the dual problem as

max
ν
−f∗(ν)− (ιRn

+
)∗(−AT ν).

The conjugate of ιRn
+

is readily found to be ιRn
−

, the indicator for the non-positive orthant. Writing
this as a constraint on AT ν, we have the dual problem

d∗ = maxν g(ν)
s.t. AT ν ≥ 0,

(2)

where we have defined the dual objective g(ν) := −f∗(ν). Since we assumed f to be proper, f∗

is proper and convex. Further, by assuming f has L-Lipschitz continuous gradient, the “conjugate
correspondence theorem” (Theorem 5.26 of [13]) implies that g = −f∗ is 1/L-strongly concave. The
strong concavity of g implies that the dual optimal point ν∗ exists and is unique. It also provides us
with the bound

1

2L
‖ν − ν∗‖2 ≤ g(ν∗)− g(ν) ∀ν ∈ dom g. (3)

We will use this bound as a fundamental building block for our feature elimination procedure in
Section 3.

Observe that Slater’s condition holds for the primal problem (1). This implies that strong duality
holds, so that the primal optimal value p∗ and the dual optimal value d∗ are equal. Note that Slater’s
condition holding for the primal problem also shows that the dual optimal value is attained (a ν∗

exists that achieves d∗ = g(ν∗)) [12]. Furthermore, Slater’s condition holds for the dual problem (2),
which implies that the primal optimal value is attained and that the KKT conditions are necessary
and sufficient for primal and dual optimal points.
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The KKT conditions for the primal problem (1) can be written as

AT∇f(Ax)−AT ν = 0 (4)
x ≥ 0 (5)

AT ν ≥ 0 (6)
xi{AT ν}i = 0 ∀i = 1, . . . , n. (7)

3 Safe Feature Elimination

Let x∗ be a (primal) optimal point of (1) and ν∗ the (dual) optimal point of (2). Let ai be the
ith column/feature of the matrix A. The complementary slackness condition (7) implies that if
{AT ν∗}i > 0, then x∗

i = 0. The key idea of safe feature elimination is that if we can certify that
{AT ν∗}i = 〈ai, ν∗〉 > 0, then we can guarantee that x∗

i = 0. This allows us to eliminate the ith
column of A, ai, from the problem with a guarantee that it will not be present in a solution. What
remains is to robustly determine for each column ai if 〈ai, ν∗〉 > 0 without knowledge of the exact
solutions ν∗ or x∗.

Observe that we do not require the precise value of 〈ai, ν∗〉; we merely need to certify that 〈ai, ν∗〉
is strictly positive to certify x∗

i = 0. This allows us to avoid the apparent need for the exact solution
ν∗. Suppose we have a set of dual points N that is guaranteed to contain ν∗. We then find a lower
bound for 〈ai, ν∗〉 by solving the “feature elimination subproblem”

minν 〈ai, ν〉
s.t. ν ∈ N.

(8)

That N contains ν∗ makes (8) safe. The optimal value of (8) is guaranteed to be no larger than 〈ai, ν∗〉,
so that if the optimal value is strictly positive we can certify that 〈ai, ν∗〉 > 0. The feature elimination
subproblem (8) tests for elimination of the single feature ai, so to test for feature elimination on all
of A we simply solve (8) for each column of A.

We now construct a simple, but effective, search set N without the use of any exact solutions. Let
us assume that we have access to both a primal feasible point x̂ and a dual feasible point ν̂, neither of
which are assumed to be optimal. This gives the duality gap ε = f(Ax̂)− g(ν̂). Since strong duality
holds, the duality gap ε will shrink to zero as x̂ and ν̂ become increasingly accurate. Using the strong-
concavity bound (3), we have

1

2L
‖ν̂ − ν∗‖2 ≤ g(ν∗)− g(ν̂). (9)

Since strong duality holds, g(ν∗) = f(Ax∗), from which we see

g(ν∗)− g(ν̂) = f(Ax∗)− g(ν̂) ≤ f(Ax̂)− g(ν̂) = ε.

Combining these gives us a bound on the distance from ν̂ to ν∗ in terms of the duality gap ε. We there-
fore define the search set N to be the set of all points satisfying this bound: N := {ν : ‖ν̂ − ν‖2 ≤ 2Lε}.
As desired, N is guaranteed to contain ν∗, but is constructed using only the feasible points x̂ and ν̂.

The associated feature elimination subproblem is

minν 〈ai, ν〉
s.t. ‖ν − ν̂‖2 ≤ 2Lε.

(10)

The problem (10) has a linear objective and the constraint set is a ball of radius
√
2Lε centered at

ν̂. See Figure 1 for a diagram of the dual geometry for this problem. Taking the search set N to be
a ball as we have done is very similar to the GAP SAFE sphere test of [3].

The optimal value is easily found in closed-form to be 〈ai, ν̂〉 −
√
2Lε‖ai‖. As x̂ and ν̂ become

more accurate, ν̂ approaches ν∗ and ε shrinks to zero; as this occurs the optimal value of the sub-
problem approaches 〈ai, ν∗〉, giving more precise lower bounds and thus increasing the strength of
the subproblem to eliminate features. It is therefore crucial to have accurate, feasible x̂ and ν̂ in order
to apply (10) effectively.
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Fig. 1 Dual geometry of the feature elimination subproblem (10). The hyperplanes 〈a1, ν〉 = 0 and 〈a2, ν〉 = 0 are
drawn, with the dual feasible set {ν : AT ν ≥ 0} extending toward the upper right. The dual optimal point ν∗ is
guaranteed to be the search set N , which is a ball of radius

√
2Lε centered at ν̂. Since 〈a1, ν〉 > 0 for all ν ∈ N , the

feature elimination subproblem (10) has strictly positive optimal value and so feature a1 can be eliminated. The figure
is drawn such that 〈a2, ν∗〉 = 0, so a2 cannot be eliminated.

4 Dual Line Search

In order to use feature elimination subproblem (10), we must have a primal feasible x̂ and a dual
feasible ν̂ that achieve a reasonably tight duality gap ε = f(x̂) − g(ν̂). When using a first-order
method on the primal we have access to an accurate primal feasible point x̂ simply by taking one
of the iterates. But we typically do not have access to an accurate dual feasible point ν̂. Hence we
derive an inexpensive method to find an accurate dual feasible ν̂ from an accurate primal feasible x̂.

4.1 Finding an Accurate Dual Feasible ν̂ From an Accurate Primal Feasible x̂

To leverage the accuracy of x̂, we form ν′ = ∇f(Ax̂), since if x̂ were optimal, then ∇f(Ax̂) would be
the dual optimal point (see Lemma 4.2). But note that ν′ is not guaranteed to be dual feasible since
x̂ is not necessarily optimal (i.e., AT ν′ 6≥ 0 is possible). To fix this, perhaps the “best” approach is
to solve the orthogonal projection problem

minν̂
1

2
‖ν̂ − ν′‖2

s.t. AT ν̂ ≥ 0,
(11)

which finds the closest dual feasible point to ν′. This problem is closely related to the dual of NNLS,
and the optimal ν̂ can be found by solving an appropriate NNLS primal problem (see (15) and
Lemma 4.2). In the context of our microscopy NNLS example, this would mean we must solve an
additional NNLS problem each time we would like to attempt feature elimination. With the number
of NNLS problems already in the tens of thousands, this approach becomes rather unwieldy, and we
can accept a less-than “best” ν̂ in exchange for improved speed. We only need ν̂ that does not spoil
the accuracy provided by x̂, thereby providing a small duality gap ε.

To that end let us assume we have access to a strictly dual feasible point νstrict. We can use νstrict

to construct ν̂ nearby ν′ that is also dual feasible using a simple line search: we find the closest dual
feasible point to ν′ along the line segment between ν′ and νstrict via

min t
s.t. AT ((1− t)ν′ + tνstrict) ≥ 0

0 ≤ t ≤ 1.
(12)

Once we have solved the line search for t∗, we form ν̂ = (1 − t∗)ν′ + t∗νstrict. We can view this line
search as a not-necessarily-orthogonal projection onto the dual feasible set. We will give a few simple
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methods to find a strictly dual feasible νstrict in Subsection 4.1.1, and in Subsection 4.1.2 we will
show that νstrict being strictly dual feasible (instead of just dual feasible) is necessary for ν̂ from the
line search to converge to ν∗ as x̂ converges to x∗.

See Figure 2 for a diagram of this line search in two dimensions. The boundary of the dual feasible
set is given by two hyperplanes 〈a1, ν〉 = 0 and 〈a2, ν〉 = 0. We can see 〈a2, ν′〉 < 0, so ν′ is not dual
feasible.

Fig. 2 Finding ν̂ from ν′ and νstrict via the dual line search (12).

The constraint t ≥ 0 is used in the line search only so that ν̂ = ν′ in the case when ν′ is already
dual feasible. Additionally, the optimal value is never greater than 1, since the point νstrict is assumed
to be dual feasible. By precomputing AT ν′ and AT νstrict, the optimal value of the line search and
the resulting dual feasible point ν̂ can be found in closed-form, which is given in Subsection 4.1.2.

4.1.1 Finding a Strictly Dual Feasible νstrict

For a given A, we can search for a strictly dual feasible point νstrict via the optimization problem

maxν,t t
s.t. AT ν ≥ t

‖ν‖ ≤ 1
(13)

This problem maximizes a lower bound of AT ν while the constraint ‖ν‖ ≤ 1 serves to keep ν bounded.
If we take ‖ · ‖ to be the `1-norm, the program is an LP; if we take ‖ · ‖ to be the `2-norm, the program
is a quadratically constrained quadratic program. If the optimal value t∗ > 0, then (13) will have found
a strictly dual feasible νstrict. Conversely, if νstrict is strictly dual feasible, then νstrict/‖νstrict‖ ≤ 1 and
the optimal value t∗ ≥ AT νstrict/‖νstrict‖ > 0. Hence if there exists a strictly dual feasible point for a
given A the program (13) will find one. The cost of this problem is not much of a concern (unless A
is huge), as it only needs to be solved once to find νstrict; once we have a strictly dual feasible νstrict,
we can use it for any primal problem of the form (1) with the same A.

There are other methods to find a suitable νstrict without solving (13). If the sum of each row of
A is positive, the point νstrict = 1 is strictly dual feasible. In particular, if A is elementwise positive
(as is the case in our microscopy example in Subsection 7.2), νstrict = 1 is strictly dual feasible. We
can also take νstrict = max{0, ν′}, where ν′ = ∇f(Ax̂); if νstrict has at least one positive entry, then it
is strictly dual feasible. In our microscopy example A is elementwise positive and we find that using
νstrict = max{0, ν′} reliably produces strictly dual feasible points (and avoids the need for solving the
program (13)).

4.1.2 The Dual Line Search is a Continuous Mapping

In Subsection 4.2 we will show how ν̂ from the dual line search converges to the dual optimal point
ν∗ as x̂ converges to a primal optimal point. This will then be used to show that, under reasonable
conditions, our dual line search and feature elimination strategy will eventually eliminate all zero
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features from the problem. This means that if we perform sufficiently many iterations of a first-
order method, we can eliminate all zero features from the problem. To enable that analysis, we find
a closed-form solution to the line search and prove a lemma on the continuity of the mapping from
ν′ = ∇f(Ax̂) to ν̂ found via the line search.

We find the closed-form solution to the line search by identifying two cases:
1. If ν′ is dual feasible, t = 0 is the minimum feasible value, which leads to ν̂ = ν′.
2. Otherwise, there is at least one index i such that 〈ai, ν′〉 = {AT ν′}i < 0. In this case, we must

increase t until the all coordinates of AT ((1− t)ν′ + tνstrict) are non-negative.
We define the scalar-valued function

t(λ;λ0) :=

0 λ ≥ 0
λ

λ− λ0
λ < 0,

where λ is the scalar independent variable and λ0 is a fixed parameter. We can write the dual feasible
point returned from the line search as ν̂ = (1− t∗)ν′ + t∗νstrict where

t∗ = max
i

t(aTi ν
′; aTi ν

strict).

Lemma 4.1 If νstrict is strictly dual feasible (i.e., AT νstrict > 0), then the dual line search (12)
mapping ν′ to ν̂ is continuous in ν′.

Proof The strict dual feasibility assumption states that aTi ν
strict > 0 for each i. The dual line search

produces the point
ν̂ = (1− t∗)ν′ + t∗νstrict.

To show continuity of the mapping ν′ 7→ ν̂, it is sufficient to show t∗ is continuous in ν′.
Observe that if λ0 > 0 the function t(λ;λ0) is continuous for all λ. Since we take νstrict strictly

dual feasible, aTi ν
strict > 0 for each i, meaning that t(aTi ν

′; aTi ν
strict) depends continuously on ν′

for each i. Since t∗ is the pointwise maximum of continuous functions of ν′, it is continuous in ν′,
completing the proof. ut

The strict dual feasibility assumption in Lemma 4.1 is necessary for the continuity of the mapping.
Let us look at the dual geometry when νstrict is not strictly dual feasible. The non-strictly dual feasible
point νstrict is on the boundary of the dual feasible set, since it satisfies aTi ν

strict = 0 for some ai.
When ν′ is not dual feasible, the only dual feasible point on the line segment between ν′ and νstrict is
νstrict, so the dual line search returns ν̂ = νstrict. Thus, when νstrict is not strictly dual feasible, the
dual line search will return one of two values: when ν′ is not feasible, the line search returns νstrict;
when ν′ is feasible, the line search returns ν′.

Figure 3 illustrates what would happen if ν′ converges to ν∗ while remaining dual infeasible. The
line search is “stuck”, returning ν̂ = νstrict for all ν′. So as ν′ → ν∗, ν̂ = νstrict is “stuck” and does
not converge to ν∗. Picking νstrict to be strictly dual feasible “unsticks” the dual line search, allowing
the returned value ν̂ to converge to ν∗ as ν′ → ν∗.

4.2 Convergence of Dual Sequence Given Primal Sequence

Using a first-order method to solve (1) typically provides a sequence xk of primal feasible points that
converges to a primal optimal point x∗ (which may not be unique). For example, the projected gradient
method produces such a sequence (see Theorem 10.24 of [13] for a proof of this). In Subsection 4.1, we
discussed a dual line search that allows us to produce a dual feasible point ν̂k from ν′k := ∇f(Axk)
and a separate dual feasible point νstrict.

In Subsection 3 we saw a simple feature elimination subproblem (10) that utilized an accurate,
but not necessarily optimal, primal-dual pair. The strength of the subproblem depends on the size
of the duality gap ε. In other words, as the duality gap shrinks, the lower bound produced by the
subproblem increases, possibly eliminating the feature. In order for the duality gap ε to shrink to zero
as xk converges, we must also have that the dual line search produces ν̂k that converges to the dual
optimal point ν∗ (recall that strong duality holds for (1) and (2)). If νstrict is strictly dual feasible,
we will see that ν̂k → ν∗ as xk → x∗, thus giving ε→ 0 as desired.

First, we give a lemma that states ν∗ = ∇f(Ax∗) for any primal optimal x∗. This comes somewhat
directly from the KKT conditions for the dual problem.



8 James Folberth, Stephen Becker

Fig. 3 Pathological case for the continuity of the dual line search when νstrict is on the boundary of the dual feasible
set (i.e., νstrict is not strictly dual feasible).

Lemma 4.2 Let x∗ be a primal optimal point of (1). Then ν = ∇f(Ax∗) is the unique dual optimal
point of (2).

Proof This is a known result coming from optimality conditions for the dual problem. For example,
this is a consequence of Theorem 19.1 of [11]. ut

Now we show that the dual line search produces a sequence of points that converges to the dual
optimal point.

Theorem 4.1 Let xk be a sequence of primal feasible points that converge to a primal optimal point
x∗, and let νstrict be a strictly dual feasible point (i.e., AT νstrict > 0). For each k, define the dual
feasible point ν̂k by performing the dual line search (12) using ν′k = ∇f(Axk) and νstrict. Then the
sequence ν̂k of dual feasible points converges to the unique dual optimal point ν∗.

Proof Note that the map xk 7→ ν′k = ∇f(Axk) is continuous by assumption. By continuity and Lemma
4.2, ν′k → ν∗ as xk → x∗. But ν′k is not guaranteed to be dual feasible, hence our use of the dual
line search. We seek to show that the dual feasible sequence ν̂k → ν∗ as xk → x∗. By the triangle
inequality,

‖ν̂k − ν∗‖ ≤ ‖ν̂k − ν′k‖+ ‖ν′k − ν∗‖.
We already have that ‖ν′k − ν∗‖ → 0, so to complete the proof it remains to show ‖ν̂k − ν′k‖ → 0.

Since ν̂k is computed using the dual line search using ν′k and νstrict, we have that

‖ν̂k − ν′k‖ = ‖(1− tk)ν′k + tkνstrict − ν′k‖ = tk‖ν′k − νstrict‖,

where tk is the optimal value of t from the dual line search for that particular ν′k. Since ν′k → ν∗

and ν∗ is unique, we know that ‖ν′k − νstrict‖ is eventually bounded above by a constant. Therefore,
we just need to show tk → 0 to imply that ‖ν̂k − ν′k‖ → 0.

Recalling the proof of Lemma 4.1, the function

ν′ 7→ t(aTi ν
′; aTi ν

strict) =


0 aTi ν

′ ≥ 0
aTi ν

′

aTi ν
′ − aTi ν

strict aTi ν
′ < 0,

is continuous precisely when aTi ν
strict > 0 (i.e., when νstrict is strictly dual feasible). Since ν′k converges

to a dual feasible point, aTi ν′k converges to a nonnegative value for each ai. Therefore the limiting value
of t(aTi ν′k; aTi νstrict) is 0 for each ai, and thus tk = maxi t(a

T
i ν

′k; aTi ν
strict)→ 0. This then shows that

‖ν̂k − ν′k‖ → 0, which, using the triangle inequality above, implies that ν̂k → ν∗ as desired. ut

5 When Will the Screening Rule Eliminate all Zero Features?

Here we show that the feature elimination subproblem (10) will eliminate all zero features from the
solution, under reasonable assumptions and with sufficiently small duality gap ε. Coupled with the
use of a first-order method and the dual line search of Subsection 4.1, this means that our feature
elimination strategy will eventually eliminate all features that can be eliminated.
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Theorem 5.1 Assume that strict complementary slackness holds (i.e., x∗
i = 0 iff 〈ai, ν∗〉 > 0). Define

I := {i : 〈ai, ν∗〉 > 0} to be the index set of zero features. Let the pair x̂, ν̂ produce a duality gap
estimate ε such that

√
ε <

1√
2L

min
i∈I

〈ai, ν̂〉
‖ai‖

.

Then the feature elimination problem (10) will eliminate all zero features.

Proof Since we have assumed strict complementary slackness, a zero feature x∗
i = 0 always corre-

sponds to 〈ai, ν∗〉 > 0. Since ν∗ is unique, the set I uniquely determines the indexes of zero features.
If we did not assume strict complementary slackness, then a zero feature x∗

i = 0 may be associated
with 〈ai, ν∗〉 = 0, which cannot be eliminated by the subproblem (10). So we see that strict comple-
mentary slackness implies that each zero feature corresponds to a strictly satisfied dual inequality.
We must show that the subproblem (10) produces a strictly positive lower bound for 〈ai, ν∗〉 for ev-
ery i ∈ I.

For the subproblem to produce a strictly positive lower bound for the ith feature, the search
set N must be contained strictly in the interior of the halfspace 〈ai, ν〉 ≥ 0. The search set N is a
(closed) ball of radius

√
2Lε centered at ν̂. Recall from Section 3 that the optimal value of (10) is

〈ai, ν̂〉 −
√
2Lε‖ai‖ for the ith feature. Up to a scaling factor, this is the minimum distance between

the search set N and the hyperplane 〈ai, ν〉 = 0. Therefore the search set N is strictly separated from
the hyperplane precisely when the optimal value is strictly positive:

〈ai, ν̂〉 −
√
2Lε‖ai‖ > 0⇐⇒

√
ε <

1√
2L

〈ai, ν̂〉
‖ai‖

.

By assumption on the size of ε, this condition is satisfied for each i ∈ I, so feature elimination will
eliminate all zero features. ut

Theorem 5.1 shows that under strict complementarity and if the duality gap ε is sufficiently small,
then feature elimination will eliminate all zero features from the problem. We used knowledge of the
the exact dual optimal point only to assist in quantifying how small ε must be in order to imply
that feature elimination will work. But even without knowledge of the dual optimal point, we still
know that if ε is sufficiently small, then feature elimination will have worked. Indeed, by combining
Theorems 4.1 and 5.1, we have the following:

Corollary 5.1 Assume that strict complementary slackness holds (i.e., x∗
i = 0 iff 〈ai, ν∗〉 > 0).

Let xk be a sequence of primal feasible points that converges to x∗ (e.g., from a first-order method)
and let ν̂k be the sequence of dual feasible points produced as in Theorem 4.1. Then the duality gap
ε = f(xk)− g(ν̂k)→ 0 as k →∞ and Theorem 5.1 will eventually apply. This means that the feature
elimination subproblem (10) will eventually eliminate all zero features.

This tells us that if we do enough iterations of a first-order method, perform the dual line search,
and then do feature elimination, we will eliminate all possible features. But we don’t know how many
iterations are sufficient (without knowledge of the dual optimal point, that is). Furthermore, if strict
complementarity does not hold, we can only eliminate zero features that correspond to 〈ai, ν∗〉 > 0; a
zero feature that corresponds to 〈ai, ν∗〉 = 0 cannot be eliminated. These issues notwithstanding, we
can still use feature elimination very effectively in practice, including certifying that underdetermined
NNLS problems have unique solutions.

6 Certifying NNLS Solution Uniqueness

Here we consider applying safe feature elimination to the problem of certifying the uniqueness of the
primal solution. We consider the case of NNLS, where f(z) = 1

2‖z − b‖2, which reduces the primal
problem (1) to

minx
1
2‖Ax− b‖2

s.t. x ≥ 0.
(14)

We have assumed throughout that the m× n matrix A is full-rank. But we have not yet assumed
anything about the shape of A, which may be “overdetermined” (m ≥ n) or “underdetermined”
(m < n). In the overdetermined case, the primal objective is σmin(A

TA)-strongly convex, where
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σmin(A
TA) is the minimum singular value of ATA. Since A is overdetermined, the Hessian ATA of

the NNLS problem is non-singular, so σmin(A
TA) > 0. The NNLS primal problem (14) therefore has

a unique optimal point [13]. In the underdetermined case the Hessian ATA is singular and the primal
objective is neither strongly nor strictly convex, so there is no such uniqueness guarantee.

To attempt to certify the uniqueness of solutions to underdetermined problems we use our feature
elimination strategy to reduce the problem to an overdetermined, full-rank NNLS problem. Suppose
we eliminate r features/columns of A. This allows us to form the reduced matrix Ared with those r
columns removed and with the guarantee that the removed columns are not used by a solution of
the original problem. If r ≥ n−m, so that the reduced matrix Ared is overdetermined, and if Ared is
full-rank, then the reduced NNLS problem has a strongly convex objective and has a unique solution.
Since our feature elimination strategy is safe, the solution to the original NNLS problem is guaranteed
to be the same as the solution to the reduced problem (with appropriate zero padding), meaning that
the original NNLS problem has a unique solution. Thus we have a procedure to robustly certify the
uniqueness of NNLS problems via our safe feature elimination strategy, which requires an accurate,
but not optimal, primal-dual pair.

Note that to certify uniqueness we need not eliminate all zero features, as was the goal of Theorem
5.1. In a sense, certifying uniqueness is an easier problem than eliminating all zero features; indeed,
to certify uniqueness we need only eliminate sufficiently many (r ≥ n − m) features. We therefore
do not require (full) strict complementary slackness, as was assumed in Theorem 5.1. There may be
some zero features x∗

i = 0 paired with 〈ai, ν∗〉 = 0 but that does not concern us as long as there are
sufficiently many x∗

i = 0 such that 〈ai, ν∗〉 > 0, enabling us to certify the uniqueness of x∗.
The above uniqueness certification procedure was described just for the least-squares objective

(i.e., for NNLS problems), but it can be generalized to the problem minx≥0 f(Ax) where f is strictly
convex and satisfies the assumptions of SAFE (i.e., proper, L-smooth). When A is underdetermined
the objective f(Ax) is no longer strictly convex. But if we use SAFE to eliminate sufficiently many
features such that the reduced matrix is overdetermined and full-rank, the reduced objective is strictly
convex and therefore a minimizer is unique. One can also modify this uniqueness certification tech-
nique to work with `1-regularized problems (like lasso), for instance using the GAP SAFE rules of
[3], which are similar to (10).

6.1 A Small NNLS Example

Let us illustrate our procedure with a small example. For NNLS, the dual problem (2) reduces to

maxν g(ν) = − 1
2‖ν + b‖2 + 1

2‖b‖
2

s.t. AT ν ≥ 0.
(15)

Suppose we have a primal feasible point x̂ and dual feasible point ν̂. This allows us to compute the
duality gap ε = f(Ax̂)− g(ν̂). The basic feature elimination subproblem (10) reduces to

minν 〈ai, ν〉
s.t. ‖ν − ν̂‖2 ≤ 2ε,

(16)

where we have used that the dual objective g is 1-strongly convex (since f has 1-Lipschitz continuous
gradient).

Consider the following matrix with randomly chosen entries

A =

 1 6 −1 8 0
−2 7 1 8 2
3 1 4 1 −5

 ,

and right-hand side (RHS) b =
[
−1 2 1

]T . We note that there is nothing special about these entries;
the entries are the first few digits of the golden ratio, the base of the natural logarithm, and pi, with
some negative signs added. Projected gradient descent (PGD) for NNLS produces the iteration

x+ ← x− tAT (Ax− b) (17)



Safe Feature Elimination for Non-Negativity Constrained Convex Optimization 11

where we pick step size t = 1/‖A‖2. Starting with x = 0 and iterating 250 times yields the primal
feasible point x̂

.
=

[
0 0 0.9282 0 0.5409

]T .1
We now find a dual feasible point ν̂ with the dual line search of Section 4. First we find a strictly

dual feasible point νstrict via the program (13). Because it makes the numbers more presentable on
paper, we opt to rescale the solution νstrict so that ‖νstrict‖1 = 1, which gives νstrict .

=
[
0.56 0.34 0.1

]T .
Then we perform the dual line search (12) with νstrict and ν′ = Ax̂ − b, giving us the dual feasible
point ν̂

.
=

[
0.1387 0.0552 0.0209

]T . Together x̂ and ν̂ produce the duality gap ε
.
= 0.0069.

If we instead found ν̂ via the orthogonal projection subproblem (11), we would find the improved
duality gap ε

.
= 0.0013. But recall that the orthogonal projection subproblem is closely related to

the NNLS dual problem and is computationally expensive to solve. Avoiding this expense is precisely
the motivation for the dual line search, and we see for this example that the dual line search is not
terribly worse than the orthogonal projection.

We are now ready to solve the feature elimination subproblem (16) once for each of the five
columns of A. Using the closed-form solution given in Section 3, we find the following lower bounds
on AT ν∗:

[
−0.34 0.17 −0.49 0.26 −0.61

]T . The lower bounds for 〈a2, ν∗〉 and 〈a4, ν∗〉 are strictly
positive, so we can eliminate them from the problem; the lower bounds for the remaining columns
are non-positive, so the test is inconclusive. The reduced matrix is

Ared =

 1 −1 0
−2 1 2
3 4 −5

 ,

which is overdetermined and full-rank. We can therefore certify that the original NNLS problem has
a unique solution. In fact, only 206 iterations of PGD are required to certify uniqueness, though this
is unknown a priori.

With the solution certified to be unique, we can bound the distance from x̂ to the unique solution
x∗ via the strong convexity of the reduced primal problem:

‖x̂− x∗‖2 ≤ 2

σmin(Ared)2
(f(Ax̂)− f(Ax∗)) ≤ 2

σmin(Ared)2
ε
.
= 0.066. (18)

6.2 An Alternative Method to Certify Uniqueness

Slawski and Hein, as part of their analysis of NNLS problems in [14], prove a lemma on the uniqueness
of NNLS solutions. Their result is very similar to existing results for `1-regularized least-squares and
related problems [15,16]. The lemma relies on a strong assumption on the columns of A, but provides
a simple condition to certify the uniqueness of a solution. We discuss this condition first, state their
lemma, and finally discuss how to use their lemma to certify uniqueness in practice.

For an index set J ⊆ {1, . . . , n}, we denote by AJ the submatrix of A formed by taking column
j for j ∈ J . The columns of the matrix A ∈ Rm×n are said to be in general linear position (GLP) in
Rm if the following condition holds:

∀J ⊆ {1, . . . , n}, |J | = min{m,n}, ∀x ∈ R|J |, AJ x = 0 =⇒ x = 0. (19)

In other words, every subset of min{m,n} columns is linearly-independent. For brevity, we will say
“A is in GLP” to mean “the columns of A are in GLP”. It is easy to see that A in GLP implies that
A is full-rank, but the converse is not true: GLP is strictly stronger than full-rank. A being in GLP
is also related to the spark of A, where spark(A) is defined in [17] to be minimum number of columns
that form a linearly dependent set. If m < n, then A is in GLP iff spark(A) = m+ 1.

Unlike computing the rank of a matrix, computing the spark of A and determining if A is in GLP
may be prohibitively difficult in the worst case. The straightforward computation to determine if A is
in GLP requires computing combinatorially many determinants. Indeed, determining if A is in GLP
(equivalently, if spark(A) = m+1) is coNP-complete [18,19]; computing spark(A) is NP-hard in
general [19]. So numerically verifying that A is in GLP is likely intractable except for very small A.

But these are worst-case results, when we know nothing about the matrix A; there are matrices
that are known to be in GLP or have known spark. For example, if the entries of A ∈ Rm×n are

1 We use .
= to denote equality up the number of digits shown.
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drawn i.i.d. from an absolutely continuous distribution, then A is in GLP with probability one [15].
Though it is complex, another example is A =

[
In Fn

]
where In is the n× n identity matrix and Fn

is the n× n discrete Fourier transform matrix. When n is a perfect square, the spark is known to be
exactly 2

√
n, and hence it is not in GLP for n > 1 [17].

There are also lower bounds for spark(A) [17,20]. One such bound is spark(A) > 1/µ(A), where

µ(A) = max
i 6=j

|〈ai, aj〉|
‖ai‖‖aj‖

is called the coherence parameter of A. For the A ∈ R1681×2822 from our microscopy example in
Subsection 7.2, we have µ(A) ≈ 0.99 which gives the uninformative bound spark(A) ≥ 2.

Assuming we know that A is in GLP (e.g., if A is drawn with entries from a continuous distribution
like the standard normal distribution), the following lemma from [14] gives a simple condition implying
the uniqueness of the NNLS solution.

Lemma 6.1 (Lemma 5 from [14]) Let the columns of A ∈ Rm×n, m < n, be in GLP. If the NNLS
optimal value is strictly positive,

p∗ = min
x≥0

1

2
‖Ax− b‖2 > 0,

then the NNLS problem has a unique solution. Furthermore there are at most m− 1 non-zero values
in the solution.

For underdetermined NNLS problems with A in GLP, we can certify uniqueness simply by cer-
tifying p∗ > 0. Assuming we know that A is in GLP, this is simple to check and certify in practice,
including when using a first-order method that produces only primal points. We can produce a dual
feasible point ν̂ from a primal feasible point x̂ using the dual line search from Section 4. If we have
that g(ν̂) > 0, then p∗ > 0 by weak duality and the solution is certified to be unique. But of course
if A is not known to be in GLP we cannot invoke Lemma 6.1.

The small example problem in the previous subsection has A in GLP, which can be checked
directly since it is so small. It takes 286 iterations of PGD to certify that p∗ > 0, which is slightly
more than the 206 iterations needed for SAFE to certify uniqueness.

To certify uniqueness using safe feature elimination, there must be at least n−m zero features
with strict complementarity. If this condition does not hold, safe feature elimination will never certify
uniqueness. If A is in GLP and p∗ > 0, then one can certify uniqueness using Lemma 6.1. But notice
from Lemma 6.1 that under such conditions, there are at least n−m+1 zero features in the solution;
so safe feature elimination will also certify uniqueness, provided the solution exhibits enough strict
complementarity. Even if feature elimination fails to certify uniqueness, it still provides certificates
that features are not present in the solution. This is a positive result, whereas Lemma 6.1 provides
no additional benefit when it fails to certify uniqueness.

7 Certifying NNLS Solution Uniqueness - Examples

7.1 Synthetic Data Examples

Let us now see how safe feature elimination performs on a larger synthetic example. We construct
a random NNLS problem by drawing a random 50 × 100 matrix A and 50 × 1 RHS b each with
entries drawn i.i.d. from the standard normal distribution N (0, 1). Such an NNLS problem may not
necessarily have a unique solution. To check if it does we find a high-accuracy solution using matlab’s
lsqnonneg, which implements an active set method from [21]. Using the numerically optimal solution
and noting that A is in GLP with probability one, we check if p∗ > 0 to certify that the solution
is unique. If it not certified to be unique, we draw another random NNLS problem until we have a
problem with a unique solution.

Although it is outside the scope of the present work, it is interesting to note that the uniqueness
of the solution to random NNLS problems of this form appears to depend sharply on the shape of
A. If m > n/2, the solution appears to be unique with high probability for large m,n; if m < n/2,
the solution appears to be non-unique with high probability for large m,n. “Phase transitions” of a
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similar form are analyzed in [22] and it seems quite possible to extend their results to random NNLS
problems of the form used here.

In preparation for the dual line search, we find a strictly dual feasible point νstrict by solving the
program (13) once and precomputing AT νstrict. We run 7500 iterations of projected gradient descent
starting with x = 0, with each iteration giving a primal feasible point x̂. At each iteration we use the
dual line search (12) to construct a dual feasible point ν̂. Performing the dual line search requires
computing AT ν̂ plus O(n) work, which is on the order of a single gradient evaluation. Using x̂ and
ν̂, we find the duality gap and use the feature elimination subproblem (16) to eliminate features.

Figure 4 shows the result of using feature elimination to certify the uniqueness of the random
NNLS problem. After about 1500 iterations, the duality gap is small enough that feature elimination
has started to eliminate features. Just after 3000 iterations, sufficiently many features are eliminated
to certify uniqueness (A in GLP implies that the reduced matrix Ared is full-rank, but we can also
verify this numerically). In accordance with Corollary 5.1 we find that SAFE eventually eliminates
all zero features.

For comparison, we also use SAFE with the orthogonal projection (11) instead of the dual line
search. Solving the orthogonal projection subproblem at each step of projected gradient descent is
tractable for this small problem, but is impractical for larger problems. We see that the dual line
search, which scales well to large problems, performs only a bit worse than the orthogonal projection.

Figure 4 also shows that Lemma 6.1 certifies uniqueness for quite a large duality gap. For the
problem used for Figure 4, νstrict is sufficient to certify p∗ > 0, which certifies uniqueness before even
the first iteration. While impressive, this is not “for free” since we still solve the program (13) to find
νstrict. For other instances more PGD iterations are required, but it is typical for these problems that
p∗ > 0 is certified before SAFE has eliminated sufficiently many features. After SAFE has certified
uniqueness, the reduced primal problem is strongly convex, which allows us to bound the distance
from the primal iterate x̂ to the true solution x∗ à la (18). Though not always possible (unlike a
bound on the duality gap, which we can always find), this provides quite strong information relating
the iterate x̂ to the optimal point x∗.

Fig. 4 Certifying uniqueness for a synthetic 50× 100 NNLS problem. The dashed line in the left figure shows the
minimum number of eliminated features to certify uniqueness; the dotted line shows the maximum number of features
that can be eliminated; the dash-dot line shows SAFE using the orthogonal projection (11) instead of the dual line
search. In the middle figure, the dashed line shows the duality gap when p∗ > 0 is certified and Lemma 6.1 can be
invoked. The right figure shows the bound (18) on the distance from x̂ to the optimal point x∗. The line labeled SAFE
bound∗ uses f(Ax̂) − f(Ax∗) in place of the duality gap ε = f(Ax̂) − g(ν̂) in the bound (18) (i.e., uses only the first
inequality of (18)). Though this requires knowledge of x∗, this shows that the slower convergence of the bound (18)
(which we can compute without knowledge of x∗ or ν∗) is due to the suboptimality of ν̂.

7.2 Microscopy Uniqueness Example

We now consider a challenging set of NNLS problems arising from a new technique in super-resolution
fluorescence microscopy. In this instance, the image formation process involves solving 40000 NNLS
problems each using the same matrix A but different RHS b. The solutions of the NNLS problems
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are then assembled into the final image. We refer the reader to [23] for details on the microscope and
NNLS problem setup.

It is natural to ask if the final, super-resolved image is uniquely determined given the data. If
each of the 40000 NNLS problems has a unique solution, then the final image is unique. We answer
that question in the affirmative by using feature elimination to certify the uniqueness of each NNLS
problem. In fact these microscopy problems motivated our development of feature elimination, in
particular developing them to work with just a primal feasible point x̂ coming from a first-order
method. Note that we do not know a priori, and cannot verify numerically, if A is in GLP, so we
cannot use Lemma 6.1.

The matrix A is 1681×2822 and has 2-norm condition number κ2(A) = 2.4×1020 (computed using
dgesvj compiled to use quadruple precision [24]). Even though these NNLS problems are extremely
ill-conditioned, first-order methods are well-suited to solve them since each NNLS problem uses the
same A. This structure allows us to combine gradient computations for many RHS into matrix-
matrix products with A and AT , instead of repeated matrix-vector products with A and AT . High-
performance matrix-matrix product implementations take advantage of modern hierarchical memory
computers to achieve higher performance than repeated matrix-vector products [25,26]. The result is
an order of magnitude speedup in the gradient evaluation time (throughput, specifically). For further
improved speed, we implement an optimal/accelerated first-order method from [27] instead of using
PGD; we will refer to this method as AT. We include many of the implementation tricks from TFOCS
[28], including an adaptive step size selection method. Our implementation uses a GPU for the
matrix-matrix products and array operations in the iteration, leading to further improved runtime.

Like the example in Subsection 7.1, we will iterate AT for some number of iterations, then stop and
perform feature elimination. We perform the dual line search using νstrict = max{0, ν′}, as mentioned
in Subsection 4.1.1. Using the closed-form solution to the dual line search requires computing AT ν̂
and AT νstrict, which is on the order of the cost of a gradient evaluation. That is to say the dual line
search is not terribly expensive, though we do not generally want to do it after each iteration of AT.

Table 1 shows the results of using the strong concavity subproblem (10) (we also show results
for subproblem (20), which we discuss shortly). We show the number of iterations of AT, the total
number of solutions certified to be unique, and the number of features eliminated across all NNLS
problems. There are 40000 NNLS problems, each with 2822 features, giving approximately 113 million
features total. As the accuracy of the primal feasible points x̂ increases, the duality gap closes and
more features are eliminated from the problem. But even at 500K iterations, not all problems are
certified to have a unique solution.

Solutions Certified Unique Features Eliminated

Iterations using (10) using (20) using (10) using (20)

10,000 7237 9510 20.0% 24.8%
50,000 18,339 23,174 46.2% 56.9%

100,000 23,512 28,826 57.9% 68.3%
500,000 34,462 38,094 81.6% 87.8%
500,000 + lsqnonneg − 40,000 − 91.0%

Table 1 Number of problems (40000 total) certified to have unique solutions using feature elimination with the strong
concavity subproblem (10) and with the strong concavity plus partial dual feasibility subproblem (20). Adding partial
dual feasibility constraints in (20) can eliminate sufficiently many features to certify solution uniqueness at fewer
iterations than using strong concavity alone in (10).

We know from Corollary 5.1 that we could simply perform more iterations of AT to shrink the
duality gap. But instead let us construct a stronger feature elimination subproblem, allowing us to
expend a little more work in solving the new subproblem to avoid computing more iterations of AT.
We do this by introducing another constraint on (10) to shrink the search set N while still ensuring
that ν∗ ∈ N . One of many ways to do this is by adding the dual feasibility constraint: AT ν ≥ 0.
This has the possibility to shrink N , thereby increasing the feature elimination lower bound, while
guaranteeing that ν∗ ∈ N . Thus this leads to a stronger but still safe subproblem.

But the resulting feature elimination subproblem is too difficult to solve for our purposes. We
relax the subproblem by enforcing dual feasibility for only a single column at a time with aTj ν ≥ 0.
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Since we can pick any j ∈ {1, . . . , n}, we solve the subproblem for each column and take the largest
lower bound:

max1≤j≤n minν 〈ai, ν〉
s.t. ‖ν − ν̂‖2 ≤ 2ε

〈aj , ν〉 ≥ 0.
(20)

Each inner problem is a “dome subproblem”, since the feasible set is the intersection of a ball and
a halfspace. A closed-form solution to the dome subproblem exists (see [1] for instance), allowing
us to compute the optimal value cheaply and accurately. The dome subproblem optimal value uses
the inner products 〈aj , ν̂〉 and 〈ai, aj〉. With all required inner products computed, evaluation of the
optimal value requires O(1) work.

Observe that we can compute the all the required inner products for all dome subproblems as
AT ν̂ and ATA. Since A is fixed we precompute ATA and discard this one-time cost. This brings the
cost of computing the optimal value of (20) to about the cost of a gradient evaluation plus O(n) work
for n evaluations of the dome subproblem optimal value.

Table 1 shows the analogous results when using the strong concavity and partial dual feasibility
subproblem (20). We see a marked improvement in the number of solutions certified to be unique,
though we still fall a bit short of certifying uniqueness for all 40000 problems. This appears to be due
to a few particularly slow-to-converge problems where the accuracy of x̂ is still quite low. We fix this by
computing a high-accuracy solution for the remaining 1996 problems using matlab’s lsqnonneg (note
that we do not use lsqnonneg for the 5538 remaining problems when using subproblem (10)). This
results in a sufficiently accurate x̂ and we certify the remaining problems as having unique solutions.
The final image is constructed by assembling the individual NNLS solutions, so by certifying that all
NNLS solutions are unique we also guarantee that the final image is uniquely determined from the
data.

8 Conclusions

We have developed a safe feature elimination strategy for non-negativity constrained convex opti-
mization problems which uses an accurate, but non-optimal, primal-dual feasible pair. We show that
under reasonable conditions, a sufficiently accurate primal-dual pair will eliminate all zero coordi-
nates from the problem. To enable our methods to work with optimization algorithms that produce
only primal points we also developed a dual line search to construct an accurate dual feasible point
from an accurate primal feasible point. This allows us to use a first-order method to solve the primal,
use the dual line search to cheaply construct a dual feasible point, and then use SAFE to eliminate
features. We demonstrate the use of SAFE to robustly certify the uniqueness of a non-negative least-
squares solution in a small synthetic data example and also for a large-scale, extremely ill-conditioned
problem set arising from a microscopy application. Once an NNLS solution has been certified unique,
safe feature elimination also provides a bound on the distance to the unique optimal point. Possi-
ble future directions of this work include strengthening the feature elimination subproblems and dual
line search, and extending the uniqueness certification technique to 1-norm regularized problems like
lasso. Relaxing the requirement for global strong concavity of the dual objective g (which came from
the assumed global L-smoothness of f) via the characterization in [29] may also be fruitful. Another
promising line of work is incorporating the feature elimination into active-set methods [30,31] which
typically rely on estimating active and inactive features.
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